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Abstract. Many of the figures in biomedical publications are compound
figures consisting of multiple panels. Segmenting such figures into con-
stituent panels is an essential first step for harvesting the visual in-
formation within the biomedical documents. Current figure separation
methods are based primarily on gap-detection and suffer from over- and
under-segmentation. In this paper, we propose a new compound figure
segmentation scheme based on Connected Component Analysis. To over-
come shortcomings typically manifested by existing methods, we develop
a quality assessment step for evaluating and modifying segmentations.
Two methods are proposed to re-segment the images if the initial seg-
mentations are inaccurate. Experiments and results comparing the per-
formance of our method to that of other top methods demonstrate the
effectiveness of our approach.
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1 Introduction

A fundamental task in biomedical informatics is to make information within doc-
uments available to researchers. Images convey essential information in biomed-
ical publications. A few recent efforts started exploring the use of image in-
formation within biomedical documents [1,2]. However, many of figures within
biomedical documents are compound images consisting of multiple panels, where
each panel potentially carries a different type of information. To obtain the in-
formation embedded within each part of the image, it is essential to first segment
each compound image into its constituent panels.

Current compound image segmentation methods are primarily based on find-
ing gaps between panels [2–7]. The gaps, which are solid (typically white or
black) bands in compound images, are commonly detected and used as panel
separators. However, due to inconsistency in image quality gaps can be hard
to detect, which leads to under-segmentation, that is, parts of the image may
not be correctly segmented into individual panels. To overcome this issue, the
image can be transformed, for instance via edge-detection [5,7], so that gaps are



more readily detected. Notably, some white/black bands occurring in images are
not necessarily panel separators. Still, gap-based segmentation methods tend to
interpret all solid bands as gaps, and as a result, erroneously split images into
too many panels, to which we refer as over-segmentation. To address under-
and over-segmentation, captions and image labels have been used to estimate
the number of panels in compound images and to identify true gaps of separa-
tion [2,4,5]. However, such methods are not always effective, and may not even be
applicable, when captions and labels are not available. Additionally, extracting
labels from images requires optical character recognition – a time consuming op-
eration. An alternative approach [6], applies several rules, eliminating gaps that
are not panel separators aiming to avoid over-segmentation. While this method
does not require processing image captions or labels, it is still time consuming.
Furthermore, its separation accuracy leaves much room for improvement.

Unlike the above methods that segment images through gap detection, Shatkay
et al. [1] proposed a method based on first identifying connected contents within
individual panels. They used Connected Components Analysis (CCA) to detect
individual panels in images. Lopez et al. [9] and Kim et al. [8] also used the
same method for panel separation. Similar to the gap-based approach discussed
earlier, CCA can also suffer from over-segmentation; unconnected small objects
may be detected as individual panels and segmented off the main image-panel.
Aiming to address a different task, namely the identification of multi-paneled
images, Wang et al. [10] used a post-processing step by setting a threshold on
panel-size to avoid fragmentation into very small panels. However, their work
was not applied to the image-segmentation task, but rather aimed only to iden-
tify whether an image is compound or not. Notably, none of the above methods
can segment stitched compound images whose panels are not separated by visible
gaps. Santosh et al. [11] first proposed a method to separate stitched compound
images based on straight lines detected in the images. Their method is applicable
only to stitched compound images and as such relies on a manual selection step
in which such images are identified within the dataset.

In this paper, we present a new CCA-based scheme for separating compound
figures, including stitched compound images. To do this, we first introduce a
preprocessing step to broaden and un-blur gaps in images. We then present
the CCA method for segmenting images into panels. To avoid over- and under-
segmentation, we extend our method by adding an assessment step to detect,
evaluate and modify segmentation errors, and re-separate some of the images
accordingly. The rest of the paper is organized as follows: Section 2 describes
the complete framework of our method; in Section 3 we discuss experiments
used to assess performance and present related results; Section 4 concludes and
outlines directions for future work.

