| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||
| GeneticSearch |
|
| 2.6578947368421053;2.658 | ||||
| GeneticSearch$BayesNetRepresentation |
|
| 2.6578947368421053;2.658 |
| 1 | /* | |
| 2 | * This program is free software: you can redistribute it and/or modify | |
| 3 | * it under the terms of the GNU General Public License as published by | |
| 4 | * the Free Software Foundation, either version 3 of the License, or | |
| 5 | * (at your option) any later version. | |
| 6 | * | |
| 7 | * This program is distributed in the hope that it will be useful, | |
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 10 | * GNU General Public License for more details. | |
| 11 | * | |
| 12 | * You should have received a copy of the GNU General Public License | |
| 13 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | |
| 14 | */ | |
| 15 | ||
| 16 | /* | |
| 17 | * GeneticSearch.java | |
| 18 | * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand | |
| 19 | * | |
| 20 | */ | |
| 21 | ||
| 22 | package weka.classifiers.bayes.net.search.local; | |
| 23 | ||
| 24 | import java.util.Enumeration; | |
| 25 | import java.util.Random; | |
| 26 | import java.util.Vector; | |
| 27 | ||
| 28 | import weka.classifiers.bayes.BayesNet; | |
| 29 | import weka.classifiers.bayes.net.ParentSet; | |
| 30 | import weka.core.Instances; | |
| 31 | import weka.core.Option; | |
| 32 | import weka.core.RevisionHandler; | |
| 33 | import weka.core.RevisionUtils; | |
| 34 | import weka.core.Utils; | |
| 35 | ||
| 36 | /** | |
| 37 | <!-- globalinfo-start --> | |
| 38 | * This Bayes Network learning algorithm uses genetic search for finding a well scoring Bayes network structure. Genetic search works by having a population of Bayes network structures and allow them to mutate and apply cross over to get offspring. The best network structure found during the process is returned. | |
| 39 | * <p/> | |
| 40 | <!-- globalinfo-end --> | |
| 41 | * | |
| 42 | <!-- options-start --> | |
| 43 | * Valid options are: <p/> | |
| 44 | * | |
| 45 | * <pre> -L <integer> | |
| 46 | * Population size</pre> | |
| 47 | * | |
| 48 | * <pre> -A <integer> | |
| 49 | * Descendant population size</pre> | |
| 50 | * | |
| 51 | * <pre> -U <integer> | |
| 52 | * Number of runs</pre> | |
| 53 | * | |
| 54 | * <pre> -M | |
| 55 | * Use mutation. | |
| 56 | * (default true)</pre> | |
| 57 | * | |
| 58 | * <pre> -C | |
| 59 | * Use cross-over. | |
| 60 | * (default true)</pre> | |
| 61 | * | |
| 62 | * <pre> -O | |
| 63 | * Use tournament selection (true) or maximum subpopulatin (false). | |
| 64 | * (default false)</pre> | |
| 65 | * | |
| 66 | * <pre> -R <seed> | |
| 67 | * Random number seed</pre> | |
| 68 | * | |
| 69 | * <pre> -mbc | |
| 70 | * Applies a Markov Blanket correction to the network structure, | |
| 71 | * after a network structure is learned. This ensures that all | |
| 72 | * nodes in the network are part of the Markov blanket of the | |
| 73 | * classifier node.</pre> | |
| 74 | * | |
| 75 | * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES] | |
| 76 | * Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre> | |
| 77 | * | |
| 78 | <!-- options-end --> | |
| 79 | * | |
| 80 | * @author Remco Bouckaert (rrb@xm.co.nz) | |
| 81 | * @version $Revision: 8034 $ | |
| 82 | */ | |
| 83 | 0 | public class GeneticSearch |
| 84 | extends LocalScoreSearchAlgorithm { | |
| 85 | ||
| 86 | /** for serialization */ | |
| 87 | static final long serialVersionUID = -7037070678911459757L; | |
| 88 | ||
| 89 | /** number of runs **/ | |
| 90 | 0 | int m_nRuns = 10; |
| 91 | ||
