| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||
| HillClimber |
|
| 2.48;2.48 | ||||
| HillClimber$Operation |
|
| 2.48;2.48 |
| 1 | /* | |
| 2 | * This program is free software: you can redistribute it and/or modify | |
| 3 | * it under the terms of the GNU General Public License as published by | |
| 4 | * the Free Software Foundation, either version 3 of the License, or | |
| 5 | * (at your option) any later version. | |
| 6 | * | |
| 7 | * This program is distributed in the hope that it will be useful, | |
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 10 | * GNU General Public License for more details. | |
| 11 | * | |
| 12 | * You should have received a copy of the GNU General Public License | |
| 13 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | |
| 14 | */ | |
| 15 | ||
| 16 | /* | |
| 17 | * HillClimber.java | |
| 18 | * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand | |
| 19 | * | |
| 20 | */ | |
| 21 | ||
| 22 | package weka.classifiers.bayes.net.search.global; | |
| 23 | ||
| 24 | import java.io.Serializable; | |
| 25 | import java.util.Enumeration; | |
| 26 | import java.util.Vector; | |
| 27 | ||
| 28 | import weka.classifiers.bayes.BayesNet; | |
| 29 | import weka.classifiers.bayes.net.ParentSet; | |
| 30 | import weka.core.Instances; | |
| 31 | import weka.core.Option; | |
| 32 | import weka.core.RevisionHandler; | |
| 33 | import weka.core.RevisionUtils; | |
| 34 | import weka.core.Utils; | |
| 35 | ||
| 36 | /** | |
| 37 | <!-- globalinfo-start --> | |
| 38 | * This Bayes Network learning algorithm uses a hill climbing algorithm adding, deleting and reversing arcs. The search is not restricted by an order on the variables (unlike K2). The difference with B and B2 is that this hill climber also considers arrows part of the naive Bayes structure for deletion. | |
| 39 | * <p/> | |
| 40 | <!-- globalinfo-end --> | |
| 41 | * | |
| 42 | <!-- options-start --> | |
| 43 | * Valid options are: <p/> | |
| 44 | * | |
| 45 | * <pre> -P <nr of parents> | |
| 46 | * Maximum number of parents</pre> | |
| 47 | * | |
| 48 | * <pre> -R | |
| 49 | * Use arc reversal operation. | |
| 50 | * (default false)</pre> | |
| 51 | * | |
| 52 | * <pre> -N | |
| 53 | * Initial structure is empty (instead of Naive Bayes)</pre> | |
| 54 | * | |
| 55 | * <pre> -mbc | |
| 56 | * Applies a Markov Blanket correction to the network structure, | |
| 57 | * after a network structure is learned. This ensures that all | |
| 58 | * nodes in the network are part of the Markov blanket of the | |
| 59 | * classifier node.</pre> | |
| 60 | * | |
| 61 | * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] | |
| 62 | * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> | |
| 63 | * | |
| 64 | * <pre> -Q | |
| 65 | * Use probabilistic or 0/1 scoring. | |
| 66 | * (default probabilistic scoring)</pre> | |
| 67 | * | |
| 68 | <!-- options-end --> | |
| 69 | * | |
| 70 | * @author Remco Bouckaert (rrb@xm.co.nz) | |
| 71 | * @version $Revision: 8034 $ | |
| 72 | */ | |
| 73 | 0 | public class HillClimber |
| 74 | extends GlobalScoreSearchAlgorithm { | |
| 75 | ||
| 76 | /** for serialization */ | |
| 77 | static final long serialVersionUID = -3885042888195820149L; | |
| 78 | ||
| 79 | /** | |
| 80 | * the Operation class contains info on operations performed | |
| 81 | * on the current Bayesian network. | |
| 82 | */ | |
| 83 | class Operation | |
| 84 | implements Serializable, RevisionHandler { | |
| 85 | ||
| 86 | /** for serialization */ | |
| 87 | static final long serialVersionUID = -2934970456587374967L; | |
| 88 | ||
| 89 | // constants indicating the type of an operation | |