2 Methods

Our goal is to segment compound images appearing in biomedical documents.
As noted above, compound images consist of several panels, typically separated



by gaps, which appear as vertical or horizontal light/dark bands; such gaps may
be blurry or too thin to recognize. We first preprocess compound images by
resizing, adjusting, and cropping them to make the gaps in the images clearer
and broader. We then apply Connected Component Analysis (CCA) to segment
compound images into individual panels. This approach eliminates small objects
and keeps only the main components as individual panels. We assess separation
quality of the extracted panels, and modify them if the image segmentation
quality appears to be low.

We note that CCA may not correctly segment panels whose contents are not
well-connected, highly blurred images, and stitched compound images. We thus
introduce specific methods for handling blurry and fragmented images as well as
stitched images. We assess the segmentation quality of the panels obtained, and
modify the segmentation if needed. The complete framework is shown in Fig. 1.
The rest of this section introduces these methods.

Image Preprocessing. Gaps in compound images typically separate panels
into distinct individual components. However, some panels may be positioned
too close to one another, or a thin gap may be noisy or blurred, making separation
hard. To address this issue we apply the bicubic interpolation [12] to the image I,
of size m×n; this scales up the image (2m×2n) and enhances contrast between
image regions and gaps. The gaps in the scaled image, Iresized, thus become
broader and clearer.

Notably, the separating gaps are not always white or black, that is, the inten-
sity of pixels in gaps can be non-binary. To improve gap clarity and detectability
we adjust the intensity of images by mapping pixel intensities whose values are
in the interval [Tlow, Thigh] to the entire intensity interval [0, 1] using linear map-
ping. This mapping enhances contrast within the image so that gaps, which are
the lightest or the darkest bands in compound images, become clearer. In the
experiments described here, we set Tlow to 0.05 and Thigh to 0.95.

Figure 1: Our framework for compound image segmentation.



We also note that it is hard to distinguish between the external boundary of
the image as a whole and the boundaries of individual panels. To disambiguate
image-boundaries, we crop the image borders by removing rows and columns of
pixels whose maximum gradient value is 0. We denote the image obtained by
applying all these preprocessing steps by Iprocessed.

Connected Component Analysis (CCA). To segment a preprocessed im-
age, we first detect connected components within it. We assume that gaps among
image-panels are white (which can be reversed later by inverting pixel values).
To identify gaps among panels, a binary mask M is generated as:

M(x,y) =

{
1 if Iprocessed(x, y) ≤ t ;

0 if Iprocessed(x, y) > t ,
(1)

where Iprocessed(x, y) denotes the pixel at row x and column y in the preprocessed
image Iprocessed. By setting the threshold t, each pixel Iprocessed(x, y) in the
preprocessed image is labeled as background M(x, y) = 0 if Iprocessed(x, y)>t
and as foreground M(x, y)=1 otherwise. In our experiments the threshold t is
set to 0.95. Based on the mask M we detect connected components by applying
the Connected Component Labeling method [13]. This method works by scanning
the mask M and assigning labels to pixels. Adjacent pixels sharing the same pixel
intensity are assigned the same label. A connected component is a set of pixels
that have the same label value. In this paper we set the connectivity to 4, which
means we count pixels above and below the central pixel, as well as those to the
left and right of the central pixel as the adjacent pixels.

Using CCA may give rise to many small connected components due to small
and unconnected objects in the image, such as text. A panel bounding box
is set around the smallest rectangle that contains all pixels in each connected
component. To initially eliminate connected components covered by bounding
boxes of very small box-height or box-width, we thus set two thresholds: theight =
height/20, twidth =width/20, where width and height are the total figure width
and height. The relatively large bounding boxes, which typically correspond to
the main components of the image, are kept and viewed as the main segmented
panels within the compound image.

Fig. 2 illustrates the way our CCA method proceeds. Fig. 2 (a) is a prepro-
cessed image Iprocessed. Fig. 2 (b) is the binary mask generated according to
Eq. 1. By using the Connected Component Labeling method, we obtain con-
nected components, indicated as bounding boxes and shown as textured rectan-
gles in Fig. 2 (c). We then extract only the main components that are covered by
large bounding boxes as the output of the CCA method, as shown in Fig. 2 (d).

