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Abstract— Interactions between drugs (also known as drug-drug
interactions or DDIs), which may cause adverse affects, are of
much concern; predicting, anticipating and avoiding them is key
for improving patient safety and treatment outcome. Knowledge of
DDIs is important for physicians to avoid adverse effects when
prescribing two drugs simultaneously. DDIs are often published in
the biomedical literature; however, gathering information about DDIs
is time consuming given the shear volume of publications. Auto-
matic text classification can speed up access to documents related
to DDIs. However, the biomedical literature contains a relatively
small number of publications relevant to DDIs, compared to the
vast amount of irrelevant publications. This imbalance can lead to
incorrect classification. While methods addressing class imbalance
have been introduced to correctly identify items in the minority
(relevant) class to improve recall, they often misclassify items in the
majority (irrelevant) class, which leads to low precision. To reduce
the number of irrelevant documents misclassified as relevant (false
positive), we develop a two-stage cascade classifier. In each step, we
separate publication abstracts that are DDI-relevant from those that
are either drug-irrelevant or drug-relevant but DDI-irrelevant. We
compare our classifier with other popular learning methods that aim
to handle imbalance, applying the methods to a well-curated corpus
consisting of DDI-relevant and DDI-irrelevant PubMed abstracts.
Our method achieves higher precision and F1 measure than other
methods while maintaining similar recall.

I. INTRODUCTION

Drug-drug interactions (DDIs) are of much concern; pre-

dicting, anticipating and avoiding them is key for improving

patient safety and treatment outcome. DDIs occur when one

drug influences the activity of another. According to a recent

study, DDIs are responsible for about 74,000 emergency room

visits in the USA alone each year [22]. The knowledge that two

drugs influence each other helps physicians avoid prescribing

the drugs at the same time. While discoveries concerning DDIs

are published in the biomedical literature, it is hard for human

readers to find all publications relevant to DDIs within the vast

amount of biomedical literature, making it difficult for physi-

cians to keep up with the state of knowledge. In this work,

we present a supervised learning approach to automatically

classify biomedical publication abstracts as DDI-relevant or

DDI-irrelevant, where an article is viewed as DDI-relevant if

it provides evidence of interactions between drugs. Articles

that do not discuss DDIs are referred to as DDI-irrelevant.

Notably, some DDI-irrelevant articles do not discuss drugs

at all (we refer to those as drug-irrelevant), while others

may still discuss properties of a single drug or interactions

between drugs and various chemicals or genes. Although

these articles are drug-relevant, they do not discuss drug-drug
interactions, and as such are DDI-irrelevant. Our work forms

a step toward methodically maintaining and curating public

information about DDIs.

Several lines of earlier work started addressing classification

of articles by relevance to DDIs. Duda et al. [6] applied

text classification methods to a corpus of which 200 PubMed

abstracts were DDI-relevant and 1,800 were drug-irrelevant.
This corpus does not include among the irrelevant abstracts

any that are still relevant to interactions between drug and

other chemicals such as gene or protein. The classification task

is thus over-simplified since examples from the DDI-relevant
(minority) class can be easily distinguished from the drug-
irrelevant (majority) class by keywords such as drug names.

Kolchinsky et al. [10,11] compared several text classification

methods on another corpus of which 602 PubMed abstracts

were DDI-relevant and 611 PubMed abstracts that focus on

topics such as single drug report, drug-nutrient, drug-gene,

and drug-protein interactions. This corpus, while containing

drug-relevant abstracts in its negative set, does not reflect the

inherent imbalance in publication distribution, where there are

many more DDI-irrelevant abstracts than DDI-relevant ones.

Other work [9,24,25,26,27] focused on identifying interacting

drugs within text sentences, rather than on identifying articles

that are relevant to DDI.

