
CS{2001{02

Scaling Java-based Dynamic Web Services

Sara E. Sprenkle Je�rey S. Chase

Department of Computer Science

Duke University

Durham, North Carolina 27708{0129

May 2001

Scaling Java-based Dynamic Web Services

Sara E. Sprenkle and Je�rey S. Chase

Dept. of Computer Science

Duke University

Durham, N. C. 27708{0129

fsprenkle, chaseg@cs.duke.edu

May 2001

Abstract

Managing distributed state is a di�cult challenge for

building scalable, distributed, wide-area applications.

This project presents the design of an infrastructure,

called Ivory, to simplify construction of distributed

applications by automatically caching and replicat-

ing data structures and code. We illustrate the use

of our infrastructure in service caches that replicate

Web service code and data used to generate dynamic

content. The service cache relies on Ivory to main-

tain consistency of cached data as a basis for scalable

dynamic Web services.

Ivory is designed to automate key aspects of state

management in a exible, e�cient, and scalable way.

A key element to our approach is the use of bytecode

transformers that automatically adapt Java applica-

tions to the Ivory infrastructure. Bytecode trans-

formers insert new code into compiled applications

to notify Ivory of data structure modi�cations and

to invoke operations for maintaining consistency; the

transformation is powerful but requires only minimal

application programmer involvement. Furthermore,

to reduce the space and communication overhead nec-

essary for maintaining data, we use conits|groups of

application-de�ned related objects|as the granular-

ity for caching, consistency, and synchronization. Us-

ing bytecode transformers and the conit granularity

in the infrastructure design allows authors to choose

application-appropriate data management and con-

sistency policies.

1 Introduction

The web has evolved from being an archive of dis-

tributed, static information to an interactive, wide-

area application service provider. This evolution

requires new techniques for improving web perfor-

mance, as measured by client-perceived latency. One

approach to maintaining low latency is to scale these

applications. Ivory is a project that attempts to an-

swer the problems and questions posed by scaling

Java-based dynamic web services, a large subset of

these wide-area applications.

Ivory is an infrastructure that replicates and caches

data structures and code for distributed services

and applications over the wide area. Ivory provides

generic support for managing distributed state for ap-

plications to implement data management policies.

Since Ivory handles data consistency, application au-

thors can set aside issues of data management and,

therefore, can concentrate on building wide-area ser-

vices.

The primary goal of Ivory is to automatically make

dynamic services scalable, as measured by through-

put and client-perceived latency. To achieve this goal,

we need to minimize the storage and communica-

tion costs of maintaining state for consistent data

and code replication. Another goal is for the infras-

tructure to be general for use by many di�erent ap-

plications; we need to divide functionality between

the system and the application so that the system

does not restrict policy decisions that the application

should make.

A key element to our approach is the use of byte-

code transformers that automatically adapt Java ap-

plications to the Ivory infrastructure. Bytecode

transformation [8] is a powerful tool that injects code

into compiled Java applications. With little appli-

cation programmer involvement, application code is

transformed to notify the system of changes to the

data structures and to call methods to receive and

propagate object updates.

For high performance, we need to minimize the

overhead of maintaining consistent data structures.

Other systems|such as Thor and object-oriented

data bases|group data in clusters or \crystals".

Ivory maintains data based on application-de�ned

1

groups of related objects, called conits. Based on

the assumption that related objects are more likely

to be read and modi�ed within the same period of

time, using conits improves the performance of Ivory

in three important ways:

� Consistency { maintain versions based on

conits instead of objects and amortize cost of

propagating updates,

� Synchronization { lock objects with one

shared lock, and

� Caching { amortize cost of faulting objects.

Our primary goal is to create a general infrastruc-

ture for caching and replicating data that is auto-

matic, yet is also appropriate for the wide range of

applications that could use it. We want an automated

infrastructure so that replication is fast and e�cient.

However, applications can make better|and there-

fore, more e�cient|decisions about consistency, syn-

chronization, and caching of their data. Bytecode

transformers and conits are used to strike a balance

between the desire for automation and application-

appropriate behavior.

In the next section, we further discuss the motiva-

tion for Ivory. In Section 3, we outline the design de-

cisions we made to achieve our goals. An explanation

of the architecture is in Section 4. The implementa-

tion of the data management infrastructure and its

use in service cache prototype are in Sections 5 and

6, respectively. In Section 7, we evaluate our proto-

type and discuss future work. In Section 8, we dis-

cuss some work related to this project. Finally, in

Section 9, we conclude.