Segmentation quality assessment. After the segmentation method is ap-
plied, some pieces of the original image may not be covered by the segmented
panels, or the original image may be over-segmented. A quality assessment step
is thus added here to assess and adapt segmentation results in order to address



(a) (b) (c) (d)

Figure 2: Steps in Connected Components Analysis. The original image is
Figure 2, in Publication PMID: 21040544. (a) The preprocessed image. (b) The
binary mask generated according to Eq. 1. (c) The Connected Component La-
beling result. (d) The segmented image resulting from CCA.

these shortcomings. We assess segmentation quality by employing the five steps
described below. Steps 1-3 are used to evaluate and modify individual panels
obtained by the segmentation methods discussed here, while steps 4 and 5 are
used to assess and adapt the overall segmentation result.

1. Merge overlapping panels: Components within a panel may be erroneously
detected by CCA as individual panels. As the largest connected component
within a panel is typically indicative of the panel’s boundary, the bounding
boxes of smaller components within the same panel will typically overlap with
the bounding box of the largest component. For example, the bounding box of
legends may overlap the bounding box of corresponding line graph. We thus
compute the ratio between the intersection area and the area of the minimum
intersecting bounding box, and merge two bounding boxes when their overlap
ratio exceeds 0.1.

2. Temporarily eliminate small components: Similar to the elimination step
in CCA, we eliminate bounding boxes that are small (less than 1/5 in height or
width) compared to the largest bounding box, thus reducing noise.

3. Recover missing panels: Due to blurred or disconnected contents in com-
pound figures, some panels may be omitted in the initial segmentation process.
We thus introduce a recovery step, in which missing panels are detected and
recovered. We assume that the missing panel is similar in size and symmetric in
position to present panels. We thus check for each panel whether there is enough
space for another bounding box to its left, right, as well as above or below it.
The space available for a bounding box next to a present panel indicates the
position of a candidate panel. The candidate panels are expected to have similar
content area, calculated as the number of non-white pixels within it, as that of
the present panel and the same intensity values of all boundary pixels.

4. Check segmentation area: To detect incorrect segmentation, we compute
the ratio between the sum of the areas of segmented panels and the area of
the original image. If this ratio is below 0.5, we consider the segmentation to



be incorrect. Incorrect segmentations are discarded leaving the image contents
unsegmented.

5. Recover small components: During the elimination of small bounding
boxes, some essential parts, such as the text and legend may also be erroneously
eliminated. To re-adopt these small components into the panels, we merge elim-
inated small bounding boxes into their nearest bounding box. To avoid merging
bounding boxes that are not part of the same panel during the recovery process,
we employ several rules:

– If merging changes both height and width of a qualified bounding box - do
not merge.

– If merging changes more than 20% of the height or the width of a qualified
bounding box - do not merge.

– If the change of height or width for a qualified bounding box is more than
20% through the small components recovery step, this qualified bounding
box keeps its original size.

– An eliminated small bounding box is merged at most once.

Handling Blurry and Fragmented images. Through the steps above, sev-
eral cases may not correctly be segmented, namely: very blurry images, frag-
mented images that have components with very low internal connectivity, and
stitched images. Notably, stitched compound images are different from the other
two kinds, which consist of panels that are separated by gaps. To segment these
images, we employ a classifier to distinguish stitched images from the other two
kinds of images. We define a gap as a row or a column whose minimum gray
value is above 0.95. If a gap is found in a compound image, the image is classified
as a compound image with gaps; otherwise, it is labeled as stitched.

To handle blurry images and fragmented images, we apply an edge detector,
which sharpens blurry components in the Iprocessed. The corresponding edge
image, denoted Iedge, may still have poor connectivity. To enhance connectivity
of components in Iedge, we dilate the connected regions within the edge image
using the minimum gap-width in the image as the dilation factor. After dilation,
the connectivity within the dilated edge image is increased. We then apply the
CCA method on the dilated edge image again to obtain the segmentation.