None of the above work focused on separating DDI-relevant
abstracts from both other drug-relevant abstracts and drug-
irrelevant abstracts. Moreover, as we have noted, the total

number of DDI-irrelevant abstracts (both drug-irrelevant and

drug-relevant) abstracts is much larger than the number of

DDI-relevant ones. Without handling the imbalance, automatic

classifiers are trained on a dataset most examples of which are

from the majority class, which leads to low recall. Such class

imbalance is characteristic of many real world problems, such

as fraud detection, anomaly detection, and medical diagnosis.

It has thus been studied for more than two decades [3,4,28,
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30,8,13,15,14,16]. Classification algorithms that address class

imbalance typically employ one of the following methods:

sampling, ensemble, cost sensitive learning, and one class
learning. Here we focus on two widely used types of methods:

sampling and ensemble methods [3,4,30,8,13].

Sampling typically aims to adjust the data distribution so as

to obtain a balanced training set. It is based either on over-
sampling from the minority class thus increasing its repre-

sentation in the training set, or under-sampling by selecting

a subset of instances from the majority class, preventing the

latter from overwhelming the dataset. While both are simple

to implement and useful in reducing the level of imbalance,

they suffer several shortcomings: under-sampling uses only a

small portion of the data, while ignoring much of the majority

(irrelevant) data; over-sampling does use all the training data,

but utilizes multiple copies of instances from the under-

represented class, which can lead to over-fitting [5].

In addition to sampling methods, ensemble classifiers are

often utilized to further improve classification performance.

Ensemble methods are based on the idea of iteratively training

multiple weak-classifiers. To classify an instance, the multiple

weak-classifiers are applied to the instance and the output from

all classifiers is combined to obtain a classification decision.

The combination is typically based on stacking, weighted
voting, or other voting methods. In the context of methods

addressing class imbalance, weak-classifiers are often trained

on balanced subsets of training examples. The weak-classifiers

are sometimes also referred to as base-classifiers [3], which

is the term we use throughout this paper. EasyEnsemble and

BalanceCascade are two examples of ensemble methods that

have shown to outperform many other methods addressing

class imbalance [13].

Meta learning [3] is a specific way of combining classifi-

cation decisions from multiple classifiers. Under this scheme,

the majority class is split into multiple subsets, each of which

is of similar size to the minority class. One base-classifier is

trained per subset, separating it from all instances associated

with the minority class. Each base-classifier is then applied to

all the data instances. Following this classification step, each

data instance is re-represented as a vector of the class labels

assigned to it by the base classifiers.. The new representation

is used as input for the meta classifier, which is trained on the

set of the minority class and one subset of the majority class.

To label an instance, the base-classifiers are first applied to the

instance. The meta classifier then labels the instance using the

class labels assigned by the base-classifiers [3].

While the above methods correctly identify DDI-relevant
PubMed abstracts, they often misclassify drug-relevant ab-

stracts as DDI-relevant, which leads to low precision. To

improve classification performance within corpora that are

likely to include drug-relevant abstracts, we develop a two-
stage cascade classifier for identifying DDI-relevant abstracts.

In the first stage, we classify abstracts into two groups, drug-
irrelevant and drug-relevant. Drug-irrelevant abstracts are

never DDI-relevant, while drug-relevant ones may or may

not be DDI-relevant. In the second stage, we thus distinguish

between DDI-relevant and DDI-irrelevant abstracts. Each step

within the two-stage cascade involves a base-classifier. The

classifier labels an article as DDI-relevant if and only if

the first base-classifier labels the article as potential DDI-
relevant and the second, downstream classifier labels it as

DDI-relevant. We train and test our method on a corpus

that includes both drug-relevant and drug-irrelevant abstracts

as part of the DDI-irrelevant subset. Our corpus consists of

11,499 PubMed abstracts as described in the next section.

The rest of the paper is organized as follows: Section II

describes the dataset and methods. Section III presents exper-

iments and results using the two-stage cascade as compared to

others. Section IV discusses the advantage of using the cascade

method for our task, and Section V summarizes the findings

and outlines future directions.

II. DATA AND METHODS

Building a text classifier requires a set of documents for

training and testing, where documents are typically represented

as feature vectors. When the class distribution in the training

set is skewed, the imbalance needs to be addressed. In this

section, we discuss each of the above.