| 90 | final static int OPERATION_ADD = 0; | |
| 91 | final static int OPERATION_DEL = 1; | |
| 92 | final static int OPERATION_REVERSE = 2; | |
| 93 | ||
| 94 | /** c'tor **/ | |
| 95 | 0 | public Operation() { |
| 96 | 0 | } |
| 97 | ||
| 98 | /** c'tor + initializers | |
| 99 | * | |
| 100 | * @param nTail | |
| 101 | * @param nHead | |
| 102 | * @param nOperation | |
| 103 | */ | |
| 104 | 0 | public Operation(int nTail, int nHead, int nOperation) { |
| 105 | 0 | m_nHead = nHead; |
| 106 | 0 | m_nTail = nTail; |
| 107 | 0 | m_nOperation = nOperation; |
| 108 | 0 | } |
| 109 | /** compare this operation with another | |
| 110 | * @param other operation to compare with | |
| 111 | * @return true if operation is the same | |
| 112 | */ | |
| 113 | public boolean equals(Operation other) { | |
| 114 | 0 | if (other == null) { |
| 115 | 0 | return false; |
| 116 | } | |
| 117 | 0 | return (( m_nOperation == other.m_nOperation) && |
| 118 | (m_nHead == other.m_nHead) && | |
| 119 | (m_nTail == other.m_nTail)); | |
| 120 | } // equals | |
| 121 | /** number of the tail node **/ | |
| 122 | public int m_nTail; | |
| 123 | /** number of the head node **/ | |
| 124 | public int m_nHead; | |
| 125 | /** type of operation (ADD, DEL, REVERSE) **/ | |
| 126 | public int m_nOperation; | |
| 127 | /** change of score due to this operation **/ | |
| 128 | 0 | public double m_fScore = -1E100; |
| 129 | ||
| 130 | /** | |
| 131 | * Returns the revision string. | |
| 132 | * | |
| 133 | * @return the revision | |
| 134 | */ | |
| 135 | public String getRevision() { | |
| 136 | 0 | return RevisionUtils.extract("$Revision: 8034 $"); |
| 137 | } | |
| 138 | } // class Operation | |
| 139 | ||
| 140 | /** use the arc reversal operator **/ | |
| 141 | 0 | boolean m_bUseArcReversal = false; |
| 142 | ||
| 143 | /** | |
| 144 | * search determines the network structure/graph of the network | |
| 145 | * with the Taby algorithm. | |
| 146 | * | |
| 147 | * @param bayesNet the network to search | |
| 148 | * @param instances the instances to work with | |
| 149 | * @throws Exception if something goes wrong | |
| 150 | */ | |
| 151 | protected void search(BayesNet bayesNet, Instances instances) throws Exception { | |
| 152 | 0 | m_BayesNet = bayesNet; |
| 153 | 0 | double fScore = calcScore(bayesNet); |
| 154 | // go do the search | |
| 155 | 0 | Operation oOperation = getOptimalOperation(bayesNet, instances); |
| 156 | 0 | while ((oOperation != null) && (oOperation.m_fScore > fScore)) { |
| 157 | 0 | performOperation(bayesNet, instances, oOperation); |
| 158 | 0 | fScore = oOperation.m_fScore; |
| 159 | 0 | oOperation = getOptimalOperation(bayesNet, instances); |
| 160 | } | |
| 161 | 0 | } // search |
| 162 | ||
| 163 | ||
| 164 | ||
| 165 | /** check whether the operation is not in the forbidden. | |
| 166 | * For base hill climber, there are no restrictions on operations, | |
| 167 | * so we always return true. | |
| 168 | * @param oOperation operation to be checked | |
| 169 | * @return true if operation is not in the tabu list | |
| 170 | */ | |
| 171 | boolean isNotTabu(Operation oOperation) { | |
| 172 | 0 | return true; |
| 173 | } // isNotTabu | |
| 174 | ||
| 175 | /** | |
| 176 | * getOptimalOperation finds the optimal operation that can be performed | |
| 177 | * on the Bayes network that is not in the tabu list. | |
| 178 | * | |
| 179 | * @param bayesNet Bayes network to apply operation on | |
| 180 | * @param instances data set to learn from | |
| 181 | * @return optimal operation found | |
| 182 | * @throws Exception if something goes wrong | |
| 183 | */ | |
| 184 | Operation getOptimalOperation(BayesNet bayesNet, Instances instances) throws Exception { | |