| 92 | /** size of population **/ | |
| 93 | 0 | int m_nPopulationSize = 10; |
| 94 | ||
| 95 | /** size of descendant population **/ | |
| 96 | 0 | int m_nDescendantPopulationSize = 100; |
| 97 | ||
| 98 | /** use cross-over? **/ | |
| 99 | 0 | boolean m_bUseCrossOver = true; |
| 100 | ||
| 101 | /** use mutation? **/ | |
| 102 | 0 | boolean m_bUseMutation = true; |
| 103 | ||
| 104 | /** use tournament selection or take best sub-population **/ | |
| 105 | 0 | boolean m_bUseTournamentSelection = false; |
| 106 | ||
| 107 | /** random number seed **/ | |
| 108 | 0 | int m_nSeed = 1; |
| 109 | ||
| 110 | /** random number generator **/ | |
| 111 | 0 | Random m_random = null; |
| 112 | ||
| 113 | ||
| 114 | /** used in BayesNetRepresentation for efficiently determining | |
| 115 | * whether a number is square | |
| 116 | */ | |
| 117 | static boolean [] g_bIsSquare; | |
| 118 | ||
| 119 | 0 | class BayesNetRepresentation implements RevisionHandler { |
| 120 | ||
| 121 | /** number of nodes in network **/ | |
| 122 | 0 | int m_nNodes = 0; |
| 123 | ||
| 124 | /** bit representation of parent sets | |
| 125 | * m_bits[iTail + iHead * m_nNodes] represents arc iTail->iHead | |
| 126 | */ | |
| 127 | boolean [] m_bits; | |
| 128 | ||
| 129 | /** score of represented network structure **/ | |
| 130 | 0 | double m_fScore = 0.0f; |
| 131 | ||
| 132 | /** | |
| 133 | * return score of represented network structure | |
| 134 | * | |
| 135 | * @return the score | |
| 136 | */ | |
| 137 | public double getScore() { | |
| 138 | 0 | return m_fScore; |
| 139 | } // getScore | |
| 140 | ||
| 141 | /** | |
| 142 | * c'tor | |
| 143 | * | |
| 144 | * @param nNodes the number of nodes | |
| 145 | */ | |
| 146 | 0 | BayesNetRepresentation (int nNodes) { |
| 147 | 0 | m_nNodes = nNodes; |
| 148 | 0 | } // c'tor |
| 149 | ||
| 150 | /** initialize with a random structure by randomly placing | |
| 151 | * m_nNodes arcs. | |
| 152 | */ | |
| 153 | public void randomInit() { | |
| 154 | do { | |
| 155 | 0 | m_bits = new boolean [m_nNodes * m_nNodes]; |
| 156 | 0 | for (int i = 0; i < m_nNodes; i++) { |
| 157 | int iPos; | |
| 158 | do { | |
| 159 | 0 | iPos = m_random.nextInt(m_nNodes * m_nNodes); |
| 160 | 0 | } while (isSquare(iPos)); |
| 161 | 0 | m_bits[iPos] = true; |
| 162 | } | |
| 163 | 0 | } while (hasCycles()); |
| 164 | 0 | calcScore(); |
| 165 | 0 | } |
| 166 | ||
| 167 | /** calculate score of current network representation | |
| 168 | * As a side effect, the parent sets are set | |
| 169 | */ | |
| 170 | void calcScore() { | |
| 171 | // clear current network | |
| 172 | 0 | for (int iNode = 0; iNode < m_nNodes; iNode++) { |
| 173 | 0 | ParentSet parentSet = m_BayesNet.getParentSet(iNode); |
| 174 | 0 | while (parentSet.getNrOfParents() > 0) { |
| 175 | 0 | parentSet.deleteLastParent(m_BayesNet.m_Instances); |
| 176 | } | |
| 177 | } | |
| 178 | // insert arrows | |
| 179 | 0 | for (int iNode = 0; iNode < m_nNodes; iNode++) { |
| 180 | 0 | ParentSet parentSet = m_BayesNet.getParentSet(iNode); |
| 181 | 0 | for (int iNode2 = 0; iNode2 < m_nNodes; iNode2++) { |
| 182 | 0 | if (m_bits[iNode2 + iNode * m_nNodes]) { |
| 183 | 0 | parentSet.addParent(iNode2, m_BayesNet.m_Instances); |
| 184 | } | |
| 185 | } | |
| 186 | } | |
| 187 | // calc score | |
| 188 | 0 | m_fScore = 0.0; |
| 189 | 0 | for (int iNode = 0; iNode < m_nNodes; iNode++) { |
| 190 | 0 | m_fScore += calcNodeScore(iNode); |
| 191 | } | |
| 192 | 0 | } // calcScore |
| 193 | ||
| 194 | /** check whether there are cycles in the network | |
| 195 | * | |
| 196 | * @return true if a cycle is found, false otherwise | |