A. Dataset

The DDI corpus that we use throughout our experiments

was created by the Center for Computational Biology and

Bioinformatics at Indiana University and Purdue Univer-

sity Indianapolis (IUPUI). The corpus consists of 900 DDI-
relevant, 600 drug-relevant but DDI-irrelevant, and 9,999

drug-irrelevant publication abstracts obtained from PubMed

[18]. To retrieve DDI-relevant and drug-relevant abstracts, we

first search PubMed using the query “drug” and “interaction”.

Next, we either label an abstract or eliminate it from the

dataset if it is not related to drug interactions. Each abstract

in the corpus was annotated with a label indicating whether

the abstract is DDI-relevant or not. The label assignment

was accomplished by four members with M.S. degree from

the Center for Computational Biology and Bioinformatics at

IUPUI. Each abstract was reviewed by at least two annotators.

The inter-annotator conflicts were resolved by a senior mem-

ber with extensive pharmacological training. Drug-irrelevant
abstracts were selected from PubMed at random.

The set of DDI-irrelevant abstracts consists of three main

groups. One includes discussion of drug-nutrition interactions

or on a single drug. A second consists of documents discussing

drug-protein or drug-gene interactions; as such, abstracts in

this group may contain keywords such as interaction, or drug.

The third group consists of abstracts randomly selected from

all of PubMed. While this last group may contain some drug-
relevant abstracts, the number of drug-relevant articles is so

small compared to the tens of millions of abstracts within

PubMed, that most of abstracts in the last group do not focus

on evidence of drug interactions. This random set includes

PubMed abstracts that come from both inside and outside

of the query results. The random abstracts focus on topics

other than evidence of DDIs. The whole annotated dataset thus
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contains 900 DDI-relevant abstracts, 300 abstracts concerning

single drug or drug-nutrient interactions, 300 abstracts about

drug-gene and drug-protein interactions, and 9,999 randomly

selected abstracts discussing other topics. There are 10 times

more DDI-irrelevant abstracts in the dataset than DDI-relevant
ones. For simplicity, throughout the paper we refer to the set

of DDI-relevant articles as the positive set, and to the set of

DDI-irrelevant as the negative set. Throughout the rest of this

section, we describe methods for feature extraction and text

classification.

B. Document Representation and Feature Selection

To represent documents within the corpus as feature-vectors

we first identify named-entities related to DDI such as drug

names, cytochrome P450 (CYP) enzymes or types of phar-

macokinetics (PK) parameter in each abstract. Such named-

entities are identified by a simple pattern-matching against a

dictionary of DDI-related terms. The dictionary was assembled

based on the resources shown in Table I. Each named-entity

within the text that is successfully matched against a dictionary

entry is replaced by a generic special string denoting a drug,

a CYP enzyme, a type of PK parameter, or an adverse drug

event. We then remove stop words [19] in PubMed abstracts.

We also remove standard suffices in abstracts using Porter

stemmer [23].

To construct feature vectors from pre-processed abstracts,

we identify a set of terms consisting of individual words

(unigrams) and pairs of consecutive words (bigrams) that help

distinguish articles in the positive set from those in the negative

set. A term is distinguishing if its probability to appear

in abstracts in the positive set is statistically-significantly

different from its probability to appear in abstracts in the

negative set. Previous work [2] demonstrated effectiveness of

using such distinguishing terms selected based on Z-scores for

classification purposes. Thus, we calculate the Z-score for each

unique term in the pre-processed abstracts and select those

whose Z-scores are higher than a threshold. The higher the

Z-score of a term, the more likely it is to distinguish between

abstracts associated with each of the classes. Each abstract is

represented as a vector 〈w1, w2 · · · wV 〉 of 0/1 feature values,

where each wi is 1 if the ith distinguishing term occurs in

the abstract and 0 otherwise, and V is the total number of

distinguishing terms.

TABLE I: Resources used for building the entity dictionary. The left
column shows types of entity. The right column shows resources.