2 Motivating Applications

Dynamic services have changed the basic function

of the web. Previously, people used the Internet

to access a large, distributed library of static docu-

ments. To handle the demand for the documents, web

proxy caches stored frequently-accessed documents

and served requests for those documents. Today, the

web is used to access dynamic content, such as per-

sonalized web pages and on-line customer accounts.

The demand for dynamic services is growing faster

than web servers can handle it. To generate dynamic

content, servers execute code that can operate on

user-request parameters, server state, and databases.

To illustrate the need for scaling dynamic services,

consider that the CPU cycles that a dynamic service

uses to generate one page could instead serve many

static documents. To ensure low client-perceived la-

tency, we can o�oad some of the burden from the web

servers and push content closer to the end user. Using

intermediate servers also improves service through-

put.

The traditional techniques for improving network

performance cannot be applied to dynamic content.

For example, web proxy caches cannot handle dy-

namic content. Unlike static documents, dynamic

content cannot be cached because it depends on un-

derlying code and data that might have changed

since the last response was generated. Web proxy

caches use expiration times to determine when con-

tent should be thrown out of caches; however, the

granularity of expiration times is pages or documents,

which is too large a granularity for dynamic content.

We propose service caches to improve performance

of dynamic services. To make dynamic services scal-

able, the code and data used to generate dynamic

content are replicated on other nodes, and we mon-

itor changes to the data. By replicating the content

at remote sites, the service has better fault tolerance

(if one site fails, requests can be redirected to an-

other site), load balancing (if one site is overloaded,

requests can be redirected), incremental scalability

(adding new replica sites or adding resources to one

replica has low cost), and client latency (a replica

closer to the client can handle the content request).

Caching service programs introduces security, trust,

and resource allocation issues that will not be ad-

dressed by this project but are being researched by

related e�orts [3, 4, 9, 18, 19].

Utilizing the network's computational and storage

resources improves service performance at the cost

of maintaining distributed state within the replicas.

When data changes on the server or replicas, we

record the change and notify the replicas or primary

server, respectively. The service cache does not spec-

ify the amount data and code that should be repli-

cated or the degree to which data should be kept

consistent; without those restrictions, we can create

a range of caches with varying degrees of consistency,

depending on the requirements of the application.

Our service cache replicates Java code and data

used to generate dynamic content. Using Ivory, the

code and data is replicated such that the code gen-

erates the same response as the server, within some

application-appropriate margin of error. To achieve

this goal, we need to minimize the storage and com-

munication costs of maintaining state for consistent

data and code replication. Other ideal properties for

a service cache include deployment with a common

framework for replicating services on the Web and

dynamic setup and teardown. Using Ivory can help

2

achieve these goals, as we discuss in more detail in

Section 6.

3 Design Principles and Goals

Our main focus for Ivory is caching and replicating

data structures in a scalable, consistent way. By au-

tomating state management, we make progress to-

wards automatically converting unscalable applica-

tions into scable ones. To achieve automatic scalabil-

ity, we need to reduce the time and space overhead

of maintaining consistency; these overhead consider-

ations inuenced all design decisions.

The infrastructure must provide general consis-

tency support so that it can be used by a wide-range

of applications. Rather than implementing a consis-

tency policy to which all applications would have to

conform, the application should make consistency de-

cisions.

Furthermore, the choice for replication granular-

ity can a�ect e�ciency. A �xed granularity may be

suited for only a few applications; however, applica-

tion authors can choose a granularity that is appro-

priate for the application and thus more e�cient. Ap-

plications should guide the choice of a suitable repli-

cation granularity.

Finally, we want to limit the cost of state manage-

ment if there is no replication. A server should not

be slowed down when no replicas are communicating

with the server.

4 Architecture

In this section, we discuss the decisions that guided

the design of Ivory's architecture. Ivory is designed

to replicate and cache Java data structures, as illus-

trated in Figure 1. Ivory maintains the data's consis-

tency so that clients can contact either the primary

or the replicas to access the data.

4.1 The Case for Conits

To replicate data e�ciently and automatically, we

must have some knowledge of its structure. Java data

structures are objects linked together by references.

Related objects have temporal locality in that they

are read and written in the same block of time. We

call a group of related objects conits, i.e., consistency

units. Using conits adds exibility into the system

and improves system performance in several impor-

tant respects.