| 197 | */ | |
| 198 | public boolean hasCycles() { | |
| 199 | // check for cycles | |
| 200 | 0 | boolean[] bDone = new boolean[m_nNodes]; |
| 201 | 0 | for (int iNode = 0; iNode < m_nNodes; iNode++) { |
| 202 | ||
| 203 | // find a node for which all parents are 'done' | |
| 204 | 0 | boolean bFound = false; |
| 205 | ||
| 206 | 0 | for (int iNode2 = 0; !bFound && iNode2 < m_nNodes; iNode2++) { |
| 207 | 0 | if (!bDone[iNode2]) { |
| 208 | 0 | boolean bHasNoParents = true; |
| 209 | 0 | for (int iParent = 0; iParent < m_nNodes; iParent++) { |
| 210 | 0 | if (m_bits[iParent + iNode2 * m_nNodes] && !bDone[iParent]) { |
| 211 | 0 | bHasNoParents = false; |
| 212 | } | |
| 213 | } | |
| 214 | 0 | if (bHasNoParents) { |
| 215 | 0 | bDone[iNode2] = true; |
| 216 | 0 | bFound = true; |
| 217 | } | |
| 218 | } | |
| 219 | } | |
| 220 | 0 | if (!bFound) { |
| 221 | 0 | return true; |
| 222 | } | |
| 223 | } | |
| 224 | 0 | return false; |
| 225 | } // hasCycles | |
| 226 | ||
| 227 | /** create clone of current object | |
| 228 | * @return cloned object | |
| 229 | */ | |
| 230 | BayesNetRepresentation copy() { | |
| 231 | 0 | BayesNetRepresentation b = new BayesNetRepresentation(m_nNodes); |
| 232 | 0 | b.m_bits = new boolean [m_bits.length]; |
| 233 | 0 | for (int i = 0; i < m_nNodes * m_nNodes; i++) { |
| 234 | 0 | b.m_bits[i] = m_bits[i]; |
| 235 | } | |
| 236 | 0 | b.m_fScore = m_fScore; |
| 237 | 0 | return b; |
| 238 | } // copy | |
| 239 | ||
| 240 | /** Apply mutation operation to BayesNet | |
| 241 | * Calculate score and as a side effect sets BayesNet parent sets. | |
| 242 | */ | |
| 243 | void mutate() { | |
| 244 | // flip a bit | |
| 245 | do { | |
| 246 | int iBit; | |
| 247 | do { | |
| 248 | 0 | iBit = m_random.nextInt(m_nNodes * m_nNodes); |
| 249 | 0 | } while (isSquare(iBit)); |
| 250 | ||
| 251 | 0 | m_bits[iBit] = !m_bits[iBit]; |
| 252 | 0 | } while (hasCycles()); |
| 253 | ||
| 254 | 0 | calcScore(); |
| 255 | 0 | } // mutate |
| 256 | ||
| 257 | /** Apply cross-over operation to BayesNet | |
| 258 | * Calculate score and as a side effect sets BayesNet parent sets. | |
| 259 | * @param other BayesNetRepresentation to cross over with | |
| 260 | */ | |
| 261 | void crossOver(BayesNetRepresentation other) { | |
| 262 | 0 | boolean [] bits = new boolean [m_bits.length]; |
| 263 | 0 | for (int i = 0; i < m_bits.length; i++) { |
| 264 | 0 | bits[i] = m_bits[i]; |
| 265 | } | |
| 266 | 0 | int iCrossOverPoint = m_bits.length; |
| 267 | do { | |
| 268 | // restore to original state | |
| 269 | 0 | for (int i = iCrossOverPoint; i < m_bits.length; i++) { |
| 270 | 0 | m_bits[i] = bits[i]; |
| 271 | } | |
| 272 | // take all bits from cross-over points onwards | |
| 273 | 0 | iCrossOverPoint = m_random.nextInt(m_bits.length); |
| 274 | 0 | for (int i = iCrossOverPoint; i < m_bits.length; i++) { |
| 275 | 0 | m_bits[i] = other.m_bits[i]; |
| 276 | } | |
| 277 | 0 | } while (hasCycles()); |
| 278 | 0 | calcScore(); |
| 279 | 0 | } // crossOver |
| 280 | ||
| 281 | /** check if number is square and initialize g_bIsSquare structure | |
| 282 | * if necessary | |
| 283 | * @param nNum number to check (should be below m_nNodes * m_nNodes) | |
| 284 | * @return true if number is square | |
| 285 | */ | |
| 286 | boolean isSquare(int nNum) { | |
| 287 | 0 | if (g_bIsSquare == null || g_bIsSquare.length < nNum) { |
| 288 | 0 | g_bIsSquare = new boolean [m_nNodes * m_nNodes]; |
| 289 | 0 | for (int i = 0; i < m_nNodes; i++) { |
| 290 | 0 | g_bIsSquare[i * m_nNodes + i] = true; |
| 291 | } | |
| 292 | } | |
| 293 | 0 | return g_bIsSquare[nNum]; |