Entity Type Resource
Adverse Drug Event Medical Dictionary for Regulatory Activities

Gene Ontology
CYP HUGO Gene Nomenclature Committees

Human Cytochrome P450 Allele Nomenclature
Drug DrugBank
PK Parameter Published Paper on PK Ontology [29]

C. Document Classification

The classification task involves assigning each abstract as

DDI-relevant or DDI-irrelevant given features constructed

based on the presence/absence of class-distinguishing terms

in the article abstract. To address this task, we develop a

framework that we refer to as Two Stage Cascade. It consists

of two base-classifiers, each of which is trained to differ-

entiate positive abstracts from a different type of negative

abstracts, namely drug-irrelevant and drug-relevant (but not

DDI-relevant). The first one is used for distinguishing between

the DDI-relevant abstracts and drug-irrelevant abstracts. We

use all DDI-relevant training examples and an equally-sized

set of drug-irrelevant training examples randomly sampled

from all drug-irrelevant abstracts to train the first base-

classifier. The second one aims to separate the DDI-relevant
examples from other drug-relevant examples. We use all of

the DDI-relevant and drug-relevant training examples to train

the second base-classifier. Features are selected separately for

each of the classification phases. The training process is shown

in Figure 1.

Fig. 1: Two-stage cascade learning process. Two base-classifiers
are trained. Base-classifier 1 (bottom left) is trained to distinguish
between DDI-relevant abstracts and drug-irrelevant abstracts. Base-
classifier 2 (bottom right) is trained to distinguish between DDI-
relevant abstracts and other drug-relevant ones.

In the decision process, we first transform the abstract

into a feature vector as described in part B above. The

two base-classifiers are then applied to the feature vector.

The abstract is labeled as DDI-relevant if and only if both

base-classifiers label it as DDI-relevant. We use Maximum

Entropy, Naı̈ve Bayes classifier, and Support Vector Machines

as base-classifiers since they all have been popularly applied

in previous text classification studies [10,6,20,7,17,1]. The

decision process is shown in Figure 2.

III. EXPERIMENTAL SETTING AND RESULTS

We employ commonly used 5-fold cross validation on the

DDI corpus to compare our two-stage cascade method to

random under-sampling, meta learning, EasyEnsemble and

BalanceCascade. We use Maximum Entropy classifier as the

baseline. It is trained on the whole imbalanced dataset. Max-

imum Entropy is used since it performs better than the other

two methods, Naı̈ve Bayes classifier and SVM, as a baseline.

In addition to the comparison against other methods, we

demonstrate the advantage of two-stage cascade by presenting

a per-category (drug-relevant and drug-irrelevant ) break-up of
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Fig. 2: Two-stage cascade decision process. First, PubMed abstracts
are transformed into weight vectors.The abstracts are next labeled as
drug-relevant or not by base-classifier 1. An abstract labeled as drug-
irrelevant by base-classifier 1 is always DDI-irrelevant. The abstracts
labled as drug-relevant by base-classifier 1 are then labeled as DDI-
relevant or DDI-irrelevant by base-classifier 2.

the results. We also report experiments explaining the benefit

of combining the base-classifiers via conjunction, and the

benefit of sampling drug-relevant and drug-irrelevant abstracts

separately in two-stage cascade.

We ran 5 complete rounds of 5-fold cross validation where

each complete run used a different 5-way split (25 tests in

total). We implemented the methods described above using

Python and two libraries Scikit-learn [21] and Imbalanced-
learn [12]. Since accuracy is inherently high when classifying

an imbalanced dataset (as classification into the majority

class is usually correct), we report performance in terms of

precision, recall, and F1-measure.

precsion =
TP

TP + FP
; recall =

TP

TP + FN
(1)

F1 measure =
2 · precision · recall
precision + recall

(2)

Table II shows these performance measures obtained by

two-stage cascade compared with those obtained by the

baseline method, random under-sampling, meta learning,

EasyEnsemble and BalanceCascade, using the same set of

training and test abstracts. The table shows that two-stage

cascade achieves statistically-significantly higher precision (p

� 0.01 in t-test) and F1 measure (p � 0.01) while maintaining

similar recall (p � 0.13) compared to the other classification

methods (except for the baseline method, which has the highest

precision, p � 0.01). The baseline performance, as compared

to the others, has the lowest recall due to its bias towards the

majority class.