We want to choose the granularity for e�cient data

replication and synchronization. Replicating all data

.

Client

Client

Client

Client

Client

Primary

Secondary

Secondary

into conits
data: partioned

Figure 1: Architecture of Ivory: subsets of primary's

data store are replicated on secondaries.

objects when only a subset of the objects is needed

wastes computational and network resources. Our

system can create partial replicas or caches of dis-

tributed data based on conits.

Caching by conits reduces state management and

is more space e�cient. A subset of all the conits

reside on a replica; replicas can evict and fault in

conits as needed, depending on storage constraints

and the replica's replacement policy. State savings

are proportional to the number of objects contained

in one conit; rather than maintaining information

about each object, we maintain information about

groups of related objects.

The tradeo�s in conit size are similar to the trade-

o�s in page sizes: a conit that contains many objects

can result in false sharing and too many faults, while

smaller conits require more state management over-

head.

Ideally, granularity is determined by the applica-

tion because the application knows how to group re-

lated objects to minimize false sharing and the num-

ber of faults. Objects can be grouped such that writes

a�ect the majority of the conit's members| thus re-

ducing false sharing|and subsequent read requests

are for objects contained in the recently-faulted conit,

i.e., we prefetched objects for future requests, which

may increase performance. However, that solution

puts a heavy burden on application programmers to

specify how data objects should be grouped. Using

Ivory to determine the granularity would eliminate

the burden on the programmer but would not neces-

3

sarily yield the most e�cient groupings.

Our solution is a compromise between the two ex-

tremes. Applications specify conit membership for a

subset of objects; other objects are lazily added to

conits by the system.

Consistency and Synchronization

When an object is updated, the changes must be

propagated to all copies of the object to maintain

consistency. The transmission should not occur when

actions are in progress on objects, i.e., update prop-

agation is atomic with respect to actions so that ob-

jects are self-consistent when changes are applied or

transmitted. An action may a�ect more than one

object; therefore, amortizing the cost of transmitting

all the changes for the conit rather than transmitting

each individual object's changes may improve perfor-

mance.

Replicas must also handle conicting updates; up-

dates to an object are conicting if di�erent sites ap-

ply changes to the object before seeing another site's

changes to the same object. Solutions for handling

conicting updates range from pessimistic (prevent-

ing conicts before they happen) to optimistic (rec-

onciling them after they happen.)

For stronger consistency, we could use one lock,

distributed over all replicas, for each object. Consis-

tency is guaranteed because the lock owner knows

he has the most recent copy of an object. The

overhead for state management, locking, and con-

ict detection with this approach is high. Us-

ing conits decreases the overhead but can also re-

duce concurrency|and, therefore, availability and

performance|unnecessarily.

At the other end of the spectrum, an optimistic ap-

proach is to abort one of the updates when a conict

is detected. In this case, larger conits may produce

false conicts, i.e., there is no conict because the

changes apply to two di�erent objects that belong to

the same object cluster, and the update cancellation

is unnecessary. If the conicts are reconciled instead,

the overhead of reconciling the conicts in an object

cluster is higher than reconciling conicts to a single

object.

The ideal approach to consistency di�ers depend-

ing on the application. Projects like Bayou [10, 11,

17] and Coda [16] investigated optimistic consistency

approaches and their validity in database applications

and �le systems, respectively. The TACT [21] (Tun-

able Availability/Consistency Tradeo�s) project ex-

plores the tradeo�s between consistency and avail-

ability and performance in more depth.

Ivory is designed to be exible and allow for plug-

gable policies for consistency. Applications should

decide when to get updates from the primary. An ap-

plication may not require tight consistency bounds;

therefore, we can improve application performance by

handling requests from the replica without contacting

the server for updates.

An application should also decide if replicas will act

as a write-back or a write-through cache and how to

resolve conicts. For better performance, groups of

writes should be bu�ered and then pushed as a group

to the primary. However, waiting to write updates in-

creases the probability that the update conicts with

the primary's data.

The desire for a non-restrictive infrastructure mo-

tivates us to separate the needs of data replication

and management from those of systems that use the

replicated data.

4.2 Division of Function

We want to create a general infrastructure that can

be used by a variety of applications. To achieve that

goal, we need to separate the concerns of applications.