| 294 | } // isSquare | |
| 295 | ||
| 296 | /** | |
| 297 | * Returns the revision string. | |
| 298 | * | |
| 299 | * @return the revision | |
| 300 | */ | |
| 301 | public String getRevision() { | |
| 302 | 0 | return RevisionUtils.extract("$Revision: 8034 $"); |
| 303 | } | |
| 304 | } // class BayesNetRepresentation | |
| 305 | ||
| 306 | /** | |
| 307 | * search determines the network structure/graph of the network | |
| 308 | * with a genetic search algorithm. | |
| 309 | * | |
| 310 | * @param bayesNet the network to use | |
| 311 | * @param instances the data to use | |
| 312 | * @throws Exception if population size doesn fit or neither cross-over or mutation was chosen | |
| 313 | */ | |
| 314 | protected void search(BayesNet bayesNet, Instances instances) throws Exception { | |
| 315 | // sanity check | |
| 316 | 0 | if (getDescendantPopulationSize() < getPopulationSize()) { |
| 317 | 0 | throw new Exception ("Descendant PopulationSize should be at least Population Size"); |
| 318 | } | |
| 319 | 0 | if (!getUseCrossOver() && !getUseMutation()) { |
| 320 | 0 | throw new Exception ("At least one of mutation or cross-over should be used"); |
| 321 | } | |
| 322 | ||
| 323 | 0 | m_random = new Random(m_nSeed); |
| 324 | ||
| 325 | // keeps track of best structure found so far | |
| 326 | BayesNet bestBayesNet; | |
| 327 | // keeps track of score pf best structure found so far | |
| 328 | 0 | double fBestScore = 0.0; |
| 329 | 0 | for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { |
| 330 | 0 | fBestScore += calcNodeScore(iAttribute); |
| 331 | } | |
| 332 | ||
| 333 | // initialize bestBayesNet | |
| 334 | 0 | bestBayesNet = new BayesNet(); |
| 335 | 0 | bestBayesNet.m_Instances = instances; |
| 336 | 0 | bestBayesNet.initStructure(); |
| 337 | 0 | copyParentSets(bestBayesNet, bayesNet); |
| 338 | ||
| 339 | ||
| 340 | // initialize population | |
| 341 | 0 | BayesNetRepresentation [] population = new BayesNetRepresentation [getPopulationSize()]; |
| 342 | 0 | for (int i = 0; i < getPopulationSize(); i++) { |
| 343 | 0 | population[i] = new BayesNetRepresentation (instances.numAttributes()); |
| 344 | 0 | population[i].randomInit(); |
| 345 | 0 | if (population[i].getScore() > fBestScore) { |
| 346 | 0 | copyParentSets(bestBayesNet, bayesNet); |
| 347 | 0 | fBestScore = population[i].getScore(); |
| 348 | ||
| 349 | } | |
| 350 | } | |
| 351 | ||
| 352 | // go do the search | |
| 353 | 0 | for (int iRun = 0; iRun < m_nRuns; iRun++) { |
| 354 | // create descendants | |
| 355 | 0 | BayesNetRepresentation [] descendantPopulation = new BayesNetRepresentation [getDescendantPopulationSize()]; |
| 356 | 0 | for (int i = 0; i < getDescendantPopulationSize(); i++) { |
| 357 | 0 | descendantPopulation[i] = population[m_random.nextInt(getPopulationSize())].copy(); |
| 358 | 0 | if (getUseMutation()) { |
| 359 | 0 | if (getUseCrossOver() && m_random.nextBoolean()) { |
| 360 | 0 | descendantPopulation[i].crossOver(population[m_random.nextInt(getPopulationSize())]); |
| 361 | } else { | |
| 362 | 0 | descendantPopulation[i].mutate(); |
| 363 | } | |
| 364 | } else { | |
| 365 | // use crossover | |
| 366 | 0 | descendantPopulation[i].crossOver(population[m_random.nextInt(getPopulationSize())]); |
| 367 | } | |
| 368 | ||
| 369 | 0 | if (descendantPopulation[i].getScore() > fBestScore) { |
| 370 | 0 | copyParentSets(bestBayesNet, bayesNet); |
| 371 | 0 | fBestScore = descendantPopulation[i].getScore(); |
| 372 | } | |
| 373 | } | |
| 374 | // select new population | |
| 375 | 0 | boolean [] bSelected = new boolean [getDescendantPopulationSize()]; |