| 185 | 0 | Operation oBestOperation = new Operation(); |
| 186 | ||
| 187 | // Add??? | |
| 188 | 0 | oBestOperation = findBestArcToAdd(bayesNet, instances, oBestOperation); |
| 189 | // Delete??? | |
| 190 | 0 | oBestOperation = findBestArcToDelete(bayesNet, instances, oBestOperation); |
| 191 | // Reverse??? | |
| 192 | 0 | if (getUseArcReversal()) { |
| 193 | 0 | oBestOperation = findBestArcToReverse(bayesNet, instances, oBestOperation); |
| 194 | } | |
| 195 | ||
| 196 | // did we find something? | |
| 197 | 0 | if (oBestOperation.m_fScore == -1E100) { |
| 198 | 0 | return null; |
| 199 | } | |
| 200 | ||
| 201 | 0 | return oBestOperation; |
| 202 | } // getOptimalOperation | |
| 203 | ||
| 204 | /** performOperation applies an operation | |
| 205 | * on the Bayes network and update the cache. | |
| 206 | * | |
| 207 | * @param bayesNet Bayes network to apply operation on | |
| 208 | * @param instances data set to learn from | |
| 209 | * @param oOperation operation to perform | |
| 210 | * @throws Exception if something goes wrong | |
| 211 | */ | |
| 212 | void performOperation(BayesNet bayesNet, Instances instances, Operation oOperation) throws Exception { | |
| 213 | // perform operation | |
| 214 | 0 | switch (oOperation.m_nOperation) { |
| 215 | case Operation.OPERATION_ADD: | |
| 216 | 0 | applyArcAddition(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); |
| 217 | 0 | if (bayesNet.getDebug()) { |
| 218 | 0 | System.out.print("Add " + oOperation.m_nHead + " -> " + oOperation.m_nTail); |
| 219 | } | |
| 220 | break; | |
| 221 | case Operation.OPERATION_DEL: | |
| 222 | 0 | applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); |
| 223 | 0 | if (bayesNet.getDebug()) { |
| 224 | 0 | System.out.print("Del " + oOperation.m_nHead + " -> " + oOperation.m_nTail); |
| 225 | } | |
| 226 | break; | |
| 227 | case Operation.OPERATION_REVERSE: | |
| 228 | 0 | applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); |
| 229 | 0 | applyArcAddition(bayesNet, oOperation.m_nTail, oOperation.m_nHead, instances); |
| 230 | 0 | if (bayesNet.getDebug()) { |
| 231 | 0 | System.out.print("Rev " + oOperation.m_nHead+ " -> " + oOperation.m_nTail); |
| 232 | } | |
| 233 | break; | |
| 234 | } | |
| 235 | 0 | } // performOperation |
| 236 | ||
| 237 | /** | |
| 238 | * | |
| 239 | * @param bayesNet | |
| 240 | * @param iHead | |
| 241 | * @param iTail | |
| 242 | * @param instances | |
| 243 | */ | |
| 244 | void applyArcAddition(BayesNet bayesNet, int iHead, int iTail, Instances instances) { | |
| 245 | 0 | ParentSet bestParentSet = bayesNet.getParentSet(iHead); |
| 246 | 0 | bestParentSet.addParent(iTail, instances); |
| 247 | 0 | } // applyArcAddition |
| 248 | ||
| 249 | /** | |
| 250 | * | |
| 251 | * @param bayesNet | |
| 252 | * @param iHead | |
| 253 | * @param iTail | |
| 254 | * @param instances | |
| 255 | */ | |
| 256 | void applyArcDeletion(BayesNet bayesNet, int iHead, int iTail, Instances instances) { | |
| 257 | 0 | ParentSet bestParentSet = bayesNet.getParentSet(iHead); |
| 258 | 0 | bestParentSet.deleteParent(iTail, instances); |
| 259 | 0 | } // applyArcAddition |
| 260 | ||
| 261 | ||
| 262 | /** | |
| 263 | * find best (or least bad) arc addition operation | |
| 264 | * | |
| 265 | * @param bayesNet Bayes network to add arc to | |
| 266 | * @param instances data set | |
| 267 | * @param oBestOperation | |
| 268 | * @return Operation containing best arc to add, or null if no arc addition is allowed | |
| 269 | * (this can happen if any arc addition introduces a cycle, or all parent sets are filled | |
| 270 | * up to the maximum nr of parents). | |