We discussed some of the concerns of the application

and the system in the last section. In this section, we

outline applications' expectations for the infrastruc-

ture and the responsibilities of the application.

While Ivory determines how data is replicated and

kept consistent, the application guides how much

data is replicated and to what degree the data is kept

consistent. Ivory maintains consistent data among

replicas and provides an interface for choosing how to

manage the distributed data. Applications call into

this interface to implement consistency policies|such

as if replicas should behave as write-back or write-

through caches. Ivory relies on the application to

provide guidance on choosing the most appropriate

granularity for the application. The details of Ivory's

assumptions about applications and how applications

hook into the interface and guide granularity deci-

sions are in the next section.

5 Design and Implementation

In this section, we discuss the assumptions about

the applications that will use the infrastructure and

present the implementation of Ivory. Figure 2 illus-

trates a high-level view of Ivory's implementation,

which is written in Java 1.3 and run in the Java en-

vironment [13].

4

NODE MANAGER
table of node locations

and their ids

NAME CACHE
table of objects and
their symbolic names

STATE MANAGER
table of conits and ids

versions ...CONIT
versions
CONIT

Figure 2: The Ivory Infrastructure

5.1 Assumptions about Applications

To build our �rst prototype, we make some simplify-

ing assumptions about the applications that will use

Ivory. These constraints may be loosened in future

prototypes, but they did not restrict the usefulness

of the system.

Applications using Ivory are written using Java

technology. We also assume that applications are

properly synchronized. Our system will not decrease

the performance of the application by doing unnec-

essary additional synchronization, since it should be

handled by the application.

Restricting applications to Java is a reasonable de-

cision for implementing our �rst prototype. Since

Java code and data can be migrated, we do not have

to consider the heterogeneous platforms of the wide-

area environment for which Ivory is designed. Fur-

thermore, a large number of Web applications are

built and run on Java technology|such as servlets [1]

and Java Server Pages (JSPs) [2]; therefore, we are

not severely limiting Ivory's potential users.

Using Java introduced many opportunities for

building Ivory's automated state management. Java

objects are convenient units for caching and replica-

tion. Since Java is a strongly-typed, object-oriented

language with entry points to the object and the in-

vocation boundaries clearly de�ned, the system can

automatically monitor changes to data objects more

easily with the use of bytecode transformers.

Bytecode transformation

Bytecode transformation [8] is a powerful technique

for automatically adding functionality to Java pro-

grams and other software packaged to run in the

Java environment [13]. In this technique, trans-

former programs modify existing software by auto-

matically parsing and manipulating compiled classes

represented as class�les. Program transformation is

valuable primarily for implementing general features

and adaptations that may be speci�ed independently

of the application functionality. The new features are

decoupled from the application programs and imple-

mented in the transformer once rather than reimple-

mented in each program. Because they operate on

the compiled program, bytecode transformers allow

late adaptations or extensions of packaged software,

even if source code is not available.

For Ivory, bytecode transformers are used to mon-

itor data structures and to add hooks from applica-

tions into the Ivory interface. Speci�cally, the trans-

formers inject code to

� make objects serializable by adding the Serializ-

able interface to all objects,

� mark an object as dirty if a method makes

changes to the object,

� call Ivory's consistency mechanisms for imple-

menting application's consistency policies,

� check that conits are resident, when referenced

in public accessor methods; if a conit is not res-

ident, the conit is faulted,

� determine if a cross-conit reference is to a conit

that originates on this node; if the conit origi-

nates from another node, fetch the updates to

this conit,

� and nullify the references from an object when

the object is thrown out of the cache.

With little knowledge of Ivory's infrastructure, a

programmer can transform his application to use

Ivory. Programmers must be aware of the concept of

conits and grouping related objects to use the byte-

code transformer. We plan to provide a toolkit to

support application integration with Ivory, but that

is beyond the scope of this project.

5.2 State Management

One of the goals of this project is to minimize the

amount of state overhead required to manage data.

In this section, we discuss how we manage state and

what optimizations we used to reduce overhead.

We begin by de�ning some of the managed infor-

mation.

5

� Node Identi�cation: Nodes must have glob-

ally unique identi�ers; we assume that we have

unique node ids.

� Conit Identi�cation: Conits have globally unique

identi�ers, which are assigned by the node that

creates the conit and are quali�ed by the node's

id.

� Object Identi�cation: Objects must have glob-

ally unique identi�ers. A fully-quali�ed object

id is its conit id and its conit-unique identi�er.