| 376 | 0 | for (int i = 0; i < getPopulationSize(); i++) { |
| 377 | 0 | int iSelected = 0; |
| 378 | 0 | if (m_bUseTournamentSelection) { |
| 379 | // use tournament selection | |
| 380 | 0 | iSelected = m_random.nextInt(getDescendantPopulationSize()); |
| 381 | 0 | while (bSelected[iSelected]) { |
| 382 | 0 | iSelected = (iSelected + 1) % getDescendantPopulationSize(); |
| 383 | } | |
| 384 | 0 | int iSelected2 = m_random.nextInt(getDescendantPopulationSize()); |
| 385 | 0 | while (bSelected[iSelected2]) { |
| 386 | 0 | iSelected2 = (iSelected2 + 1) % getDescendantPopulationSize(); |
| 387 | } | |
| 388 | 0 | if (descendantPopulation[iSelected2].getScore() > descendantPopulation[iSelected].getScore()) { |
| 389 | 0 | iSelected = iSelected2; |
| 390 | } | |
| 391 | 0 | } else { |
| 392 | // find best scoring network in population | |
| 393 | 0 | while (bSelected[iSelected]) { |
| 394 | 0 | iSelected++; |
| 395 | } | |
| 396 | 0 | double fScore = descendantPopulation[iSelected].getScore(); |
| 397 | 0 | for (int j = 0; j < getDescendantPopulationSize(); j++) { |
| 398 | 0 | if (!bSelected[j] && descendantPopulation[j].getScore() > fScore) { |
| 399 | 0 | fScore = descendantPopulation[j].getScore(); |
| 400 | 0 | iSelected = j; |
| 401 | } | |
| 402 | } | |
| 403 | } | |
| 404 | 0 | population[i] = descendantPopulation[iSelected]; |
| 405 | 0 | bSelected[iSelected] = true; |
| 406 | } | |
| 407 | } | |
| 408 | ||
| 409 | // restore current network to best network | |
| 410 | 0 | copyParentSets(bayesNet, bestBayesNet); |
| 411 | ||
| 412 | // free up memory | |
| 413 | 0 | bestBayesNet = null; |
| 414 | 0 | } // search |
| 415 | ||
| 416 | ||
| 417 | /** copyParentSets copies parent sets of source to dest BayesNet | |
| 418 | * @param dest destination network | |
| 419 | * @param source source network | |
| 420 | */ | |
| 421 | void copyParentSets(BayesNet dest, BayesNet source) { | |
| 422 | 0 | int nNodes = source.getNrOfNodes(); |
| 423 | // clear parent set first | |
| 424 | 0 | for (int iNode = 0; iNode < nNodes; iNode++) { |
| 425 | 0 | dest.getParentSet(iNode).copy(source.getParentSet(iNode)); |
| 426 | } | |
| 427 | 0 | } // CopyParentSets |
| 428 | ||
| 429 | /** | |
| 430 | * @return number of runs | |
| 431 | */ | |
| 432 | public int getRuns() { | |
| 433 | 0 | return m_nRuns; |
| 434 | } // getRuns | |
| 435 | ||
| 436 | /** | |
| 437 | * Sets the number of runs | |
| 438 | * @param nRuns The number of runs to set | |
| 439 | */ | |
| 440 | public void setRuns(int nRuns) { | |
| 441 | 0 | m_nRuns = nRuns; |
| 442 | 0 | } // setRuns |
| 443 | ||
| 444 | /** | |
| 445 | * Returns an enumeration describing the available options. | |
| 446 | * | |
| 447 | * @return an enumeration of all the available options. | |
| 448 | */ | |
| 449 | public Enumeration listOptions() { | |
| 450 | 0 | Vector newVector = new Vector(7); |
| 451 | ||
| 452 | 0 | newVector.addElement(new Option("\tPopulation size", "L", 1, "-L <integer>")); |
| 453 | 0 | newVector.addElement(new Option("\tDescendant population size", "A", 1, "-A <integer>")); |
| 454 | 0 | newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>")); |
| 455 | 0 | newVector.addElement(new Option("\tUse mutation.\n\t(default true)", "M", 0, "-M")); |
| 456 | 0 | newVector.addElement(new Option("\tUse cross-over.\n\t(default true)", "C", 0, "-C")); |
| 457 | 0 | newVector.addElement(new Option("\tUse tournament selection (true) or maximum subpopulatin (false).\n\t(default false)", "O", 0, "-O")); |
| 458 | 0 | newVector.addElement(new Option("\tRandom number seed", "R", 1, "-R <seed>")); |