| 271 | * @throws Exception if something goes wrong | |
| 272 | */ | |
| 273 | Operation findBestArcToAdd(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception { | |
| 274 | 0 | int nNrOfAtts = instances.numAttributes(); |
| 275 | // find best arc to add | |
| 276 | 0 | for (int iAttributeHead = 0; iAttributeHead < nNrOfAtts; iAttributeHead++) { |
| 277 | 0 | if (bayesNet.getParentSet(iAttributeHead).getNrOfParents() < m_nMaxNrOfParents) { |
| 278 | 0 | for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) { |
| 279 | 0 | if (addArcMakesSense(bayesNet, instances, iAttributeHead, iAttributeTail)) { |
| 280 | 0 | Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD); |
| 281 | 0 | double fScore = calcScoreWithExtraParent(oOperation.m_nHead, oOperation.m_nTail); |
| 282 | 0 | if (fScore > oBestOperation.m_fScore) { |
| 283 | 0 | if (isNotTabu(oOperation)) { |
| 284 | 0 | oBestOperation = oOperation; |
| 285 | 0 | oBestOperation.m_fScore = fScore; |
| 286 | } | |
| 287 | } | |
| 288 | } | |
| 289 | } | |
| 290 | } | |
| 291 | } | |
| 292 | 0 | return oBestOperation; |
| 293 | } // findBestArcToAdd | |
| 294 | ||
| 295 | /** | |
| 296 | * find best (or least bad) arc deletion operation | |
| 297 | * | |
| 298 | * @param bayesNet Bayes network to delete arc from | |
| 299 | * @param instances data set | |
| 300 | * @param oBestOperation | |
| 301 | * @return Operation containing best arc to delete, or null if no deletion can be made | |
| 302 | * (happens when there is no arc in the network yet). | |
| 303 | * @throws Exception of something goes wrong | |
| 304 | */ | |
| 305 | Operation findBestArcToDelete(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception { | |
| 306 | 0 | int nNrOfAtts = instances.numAttributes(); |
| 307 | // find best arc to delete | |
| 308 | 0 | for (int iNode = 0; iNode < nNrOfAtts; iNode++) { |
| 309 | 0 | ParentSet parentSet = bayesNet.getParentSet(iNode); |
| 310 | 0 | for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { |
| 311 | 0 | Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_DEL); |
| 312 | 0 | double fScore = calcScoreWithMissingParent(oOperation.m_nHead, oOperation.m_nTail); |
| 313 | 0 | if (fScore > oBestOperation.m_fScore) { |
| 314 | 0 | if (isNotTabu(oOperation)) { |
| 315 | 0 | oBestOperation = oOperation; |
| 316 | 0 | oBestOperation.m_fScore = fScore; |
| 317 | } | |
| 318 | } | |
| 319 | } | |
| 320 | } | |
| 321 | 0 | return oBestOperation; |
| 322 | } // findBestArcToDelete | |
| 323 | ||
| 324 | /** | |
| 325 | * find best (or least bad) arc reversal operation | |
| 326 | * | |
| 327 | * @param bayesNet Bayes network to reverse arc in | |
| 328 | * @param instances data set | |
| 329 | * @param oBestOperation | |
| 330 | * @return Operation containing best arc to reverse, or null if no reversal is allowed | |
| 331 | * (happens if there is no arc in the network yet, or when any such reversal introduces | |
| 332 | * a cycle). | |
| 333 | * @throws Exception if something goes wrong | |
| 334 | */ | |
| 335 | Operation findBestArcToReverse(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception { | |
| 336 | 0 | int nNrOfAtts = instances.numAttributes(); |
| 337 | // find best arc to reverse | |
| 338 | 0 | for (int iNode = 0; iNode < nNrOfAtts; iNode++) { |
| 339 | 0 | ParentSet parentSet = bayesNet.getParentSet(iNode); |
| 340 | 0 | for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { |
| 341 | 0 | int iTail = parentSet.getParent(iParent); |
| 342 | // is reversal allowed? | |
| 343 | 0 | if (reverseArcMakesSense(bayesNet, instances, iNode, iTail) && |
| 344 | bayesNet.getParentSet(iTail).getNrOfParents() < m_nMaxNrOfParents) { | |