� Class Identi�cation: Class ids are unique per ser-

vice because only the primary server assigns ids.

This constraint may change when we add peer

communication.

Ivory is made up of three main components|a

name cache, a node manager, and a state manager.

The name cache is a table of symbolic names that

refer to objects. The node manager maintains in-

formation about peer nodes; this information is used

to send and receive updates. The most important

part of Ivory is the state manager, which manages

the conit state and initiates receiving and propagat-

ing updates.

For every conit, the server or replica keeps two

hashtables|one mapping objects to ids, the other

mapping ids to objects. If an object has not been

sent or has been modi�ed since the last time it was

sent, the server sends the object's conit id, its id, and

its class information. We discuss update propagation

in more detail in Section 5.4.

We optimize sending class information by assigning

service-unique ids to classes. When an object is sent,

we send the id of the object's class. If a class has

not been sent to the secondary already, we also send

the name of the class. The receiving node looks up

the class by its id, which is stored in a hash table. If

the id is not already in the table, the receiver uses

the class name to create a new class object. Thus,

the class object is created only once per service per

node. This optimization requires the server to store

information about which classes it has sent to the

node for this service already.

5.3 Conit Management

Using conits as the granularity for caching, replica-

tion, and synchronization reduces the state overhead

and resources required by Ivory. In this section, we

discuss how we manage conits.

Conit membership is partially application-de�ned,

partially automatic. A conit, as shown in Figure 3,

Conit Root
Conit Object

0

1

42

3 Ingress

Point

Figure 3: An example of a conit: a conit consists of

conit objects and conit roots, which are ingress points

into the conit.

consists of Java objects and specially-de�ned \conit

roots". The application de�nes conit membership

for the conit roots. A conit root can either start a

new conit or attach to an existing conit. The roots

are ingress points to the conit. A reference into a

conit must come through one of these conit roots, but

any object can make references to any other object

whether or not the object is in the same conit. Exam-

ples of references are a symbolic name for an object

in a conit and a reference from an object in another

conit. We make the restriction that conit roots must

belong to a conit before propagating updates.

Other objects are dynamically added to conits only

when a conit is propagated to another node. When

a conit is transmitted to another node, all objects

reachable from the root|except objects that are

known to belong to another conit|are added to the

conit. Lazy addition of objects to conits reduces state

and time overhead when a conit is not replicated. Un-

til an object is added to a conit, we can ignore modi�-

cations to the object; we do not waste resources main-

taining information about short-lived objects that are

never replicated.

Since the application speci�es the conit member-

ship of only a subset of the objects, the burden on the

application programmer is reduced, and the replica-

tion granularity should be appropriate for the appli-

cation.

We make some assumptions about the structure of

conits and the objects that they contain.

Conit roots have no public �elds, only public ac-

cessor methods. We have this constraint because we

cannot easily track accesses to �elds using bytecode

transformers.

Accesses to a conit start by invoking an ingress ob-

ject, i.e., the only way to get into a conit from another

conit is through a conit root. This restriction simpli-

6

�es the system because it does not have to check for

faults on every object access|only accesses to conit

roots. Furthermore, we can throw conits out of a

replica and keep only information about conit roots;

otherwise, it would be much more di�cult to deter-

mine if a cross-conit reference is null or to a conit

that is not resident.

Every object in a conit is on a reference path, i.e.,

in the transitive closure, from one of the conit roots.

This is enforced by our policy of lazy addition to

conits. We can add objects not assigned to a conit al-

ready because other conits will not try to claim them.

When an object is faulted, the faulter receives all

information about its conit, i.e., the whole conit. This

constraint has the side e�ect of potentially improving

performance; by prefetching all objects in the conit,

we can reduce the number of future faults for objects

within the same conit.

We also require that updates to conit objects are

through methods of the Consistent interface and

that the objects only a�ect one conit. The byte-

code transformer injects calls into the Ivory interface

from methods that implement the Consistent inter-

face. Updates to multiple conits introduces issues of

transactions and synchronization that are topics of

future research.

5.4 Versioning

While our versioning model is not particularly novel,

it is worth noting how versioning is a�ected by the

use of conits.

Object updates are monitored at the conit-level.

Rather than keeping track of each replica's current

version, conits keep a list of dirty object hampers, as

shown in Figure 4. The state required therefore grows

with the number of objects in the conit instead of the

number of replicas.