| 459 | ||
| 460 | 0 | Enumeration enu = super.listOptions(); |
| 461 | 0 | while (enu.hasMoreElements()) { |
| 462 | 0 | newVector.addElement(enu.nextElement()); |
| 463 | } | |
| 464 | 0 | return newVector.elements(); |
| 465 | } // listOptions | |
| 466 | ||
| 467 | /** | |
| 468 | * Parses a given list of options. <p/> | |
| 469 | * | |
| 470 | <!-- options-start --> | |
| 471 | * Valid options are: <p/> | |
| 472 | * | |
| 473 | * <pre> -L <integer> | |
| 474 | * Population size</pre> | |
| 475 | * | |
| 476 | * <pre> -A <integer> | |
| 477 | * Descendant population size</pre> | |
| 478 | * | |
| 479 | * <pre> -U <integer> | |
| 480 | * Number of runs</pre> | |
| 481 | * | |
| 482 | * <pre> -M | |
| 483 | * Use mutation. | |
| 484 | * (default true)</pre> | |
| 485 | * | |
| 486 | * <pre> -C | |
| 487 | * Use cross-over. | |
| 488 | * (default true)</pre> | |
| 489 | * | |
| 490 | * <pre> -O | |
| 491 | * Use tournament selection (true) or maximum subpopulatin (false). | |
| 492 | * (default false)</pre> | |
| 493 | * | |
| 494 | * <pre> -R <seed> | |
| 495 | * Random number seed</pre> | |
| 496 | * | |
| 497 | * <pre> -mbc | |
| 498 | * Applies a Markov Blanket correction to the network structure, | |
| 499 | * after a network structure is learned. This ensures that all | |
| 500 | * nodes in the network are part of the Markov blanket of the | |
| 501 | * classifier node.</pre> | |
| 502 | * | |
| 503 | * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES] | |
| 504 | * Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre> | |
| 505 | * | |
| 506 | <!-- options-end --> | |
| 507 | * | |
| 508 | * @param options the list of options as an array of strings | |
| 509 | * @throws Exception if an option is not supported | |
| 510 | */ | |
| 511 | public void setOptions(String[] options) throws Exception { | |
| 512 | 0 | String sPopulationSize = Utils.getOption('L', options); |
| 513 | 0 | if (sPopulationSize.length() != 0) { |
| 514 | 0 | setPopulationSize(Integer.parseInt(sPopulationSize)); |
| 515 | } | |
| 516 | 0 | String sDescendantPopulationSize = Utils.getOption('A', options); |
| 517 | 0 | if (sDescendantPopulationSize.length() != 0) { |
| 518 | 0 | setDescendantPopulationSize(Integer.parseInt(sDescendantPopulationSize)); |
| 519 | } | |
| 520 | 0 | String sRuns = Utils.getOption('U', options); |
| 521 | 0 | if (sRuns.length() != 0) { |
| 522 | 0 | setRuns(Integer.parseInt(sRuns)); |
| 523 | } | |
| 524 | 0 | String sSeed = Utils.getOption('R', options); |
| 525 | 0 | if (sSeed.length() != 0) { |
| 526 | 0 | setSeed(Integer.parseInt(sSeed)); |
| 527 | } | |
| 528 | 0 | setUseMutation(Utils.getFlag('M', options)); |
| 529 | 0 | setUseCrossOver(Utils.getFlag('C', options)); |
| 530 | 0 | setUseTournamentSelection(Utils.getFlag('O', options)); |
| 531 | ||
| 532 | 0 | super.setOptions(options); |
| 533 | 0 | } // setOptions |
| 534 | ||
| 535 | /** | |
| 536 | * Gets the current settings of the search algorithm. | |
| 537 | * | |
| 538 | * @return an array of strings suitable for passing to setOptions | |
| 539 | */ | |
| 540 | public String[] getOptions() { | |
| 541 | 0 | String[] superOptions = super.getOptions(); |
| 542 | 0 | String[] options = new String[11 + superOptions.length]; |
| 543 | 0 | int current = 0; |
| 544 | ||
| 545 | 0 | options[current++] = "-L"; |
| 546 | 0 | options[current++] = "" + getPopulationSize(); |
| 547 | ||
| 548 | 0 | options[current++] = "-A"; |
| 549 | 0 | options[current++] = "" + getDescendantPopulationSize(); |
| 550 | ||
| 551 | 0 | options[current++] = "-U"; |