| 345 | // go check if reversal results in the best step forward | |
| 346 | 0 | Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_REVERSE); |
| 347 | 0 | double fScore = calcScoreWithReversedParent(oOperation.m_nHead, oOperation.m_nTail); |
| 348 | 0 | if (fScore > oBestOperation.m_fScore) { |
| 349 | 0 | if (isNotTabu(oOperation)) { |
| 350 | 0 | oBestOperation = oOperation; |
| 351 | 0 | oBestOperation.m_fScore = fScore; |
| 352 | } | |
| 353 | } | |
| 354 | } | |
| 355 | } | |
| 356 | } | |
| 357 | 0 | return oBestOperation; |
| 358 | } // findBestArcToReverse | |
| 359 | ||
| 360 | ||
| 361 | /** | |
| 362 | * Sets the max number of parents | |
| 363 | * | |
| 364 | * @param nMaxNrOfParents the max number of parents | |
| 365 | */ | |
| 366 | public void setMaxNrOfParents(int nMaxNrOfParents) { | |
| 367 | 0 | m_nMaxNrOfParents = nMaxNrOfParents; |
| 368 | 0 | } |
| 369 | ||
| 370 | /** | |
| 371 | * Gets the max number of parents. | |
| 372 | * | |
| 373 | * @return the max number of parents | |
| 374 | */ | |
| 375 | public int getMaxNrOfParents() { | |
| 376 | 0 | return m_nMaxNrOfParents; |
| 377 | } | |
| 378 | ||
| 379 | /** | |
| 380 | * Returns an enumeration describing the available options. | |
| 381 | * | |
| 382 | * @return an enumeration of all the available options. | |
| 383 | */ | |
| 384 | public Enumeration listOptions() { | |
| 385 | 0 | Vector newVector = new Vector(2); |
| 386 | ||
| 387 | 0 | newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P <nr of parents>")); |
| 388 | 0 | newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R")); |
| 389 | 0 | newVector.addElement(new Option("\tInitial structure is empty (instead of Naive Bayes)", "N", 0, "-N")); |
| 390 | ||
| 391 | 0 | Enumeration enu = super.listOptions(); |
| 392 | 0 | while (enu.hasMoreElements()) { |
| 393 | 0 | newVector.addElement(enu.nextElement()); |
| 394 | } | |
| 395 | 0 | return newVector.elements(); |
| 396 | } // listOptions | |
| 397 | ||
| 398 | /** | |
| 399 | * Parses a given list of options. <p/> | |
| 400 | * | |
| 401 | <!-- options-start --> | |
| 402 | * Valid options are: <p/> | |
| 403 | * | |
| 404 | * <pre> -P <nr of parents> | |
| 405 | * Maximum number of parents</pre> | |
| 406 | * | |
| 407 | * <pre> -R | |
| 408 | * Use arc reversal operation. | |
| 409 | * (default false)</pre> | |
| 410 | * | |
| 411 | * <pre> -N | |
| 412 | * Initial structure is empty (instead of Naive Bayes)</pre> | |
| 413 | * | |
| 414 | * <pre> -mbc | |
| 415 | * Applies a Markov Blanket correction to the network structure, | |
| 416 | * after a network structure is learned. This ensures that all | |
| 417 | * nodes in the network are part of the Markov blanket of the | |
| 418 | * classifier node.</pre> | |
| 419 | * | |
| 420 | * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] | |
| 421 | * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> | |
| 422 | * | |
| 423 | * <pre> -Q | |
| 424 | * Use probabilistic or 0/1 scoring. | |
| 425 | * (default probabilistic scoring)</pre> | |
| 426 | * | |
| 427 | <!-- options-end --> | |
| 428 | * | |
| 429 | * @param options the list of options as an array of strings | |
| 430 | * @throws Exception if an option is not supported | |
| 431 | */ | |
| 432 | public void setOptions(String[] options) throws Exception { | |
| 433 | 0 | setUseArcReversal(Utils.getFlag('R', options)); |
| 434 | ||
| 435 | 0 | setInitAsNaiveBayes (!(Utils.getFlag('N', options))); |
| 436 | ||
| 437 | 0 | String sMaxNrOfParents = Utils.getOption('P', options); |
| 438 | 0 | if (sMaxNrOfParents.length() != 0) { |
| 439 | 0 | setMaxNrOfParents(Integer.parseInt(sMaxNrOfParents)); |