Without loss of generality, we will describe the

server's policy for maintaining versions. Versions are

maintained in dirty lists that are labeled by a logical

timestamp. The server knows the timestamp of its

current version of each conit. As objects are dirtied,

references to the objects are added to the most recent

dirty list. If an object is in a previous dirty list, it

is removed from the older list. If the object was the

last object in the dirty list, the dirty list is deleted. A

new version list is created each time a node receives

a request for updates. To reduce space requirements,

if the most recent dirty list contains no objects, the

list is simply assigned the next logical time stamp.

When the server receives a request for a conit, the

replica also sends the timestamp t of its current ver-

sion. The server sends the objects that have been

.

Version 3

Version 2

Version 1

Figure 4: Tracking versions within a conit

dirtied since t.

The state required by this algorithm is linear with

the number of objects in a conit. However, the server

also stores information about each replica's current

version of the conit so that the dirty lists can be

pruned. In future implementations, we may explore

other pruning techniques that do not require this in-

formation and other versioning algorithms.

5.5 API

Several operations on the data are available to appli-

cations.

Touch: Get updates for this object and its conit

if the object could be stale.

Fault: When an application on a secondary node

follows a cross-conit reference to a conit that is not

resident on that node, the node faults and fetches

that conit from the primary node, which is usually

the originating node.

Commit: Push a conit's updates to the primary.

If there is a conict with the primary, the conit is

evicted. When the conit is next accessed, the full

conit is fetched from the primary.

Evict: A conit can be thrown out of a cache. Only

information about conit roots is saved because other

conits may only refer into a conit through these ob-

jects.

These few operations allow applications to imple-

ment many di�erent policies for maintaining consis-

tency.

7

in the context of a service
Application Threads − running

SERVICE CACHE

I V O R Y

Figure 5: Service Cache using Ivory

6 Service Cache Framework

Service caches are used to scale dynamic services by

replicating the Java code and data used to gener-

ate dynamic content. These caches should produce

correct results, as would be produced by the server{

within some application-appropriate margin of error.

We want consistent copies of the code and data, while

keeping the client-perceived latency low, and we want

to minimize the cost of managing state. We will

now discuss how we implemented a simpli�ed service

cache using Ivory.

A service cache is associated with a service. For

our purposes, a service is a group of applications that

execute on the same set of data objects. As shown

in Figure 5, application threads, which run in the

context of a service, are transformed to make calls

into the Ivory infrastructure to access and modify

data objects.

The implemented service cache is simply a thin

layer around Ivory. The service cache is not fully-

functional and lacks features such as restricting the

amount of space available for the cache or a replace-

ment policy for evicting conits. However, the service

cache is a good example application that uses Ivory

and is su�cient for testing and evaluating Ivory.

7 Experiments and Results

To test Ivory's scalability, we ran a series of tests

using the service cache as our test application. We

ran the service cache server and replicas on Sparc

Ultra 1s running Java's WebServer on top of Solaris

2.8. The server has 256 MB of RAM, while replicas

have either 128 or 256 MB.

The tests are designed to evaluate the performance

and scalability of Ivory. The server is primary for a

service that maintains a set of four data structures,

each of which contains 16 objects. The data struc-

ture is a linked list but not Java's LinkedList. Al-

though the list is synthetic, it simpli�es evaluating

Ivory. Each data structure is referenced by a sym-

bolic name in the server's name cache.

Two servlets run in the context of the service; one

servlet requests to read the named data structure,

i.e., printing the data structure, while the other mod-

i�es each object in the data structure. The invalida-

tion time for data is three seconds, i.e, if the object

is referenced at least three seconds after the object

was last updated, the replica requests updates from

the primary.

We used SimClient [12] to run our tests. SimClient

generates a workload for Web servers from a list of

URLs; in this case, the URLs are servlets. SimClient

also records the latency and throughput for each re-

quest.

We created two kinds of trace �les: one for reading,

one for writing. The trace�le was generated by ran-

domly choosing a data structure from the four avail-

able data structures to read or write. SimClient gen-

erates a constant write load per second, e.g., sending

5 write requests per second, as de�ned by our input

parameters. The read load is constant along another

dimension: there are at most eight outstanding read

requests at any time.