| 552 | 0 | options[current++] = "" + getRuns(); |
| 553 | ||
| 554 | 0 | options[current++] = "-R"; |
| 555 | 0 | options[current++] = "" + getSeed(); |
| 556 | ||
| 557 | 0 | if (getUseMutation()) { |
| 558 | 0 | options[current++] = "-M"; |
| 559 | } | |
| 560 | 0 | if (getUseCrossOver()) { |
| 561 | 0 | options[current++] = "-C"; |
| 562 | } | |
| 563 | 0 | if (getUseTournamentSelection()) { |
| 564 | 0 | options[current++] = "-O"; |
| 565 | } | |
| 566 | ||
| 567 | // insert options from parent class | |
| 568 | 0 | for (int iOption = 0; iOption < superOptions.length; iOption++) { |
| 569 | 0 | options[current++] = superOptions[iOption]; |
| 570 | } | |
| 571 | ||
| 572 | // Fill up rest with empty strings, not nulls! | |
| 573 | 0 | while (current < options.length) { |
| 574 | 0 | options[current++] = ""; |
| 575 | } | |
| 576 | 0 | return options; |
| 577 | } // getOptions | |
| 578 | ||
| 579 | /** | |
| 580 | * @return whether cross-over is used | |
| 581 | */ | |
| 582 | public boolean getUseCrossOver() { | |
| 583 | 0 | return m_bUseCrossOver; |
| 584 | } | |
| 585 | ||
| 586 | /** | |
| 587 | * @return whether mutation is used | |
| 588 | */ | |
| 589 | public boolean getUseMutation() { | |
| 590 | 0 | return m_bUseMutation; |
| 591 | } | |
| 592 | ||
| 593 | /** | |
| 594 | * @return descendant population size | |
| 595 | */ | |
| 596 | public int getDescendantPopulationSize() { | |
| 597 | 0 | return m_nDescendantPopulationSize; |
| 598 | } | |
| 599 | ||
| 600 | /** | |
| 601 | * @return population size | |
| 602 | */ | |
| 603 | public int getPopulationSize() { | |
| 604 | 0 | return m_nPopulationSize; |
| 605 | } | |
| 606 | ||
| 607 | /** | |
| 608 | * @param bUseCrossOver sets whether cross-over is used | |
| 609 | */ | |
| 610 | public void setUseCrossOver(boolean bUseCrossOver) { | |
| 611 | 0 | m_bUseCrossOver = bUseCrossOver; |
| 612 | 0 | } |
| 613 | ||
| 614 | /** | |
| 615 | * @param bUseMutation sets whether mutation is used | |
| 616 | */ | |
| 617 | public void setUseMutation(boolean bUseMutation) { | |
| 618 | 0 | m_bUseMutation = bUseMutation; |
| 619 | 0 | } |
| 620 | ||
| 621 | /** | |
| 622 | * @return whether Tournament Selection (true) or Maximum Sub-Population (false) should be used | |
| 623 | */ | |
| 624 | public boolean getUseTournamentSelection() { | |
| 625 | 0 | return m_bUseTournamentSelection; |
| 626 | } | |
| 627 | ||
| 628 | /** | |
| 629 | * @param bUseTournamentSelection sets whether Tournament Selection or Maximum Sub-Population should be used | |
| 630 | */ | |
| 631 | public void setUseTournamentSelection(boolean bUseTournamentSelection) { | |
| 632 | 0 | m_bUseTournamentSelection = bUseTournamentSelection; |
| 633 | 0 | } |
| 634 | ||
| 635 | /** | |
| 636 | * @param iDescendantPopulationSize sets descendant population size | |
| 637 | */ | |
| 638 | public void setDescendantPopulationSize(int iDescendantPopulationSize) { | |
| 639 | 0 | m_nDescendantPopulationSize = iDescendantPopulationSize; |
| 640 | 0 | } |
| 641 | ||
| 642 | /** | |
| 643 | * @param iPopulationSize sets population size | |
| 644 | */ | |
| 645 | public void setPopulationSize(int iPopulationSize) { | |
| 646 | 0 | m_nPopulationSize = iPopulationSize; |
| 647 | 0 | } |
| 648 | ||
| 649 | /** | |
| 650 | * @return random number seed | |
| 651 | */ | |
| 652 | public int getSeed() { | |
| 653 | 0 | return m_nSeed; |
| 654 | } // getSeed | |
| 655 | ||
| 656 | /** | |
| 657 | * Sets the random number seed | |
| 658 | * @param nSeed The number of the seed to set | |
| 659 | */ | |
| 660 | public void setSeed(int nSeed) { | |
| 661 | 0 | m_nSeed = nSeed; |