We examined the number of drug-relevant and drug-
irrelevant abstracts that are correctly identified by each

approach. We present both number and accuracy of cor-

rectly classified documents. Table III shows average number

and accuracy of correctly classified drug-relevant (but DDI-
irrelevant) and drug-irrelevant abstracts by two-stage cascade,

compared with results obtained by the other methods address-

ing class imbalance, using the same set of training and test

data. Two-stage cascade shows statistically-significantly (p-

value � 0.01) improved accuracy of classifying drug-relevant
abstracts compared to the others.

Two-stage cascade not only achieves higher precision, but

also maintains the same level of recall as the others. This is

because both base-classifiers correctly identify at least 95%

of DDI-relevant abstracts. Table IV shows average number of

correctly classified DDI-relevant, drug-relevant (negative), and

drug-irrelevant abstracts as identified by the base-classifiers in

two-stage cascade. Both base classifiers correctly identify over

95% of DDI-relevant articles.

In two-stage cascade approach, more drug-relevant but

DDI-irrelevant abstracts are included in training data. Recall

that in the second stage, the negative subset of training

data consists of only drug-relevant abstracts. In contrast,

drug-relevant abstracts are always under-represented in train-

ing dataset used by random under-sampling, meta learning,

and EasyEnsemble approaches. While more drug-relevant
abstracts are used to train the classification model in Bal-

anceCascade approach than in other approaches, the number

of drug-relevant abstracts is still smaller compared to drug-
irrelevant abstracts. Figure 3 shows the average number of

drug-irrelevant and drug-relevant abstracts sampled for each

base classifier in BalanceCascade. As can be seen from the

figure, although the number of drug-relevant examples in-

creases progressively, the number of drug-irrelevant examples

is always larger.

IV. DISCUSSION

Our results demonstrate that two-stage cascade achieves

higher precision and F1 measure, as well as similar recall com-

pared to random under-sampling, meta learning, EasyEnsem-

ble and BalanceCascade for distinguishing DDI-relevant ab-

stracts from DDI-irrelevant abstracts.

Notably, our model also outperforms other methods in

separating DDI-relevant abstracts from drug-relevant ab-

stracts. As discussed earlier, the dataset used to train the

TABLE II: A comparison of classification performance, in terms of Average precision, recall and F1-measure, between the baseline method,
random under-sampling, meta learning, EasyEnsemble, BalanceCascade and two-stage cascade. Standard deviations are shown in parentheses.
The highest values are shown in boldface.

Metric Baseline Method Under-sampling Meta Learning EasyEnsemble BalanceCascade 2stage cascade
Precision .842 (.001) .740 (.016) .798 (.014) .780 (.013) .779 (.014) .825 (.021)

Recall .780 (.001) .983 (.009) .952 (.022) .954 (.018) .948 (.016) .948 (.012)
F1 Measure .810 (.001) .844 (.011) .868 (.011) .858 (.010) .855 (.011) .882 (.014)
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TABLE III: Accuracy and number of abstracts correctly classified by
different methods, averaged from 5 rounds of 5-fold cross validation.
For each of the categories, the left column shows average number of
correctly labelled documents, while the right column shows accuracy.
Each row shows the number of abstracts or accuracy of a method.
Standard deviations were shown in parentheses. The largest values
are shown in boldface.