For this set of experiments, we concentrated on

evaluating the e�ect of varying writes and adding

replicas on service performance. We varied the rate

of write requests from 5 to 45 requests per second,

and added up to three replicas. A write rate of 45

requests per second means that one tree is modi�ed

on average about 11 times per second.

After the data structures were initially created and

named, each test ran for �ve minutes. The results of

our experiments are in Figures 6 through 9.

7.1 Replication Overhead

To evaluate the overhead of evaluation, we need to

compare the results from having no replicas to having

one inactive replica. The inactive replica requested

each data structure from the server before the tests

were run; the server then must maintain version in-

formation about the conit.

The two lines on all four graphs are nearly iden-

tical. Read and write latency are only slightly

increased by replication. We believe the smaller

throughput of the zero replica case at 25 write re-

quests per second in Figure 7 is an anomaly.

8

.

Figure 6: Read Throughput

.

Figure 7: Total Throughput

7.2 The E�ects of Replication

The graphs show that Ivory's replication provides

scalability and increased performance for service

caches. At low write rates, the system performance

is greatly improved by adding replicas; throughput

of the service is much higher, while latency is about

equal.

As expected, increasing the modi�cation rate de-

creases the performance of the system and replica-

tion. Write requests starve out reader requests at

the server and require more update propagation to

replicas.

7.3 Discussion and Future Experi-

ments

These results are promising and encourage further

testing and analysis of Ivory. We would like to test

Ivory using di�erent sized conits to determine the ef-

fect of conit size on state management and overhead.

While we believe that Ivory will be used in applica-

.

Figure 8: Average Read Latency

.

Figure 9: Average Write Latency

tions where the rate of modi�cation is relatively low,

we will look into reducing the impact that writes have

on the overall performance of the system. We would

also like to add more replicas and to test Ivory using

real-world data structures and other applications.

8 Related Work

There are many systems that have goals similar to

our data management system or to our proposed ap-

plications for this system|such as the service cache;

we have learned about many of these other systems.

In this section, we highlight a few of them.

Distributed Data Structures (DDS) [14] have simi-

lar properties to Ivory's data management layer, but

they are not as general as Ivory. Instead of restricting

application authors to a few data structures, Ivory

automatically distributes and maintains the consis-

tency of any data structure.

Emerald [15] is similar to our proposed service

cache in that it is designed to improve the perfor-

9

mance of distributed programs. However, objects are

relocated|rather than replicated|to other nodes.

Cao's Active Caches [5] is another Java-based ap-

proach to caching dynamic content. The Active

Cache implementation utilizes Java's security fea-

tures to perform computation on cached documents.

A cache applet is attached to a document so that

proxies, without server interaction, can perform the

necessary processing on a cached document to make

it current.

IBM's trigger monitor [6, 7] pre-generates the dy-

namic responses to user requests. The responses'

data dependencies on underlying data are used to de-

termine when a response should be regenerated, i.e.,

when data changes occur, the responses that depend

on the changed data are regenerated. Pre-generating

pages greatly decreases the workload on the server.

Since disk space is now inexpensive, pre-generating

large numbers of pages is an option. However, if data

changes at a much higher rate than pages containing

the data are requested or the data a�ects many pages

that probably will not be requested, pre-generating

the pages wastes resources.

TACT [21, 20] �rst introduced the term \conits"

for specifying exible, application-speci�c consis-

tency and availablity requirements. We believe that

TACT can use Ivory for more e�cient data replica-

tion and management. Instead of replicating entire

data stores, as is currently implemented, Ivory can

manage partial replicas.

9 Conclusion and Future Work

Ivory is designed to simplify the construction of wide

area applications by Ivory providing general support

for automatically replicating and caching Java data

structures. Ivory replicates data based on conits,

which are the granularity for caching, synchroniza-

tion, and consistency. Conits add exibility and im-

prove the e�ciency of replication. Bytecode trans-

formers automatically adapt applications to Ivory's

framework. Finally, we showed that, in the case of

service caches, Ivory scales when data is modi�ed at

a relatively low rate.

We have mentioned many possible areas for future

research. First, we want to further evaluate the cur-

rent Ivory prototype and analyze the e�ects of conits

and conit size on performance and scalability. We

would also like to test other applications on Ivory.

Providing a toolkit for transforming applications for

use with Ivory would simplify that process.

More general research issues include allowing up-

dates to a�ect multiple conits, introducing peer-to-

peer communication to reduce the server bottleneck,

and experimenting with hierarchical conits or other

conit structures.