Fig. 3 illustrates the handling of blurry and fragmented images. Fig. 3 (a) is
a blurry compound image containing many small pieces. By applying an edge
detector, we unblur the blurry components, as shown in Fig. 3 (b). We then find
the gaps in the edge image along the horizontal and the vertical directions and
use the width of the thinest gap as the dilation factor. Fig. 3 (c) is the dilated
edge image, while Fig. 3 (d) shows the segmentation result obtained by using
CCA on the dilated edge image. Three panels are detected and highlighted by
bounding boxes in Fig. 3 (d). The augmented method thus correctly handles this
blurry and fragmented image and identifies the segments within it.
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Figure 3: Example in which we handle blurry and fragmented images. (a) The
compound figure is Figure 2, in Publication PMID: 20649995. (b) The edge image
of the figure shown in (a). (c) The dilated edge image. (d) The result of CCA
applied to dilated image.

Handling Stitched Images. Stitched compound images do not contain any
gap between panels, and as such, cannot be directly segmented by the CCA
method. Identifying panel boundaries in such images is thus the main challenge.

Edge detection is applied to identify pixels whose neighbors’ intensity sharply
changes. Using edge detection, we can create an edge image that clearly shows
the boundaries between panels. The edge detector is applied to the preprocessed
image to generate a binary edge image in which the boundaries between panels
are intensified (see e.g. Fig. 4 (b)). The objective thus becomes that of detecting
boundaries in the resulting edge image Iedge. Given an edge image Iedge, if pixel
(x, y) is detected as a pixel along an edge we set Iedge(x, y) = 1. Summing
the pixel value along the horizontal and the vertical directions gives rise to two
projections: Projhorizontal and Projvertical, which are calculated as:

Projhorizontal = Iedge(x, y), y ∈ 1... 2n ;

Projvertical = Iedge(x, y), x ∈ 1... 2m .
(2)

The values 2n and 2m are the width and height of the edge image, respectively.
The panel segmentation takes place along the horizontal or the vertical line that
goes through the highest projection position. For images with complex layout,



the boundary between panels may not cross the whole image; in such cases we
recursively segment the image along one direction at a time, where the projection
peak value is at least 0.7 of the height or the width of the region currently
considered for segmentation.

Fig. 4 shows an example of the steps applied for handling stitched images.
Fig. 4 (a) is the original stitched compound image; Fig. 4 (b) shows the edge
image obtained by applying an edge detector. Panel boundaries are observed
as straight black lines in the image; Fig. 4 (c) shows the horizontal projection
plot Projhorizontal and vertical projection plot Projvertical of Fig. 4 (b). By
recursively choosing the peak position along the horizontal projection and verti-
cal projection as panel separators, we segment the image into individual panels
shown in Fig. 4 (d).

3 Experiments and Results

3.1 Experiments

To evaluate our method we conducted two sets of experiments using datasets
from the Figure Separation task in the ImageCLEF Medical tasks. In the first
experiment, we assess the separation accuracies obtained by the different steps
of our segmentation method. We use the training and test datasets of Image-
CLEF’16 [16] to train our system and test its performance.

In the second experiment, we compare the separation accuracy of our compre-
hensive method against that of state-of-the-art systems using test datasets from
ImageCLEF’13, ’15 and ’16 [14–16]. Additionally, to demonstrate the general
applicability of our method, we test our method, trained over ImageCLEF’15
dataset, on the ImageCLEF’13 test dataset. For selecting an edge-detector, we
experimented with several methods, and decided to use the SUSAN edge detec-
tor [17] as it has demonstrated the best performance in this context.

(a) (b) (c) (d)

Figure 4: Example of the steps applied for handling stitched images. (a) The
stitched compound image taken from Figure 1, Publication PMID: 16480497.
(b) The edge image of the figure shown in (a). (c) Horizontal projection (top
plot) and vertical projection (bottom plot) calculated according to Eq. 2, based
on the edge image. (d) A complete segmentation result by our method.



3.2 Datasets and evaluation

We used five imageCLEF datasets in this study, two for training (ImageCLEF’15
and ’16) and three for testing (ImageCLEF’13, ’15 and ’16). The images in the
datasets are first extracted from the biomedical publications stored in PubMed
Central and then identified as compound images through manual classification.