Method Drug-relevant Drug-irrelevant
# of
Correctly
Classified
Abstracts

Accuracy

# of
Correctly
Classified
Abstracts

Accuracy

Rand. Under
-sampling

60.0(5.7) .500 (.048) 1996.6 (1.8) .998 (.001)

Meta
Learning

76.4(4.2) .637 (.035) 1999.0 (0.0) 1.0 (.000)

Easy
Ensemble

72.2(3.8) .602 (.032) 1998.4 (0.8) .999 (.000)

Balance
Cascade

72.0(4.1) .600 (.034) 1998.4 (0.6) .999 (.000)

Two-Stage
Cascade

84.0(5.0) .700 (.042) 1998.6 (0.6) .999 (.000)

TABLE IV: Average number of correctly classified abstracts attained
by each of the base-classifiers within two-stage cascade. The total
number of abstracts per category is shown in the column header. Each
column shows the number of abstracts correctly classified within the
respective category, averaged over 5 rounds of 5-fold cross validation.
The first two rows correspond to base-classifier 1 and 2. The third
row corresponds to their conjunction. Standard deviations are shown
in parentheses.

Base-Classifier #
# of Correctly Classified Abstracts

DDI-relevant Drug-relevant Drug-irrelevant
(180) (120) (1,999)

1 179.5 (0.6) 17.8 (3.9) 1998.5 (0.6)
2 171.0 (2.1) 83.3 (5.0) 1796.5 (25.4)

1 ∧ 2 170.6 (2.1) 84.0 (5.0) 1998.6 (0.6)

random under-sampling, meta learning, EasyEnsemble and

Balance-Cascade methods comprised drug-relevant and drug-
irrelevant abstracts. Recall that drug-relevant abstracts are

under-represented in the negative (DDI-irrelevant) dataset,

leading to under-representation of the drug-relevant abstracts

in a set that is obtained by random sampling of the negative

dataset. These random samples are used for training the base-

classifiers of the aforementioned methods. Due to this under-

representation of the drug-relevant abstracts in the training

set, these methods misclassify about 40% of the drug-relevant

abstracts, as shown in Table III. In contrast, our method cor-

rectly identifies 70% drug-relevant abstracts, since we choose

training data selectively instead of randomly. The training set

used in the second stage of the two-stage cascade method

consists of DDI-relevant and drug-relevant abstracts (a subset

of DDI-irrelevant abstracts) while the dataset used to train the

classifier in the first stage does not contain any drug-relevant
abstracts.

The training set used in the second stage does not include

drug-irrelevant abstracts. Consequently, the second base-

classifier correctly identifies only 1,796.5 out of 1,999 drug-

Fig. 3: Average number of drug-irrelevant abstracts (solid) and
drug-relevant ones (striped) sampled to train BalanceCascade. The
X-axis indicates the step in which step the training set is sampled.
The Y-axis shows the number of abstracts sampled. Drug-relevant
abstracts (striped) are under-represented compared to drug-irrelevant
ones (solid).

irrelevant abstracts. In other words, 202.5 drug-irrelevant
abstracts are mis-classified as positive (DDI-relevant) by the

second base-classifier. However, an abstract in the test set

is predicted as positive (DDI-relevant) if and only if it is

identified as positive by both base-classifiers. Since the first

base-classifier correctly identifies 1,998.5 out of 1,999 drug-
irrelevant abstracts, the drug-irrelevant abstracts mis-classified

in the second stage are still correctly labeled as DDI-irrelevant
in the final decision of two-stage Cascade.

V. CONCLUSION

We have presented a supervised learning approach to iden-

tify articles relevant to DDIs. We developed a two-stage

cascade classifier to handle class imbalance issue. Three

performance measures were: precision 0.83, recall 0.95, and

F1 measure 0.88. For comparison, we also applied random

under-sampling, meta learning, EasyEnsemble and Balance-

Cascade. Our experiments demonstrate that two-stage cascade

achieves higher precision and F1 measure while maintaining

similar recall compared to that obtained by other classifiers.