| 440 | } else { | |
| 441 | 0 | setMaxNrOfParents(100000); |
| 442 | } | |
| 443 | ||
| 444 | 0 | super.setOptions(options); |
| 445 | 0 | } // setOptions |
| 446 | ||
| 447 | /** | |
| 448 | * Gets the current settings of the search algorithm. | |
| 449 | * | |
| 450 | * @return an array of strings suitable for passing to setOptions | |
| 451 | */ | |
| 452 | public String[] getOptions() { | |
| 453 | 0 | String[] superOptions = super.getOptions(); |
| 454 | 0 | String[] options = new String[7 + superOptions.length]; |
| 455 | 0 | int current = 0; |
| 456 | 0 | if (getUseArcReversal()) { |
| 457 | 0 | options[current++] = "-R"; |
| 458 | } | |
| 459 | ||
| 460 | 0 | if (!getInitAsNaiveBayes()) { |
| 461 | 0 | options[current++] = "-N"; |
| 462 | } | |
| 463 | ||
| 464 | 0 | options[current++] = "-P"; |
| 465 | 0 | options[current++] = "" + m_nMaxNrOfParents; |
| 466 | ||
| 467 | // insert options from parent class | |
| 468 | 0 | for (int iOption = 0; iOption < superOptions.length; iOption++) { |
| 469 | 0 | options[current++] = superOptions[iOption]; |
| 470 | } | |
| 471 | ||
| 472 | // Fill up rest with empty strings, not nulls! | |
| 473 | 0 | while (current < options.length) { |
| 474 | 0 | options[current++] = ""; |
| 475 | } | |
| 476 | 0 | return options; |
| 477 | } // getOptions | |
| 478 | ||
| 479 | /** | |
| 480 | * Sets whether to init as naive bayes | |
| 481 | * | |
| 482 | * @param bInitAsNaiveBayes whether to init as naive bayes | |
| 483 | */ | |
| 484 | public void setInitAsNaiveBayes(boolean bInitAsNaiveBayes) { | |
| 485 | 0 | m_bInitAsNaiveBayes = bInitAsNaiveBayes; |
| 486 | 0 | } |
| 487 | ||
| 488 | /** | |
| 489 | * Gets whether to init as naive bayes | |
| 490 | * | |
| 491 | * @return whether to init as naive bayes | |
| 492 | */ | |
| 493 | public boolean getInitAsNaiveBayes() { | |
| 494 | 0 | return m_bInitAsNaiveBayes; |
| 495 | } | |
| 496 | ||
| 497 | /** get use the arc reversal operation | |
| 498 | * @return whether the arc reversal operation should be used | |
| 499 | */ | |
| 500 | public boolean getUseArcReversal() { | |
| 501 | 0 | return m_bUseArcReversal; |
| 502 | } // getUseArcReversal | |
| 503 | ||
| 504 | /** set use the arc reversal operation | |
| 505 | * @param bUseArcReversal whether the arc reversal operation should be used | |
| 506 | */ | |
| 507 | public void setUseArcReversal(boolean bUseArcReversal) { | |
| 508 | 0 | m_bUseArcReversal = bUseArcReversal; |
| 509 | 0 | } // setUseArcReversal |
| 510 | ||
| 511 | /** | |
| 512 | * This will return a string describing the search algorithm. | |
| 513 | * @return The string. | |
| 514 | */ | |
| 515 | public String globalInfo() { | |
| 516 | 0 | return "This Bayes Network learning algorithm uses a hill climbing algorithm " + |
| 517 | "adding, deleting and reversing arcs. The search is not restricted by an order " + | |
| 518 | "on the variables (unlike K2). The difference with B and B2 is that this hill " + | |
| 519 | "climber also considers arrows part of the naive Bayes structure for deletion."; | |
| 520 | } // globalInfo | |
| 521 | ||
| 522 | /** | |
| 523 | * @return a string to describe the Use Arc Reversal option. | |
| 524 | */ | |
| 525 | public String useArcReversalTipText() { | |
| 526 | 0 | return "When set to true, the arc reversal operation is used in the search."; |
| 527 | } // useArcReversalTipText | |
| 528 | ||
| 529 | /** | |
| 530 | * Returns the revision string. | |
| 531 | * | |
| 532 | * @return the revision | |
| 533 | */ | |
| 534 | public String getRevision() { | |
| 535 | 0 | return RevisionUtils.extract("$Revision: 8034 $"); |
| 536 | } | |
| 537 | } // HillClimber |