For more information and

the source code, please see

http://www.cs.duke.edu/�sprenkle/acad/project.

Acknowledgments

Dejan Kostic collaborated on the design of Ivory as

part of the class project for CPS 212, Distributed

Systems. Syam Gadde and Darrell Anderson pro-

vided valuable assistance, suggestions, and feedback

in evaluating Ivory.

References

[1] Java Servlet Technology.

http://java.sun.com/products/servlet/.

[2] JavaServer Pages.

http://java.sun.com/products/jsp/.

[3] G. Banga, P. Drushel, and J.C. Mogul. Resource

containers: A new facility for resource manage-

ment in server systems. Third Symposium on

Operating Systems Design and Implementation,

February 1999.

[4] E. Belani, A. Vahdat, T. Anderson, and

M. Dahlin. The CRISIS wide area security archi-

tecture. In USENIX Security Symposium, Jan-

uary 1998.

[5] P. Cao, J. Zhang, and K. Beach. Active cache:

Caching dynamic contents. In IFIP Interna-

tional Conference on Distributed Systems Plat-

forms and Open Distributed Processing (Middle-

ware '98), The Lake District, England, Septem-

ber 1998.

[6] J. Challenger, A. Iyengar, and P. Dantzig. A

scalable system for consistently caching dynamic

data. In IEEE INFOCOM '99, March 1999.

[7] J. Challenger, A. Iyengar, K. Witting, C. Fer-

stat, and P. Reed. A publishing system for e�-

ciently creating dynamic web content. In IEEE

INFOCOM 2000 Conference, Tel-Aviv, Israel,

March 2000.

[8] G. Cohen, J. Chase, and D. Kaminsky. Auto-

matic program transformation with JOIE. In

1998 USENIX Annual Technical Symposium,

1998.

10

[9] G. Czajkowski and T. von Eicken. Jres: A re-

source accounting interface for Java. In 1998

ACM OOPSLA Conference, October 1998.

[10] A. Demers, K. Petersen, M. Spreitzer, D. Terry,

M. Theimer, and B. Welch. The Bayou archi-

tecture: Support for data sharing among mobile

users. In Workshop on Mobile Computing Sys-

tems and Applications, December 1994.

[11] T. Douglas. Managing update conicts in Bayou,

a weakly connected replicated storage system. In

15th Symposium on Operating Systems Princi-

ples, December 1995.

[12] Syam Gadde. Proxycizer Documentation.

http://www.cs.duke.edu/ari/cisi/Proxycizer/.

[13] James Gosling, Bill Joy, and Guy Steele. The

Java Language Speci�cation. Addison Wesley

Publishing Company, Reading, Massachusetts,

1996.

[14] Steven D. Gribble, Eric A. Brewer, Joseph M.

Hellerstein, and David Culler. Scalable, dis-

tributed data structures for internet service con-

struction. In Fourth Symposium on Operating

Systems Design and Implementation, San Diego,

California, October 2000.

[15] Eric Jul, Henry Levy, Norman Hutchinson, and

Andrew Black. Fine-grained mobility in the

Emerald system. ACM Transactions on Com-

puter Systems, 6(1):109{133, February 1988.

[16] L. B. Mummert and M. Satyanarayanan. Large

granularity cache coherence in the coda �le sys-

tem. In USENIX Summer 1994 Conference,

Boston, U.S., 1994.

[17] K. Petersen, M. Spreitzer, D. Terry, and

M. Theimer. Bayou: Replicated database ser-

vices for worldwide applications. In In Pro-

ceedings 7th SIGOPS European Workshop, pages

275{280, September 1996.

[18] Amin Vahdat. Toward wide-area resource allo-

cation. In Parallel and Distributed Processing

Techniques and Applications, June 1999.

[19] D.S. Wallach, D. Balfanz, D. Dean, and E.W.

Felten. Extensible security architectures for

Java. In 16th ACM Symposium on Operat-

ing Systems Principles, pages 116{128, October

1997.

[20] H. Yu and A. Vahdat. Combining generality and

practicality in a conit-based continuous consis-

tency model for wide-area replication. In Oper-

ating Systems Design and Implementation, Oc-

tober 2000.

[21] H. Yu and A. Vahdat. Design and evaluation

of a continuous consistency model for replicated

services. In 21st International Conference on

Distributed Computing Systems (ICDCS), April

2001.

11