As there are many more drug-irrelevant articles than drug-
relevant ones, a classifier trained on DDI-relevant abstracts

and disproportionally many drug-irrelevant abstracts tends to

mistakenly label any drug-relevant abstract as DDI-relevant.
We show that DDI text classification is improved by training

classifiers for distinguishing DDI-relevant from other drug-
relevant abstracts and from drug-irrelevant abstracts sepa-

rately. The classifier for identifying DDI-relelvant from other

drug-relevant abstracts incorrectly labels some drug-irrelevant
abstracts as DDI-relevant. However, these mis-classified drug-
irrelevant abstracts are still correctly labeled as DDI-irrelevant
in the final decision of two-stage cascade because of the other

classifier.

While two-stage cascade indeed improves the classification

performance on the current DDI corpus, there is still room

for further improvement. Two-stage cascade method relies on

pre-set class labels, drug-relevant and drug-irrelevant which



1146

comprise the majority class. The pre-set labels are not always

available in other DDI corpora. Another future direction is to

explore whether we can split the majority class by unsuper-

vised learning while maintaining similar performance.

ACKNOWLEDGEMENTS

This work was partially supported by NIH grants

R56LM011354A and R01LM011945-01, and NSF IIS EA-

GER grant #1650851.

REFERENCES

[1] Berger, A. L., Pietra, V. J. D., and Pietra, S. A. D.

(1996). A maximum entropy approach to natural language

processing. Computational Linguistics, 22(1):39–71.

[2] Brady, S. and Shatkay, H. (2008). Epiloc: a (working) text-

based system for predicting protein subcellular location.

Proc. of the Pacific Symposium on Biocomputing, 13:604–

615.

[3] Chan, P. K. and Stolfo, S. J. (1998). Toward scalable

learning with non-uniform class and cost distributions: A

case study in credit card fraud detection. Proc. of the
Knowledge Discovery and Data Mining, 98:164–168.

[4] Chawla, N. V., Bowyer, K. W., Hall, L. O., and

Kegelmeyer, W. P. (2002). SMOTE: synthetic minority

over-sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.

[5] Drummond, C., Holte, R. C., et al. (2003). C4. 5, class

imbalance, and cost sensitivity: why under-sampling beats

over-sampling. Workshop on Learning from Imbalanced
Datasets II, 11.

[6] Duda, S., Aliferis, C., Miller, R., Statnikov, A., and John-

son, K. (2005). Extracting drug-drug interaction articles

from medline to improve the content of drug databases.

AMIA Annual Symposium Proceedings, 2005:216.

[7] Dumais, S., Platt, J., Heckerman, D., and Sahami, M.

(1998). Inductive learning algorithms and representations

for text categorization. Proc. of the Seventh International
Conference on Information and Knowledge Management,
pages 148–155.

[8] He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn:

Adaptive synthetic sampling approach for imbalanced

learning. In Neural Networks, 2008. IJCNN 2008.(IEEE
World Congress on Computational Intelligence). IEEE In-
ternational Joint Conference on, pages 1322–1328. IEEE.

[9] Huang, J., Niu, C., Green, C. D., Yang, L., Mei, H.,

and Han, J. J. (2013). Systematic prediction of pharma-

codynamic drug-drug interactions through protein-protein-

interaction network. PLoS Comput Biol, 9(3):e1002998.

[10] Kolchinsky, A., Lourenço, A., Li, L., and Rocha, L. M.

(2012). Evaluation of linear classifiers on articles con-

taining pharmacokinetic evidence of drug-drug interactions.

arXiv preprint arXiv:1210.0734.

[11] Kolchinsky, A., Lourenço, A., Wu, H., Li, L., and Rocha,

L. M. (2015). Extraction of pharmacokinetic evidence

of drug–drug interactions from the literature. PloS one,

10(5):e0122199.

[12] Lemaı̂tre, G., Nogueira, F., and Aridas, C. K. (2016).

Imbalanced-learn: A python toolbox to tackle the curse

of imbalanced datasets in machine learning. CoRR,

abs/1609.06570.

[13] Liu, X., Wu, J., and Zhou, Z. (2009). Exploratory under-

sampling for class-imbalance learning. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics),
39(2):539–550.

[14] Longadge, R. and Dongre, S. (2013). Class imbalance

problem in data mining review. International Journal of
Computer Science and Network, 2(1).
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