| 662 | 0 | } // setSeed |
| 663 | ||
| 664 | /** | |
| 665 | * This will return a string describing the classifier. | |
| 666 | * @return The string. | |
| 667 | */ | |
| 668 | public String globalInfo() { | |
| 669 | 0 | return "This Bayes Network learning algorithm uses genetic search for finding a well scoring " + |
| 670 | "Bayes network structure. Genetic search works by having a population of Bayes network structures " + | |
| 671 | "and allow them to mutate and apply cross over to get offspring. The best network structure " + | |
| 672 | "found during the process is returned."; | |
| 673 | } // globalInfo | |
| 674 | ||
| 675 | /** | |
| 676 | * @return a string to describe the Runs option. | |
| 677 | */ | |
| 678 | public String runsTipText() { | |
| 679 | 0 | return "Sets the number of generations of Bayes network structure populations."; |
| 680 | } // runsTipText | |
| 681 | ||
| 682 | /** | |
| 683 | * @return a string to describe the Seed option. | |
| 684 | */ | |
| 685 | public String seedTipText() { | |
| 686 | 0 | return "Initialization value for random number generator." + |
| 687 | " Setting the seed allows replicability of experiments."; | |
| 688 | } // seedTipText | |
| 689 | ||
| 690 | /** | |
| 691 | * @return a string to describe the Population Size option. | |
| 692 | */ | |
| 693 | public String populationSizeTipText() { | |
| 694 | 0 | return "Sets the size of the population of network structures that is selected each generation."; |
| 695 | } // populationSizeTipText | |
| 696 | ||
| 697 | /** | |
| 698 | * @return a string to describe the Descendant Population Size option. | |
| 699 | */ | |
| 700 | public String descendantPopulationSizeTipText() { | |
| 701 | 0 | return "Sets the size of the population of descendants that is created each generation."; |
| 702 | } // descendantPopulationSizeTipText | |
| 703 | ||
| 704 | /** | |
| 705 | * @return a string to describe the Use Mutation option. | |
| 706 | */ | |
| 707 | public String useMutationTipText() { | |
| 708 | 0 | return "Determines whether mutation is allowed. Mutation flips a bit in the bit " + |
| 709 | "representation of the network structure. At least one of mutation or cross-over " + | |
| 710 | "should be used."; | |
| 711 | } // useMutationTipText | |
| 712 | ||
| 713 | /** | |
| 714 | * @return a string to describe the Use Cross-Over option. | |
| 715 | */ | |
| 716 | public String useCrossOverTipText() { | |
| 717 | 0 | return "Determines whether cross-over is allowed. Cross over combined the bit " + |
| 718 | "representations of network structure by taking a random first k bits of one" + | |
| 719 | "and adding the remainder of the other. At least one of mutation or cross-over " + | |
| 720 | "should be used."; | |
| 721 | } // useCrossOverTipText | |
| 722 | ||
| 723 | /** | |
| 724 | * @return a string to describe the Use Tournament Selection option. | |
| 725 | */ | |
| 726 | public String useTournamentSelectionTipText() { | |
| 727 | 0 | return "Determines the method of selecting a population. When set to true, tournament " + |
| 728 | "selection is used (pick two at random and the highest is allowed to continue). " + | |
| 729 | "When set to false, the top scoring network structures are selected."; | |
| 730 | } // useTournamentSelectionTipText | |
| 731 | ||
| 732 | /** | |
| 733 | * Returns the revision string. | |
| 734 | * | |
| 735 | * @return the revision | |
| 736 | */ | |
| 737 | public String getRevision() { | |
| 738 | 0 | return RevisionUtils.extract("$Revision: 8034 $"); |
| 739 | } | |
| 740 | } // GeneticSearch |