The ground truth tagging pertaining to the five datasets used in our experi-
ments was provided by ImageCLEF organizers. To evaluate our image separation
performance, we use the tool provided by ImageCLEF Medical [14]. This tool
computes the accuracy of the separation result for a compound image Ii as:

Accuracyi =
C

max(NG, ND)
,

where C is the number of detected panels that overlap with at least 2/3 of the
area of the ground-truth panel, NG is the true number of panels in the image,
and ND is the number of panels we detected. The overall accuracy for the dataset
as a whole is then calculated by averaging the accuracies of all separations.

3.3 Results

Table 1 shows the separation accuracies obtained in our first set of experiments
using different combination of steps within our method over the imageCLEF’16
test dataset. The dataset contains 1615 compound figures, which include 8528
individual panels. The CCA method alone achieves 73.57% accuracy, where 162
images remain unsegmented. Proceeding the CCA method by a preprocessing
step leads to an increase of 0.73% in accuracy. Table 1 also shows that 16 addi-
tional images are segmented when the preprocessing step is added. By combining
the segmentation-quality-assessment step and the CCA method, 40 fewer images
are separated compared to CCA-alone, but the separation accuracy increases by
1.7% (compared to the first row in the table). Thus, the segmentation-quality-
assessment step improves the correctness of separation result. Combining the
image preprocessing step and the segmentation-quality-assessment step with the
CCA method (Row 4 in the table), the overall accuracy reaches 74.38%, but 243
images remain unsegmented.

To reduce the number of images that remain unsegmented, we utilize addi-
tional steps, as described in Section 2. Applying the step for handling blurry
and fragmented images, the accuracy reaches 81.23% and the number of com-
pound images that remain unsegmented decreases to 85. Similarly, applying the
step for handling stitched images, the accuracy over the whole dataset reaches
84.03% and the number of compound images that remain unsegmented decreases
to 13. Combining all the steps leads to the highest accuracy of 84.03% on the
ImageCLEF’16 test dataset while only 9 figures remain unsegmented.

Fig. 5 shows several examples of successful compound figure separation re-
sults. Our method not only correctly segments figures containing a single type
of image type such as microscopy, graphs, or medical images, but also images
containing multiple types of panels.



Table 1: Segmentation accuracies obtained and numbers of images that remain
unsegmented by employing different combinations of steps within our method.

Methods used
Separation
accuracy

# of
unsegmented

images

CCA-alone 73.57% 162

Preprocessing+CCA 74.30% 146

CCA+Segmentation quality assessment 75.27% 202

Preprocessing+CCA+Segmentation quality assessment 74.38% 243

Preprocessing+CCA+Segmentation quality
assessment+Handling blurry and fragmented images

81.23% 85

Preprocessing+CCA+Segmentation quality
assessment+Handling stitched images

84.03% 13

The combination of all methods 84.43% 9

In the second set of experiments, we compare the results obtained by our
comprehensive method with those of other systems submitted to ImageCLEF’15
Medical, using the 2015 test dataset. Santosh et al.’s method [18] (based on their
previous work [2,11]) achieves an accuracy of 84.64%, while Taschwer et al. [7]
report an accuracy of 84.90%. Our method performs significantly better than all
other systems with an accuracy of 90.65%.

To demonstrate the general applicability of our method, we used parameters
obtained by training over one of the datasets (ImageCLEF’15) to segment images
provided in another dataset (ImageCLEF’13); Our result shows 84.47% accuracy.
The other three top performers reported accuracy of 68.59% [21], 69.27% [20],
and 84.64% [19]. We note that while the performance of our method is slightly
lower than that reported by de Herrera et al. [19] using method proposed by
Chhatkuli et al. [6], the average time required to process one image by our
system is 0.74 seconds (Wall-clock), which is much faster than that reported by
de Herrera et al. [19], i.e. 2.4 seconds.

For ImageCLEF2016 [16], as the only team participating in the Figure Sep-
aration task, we achieved 84.43% accuracy on the Figure Separation task test
dataset. The segmentation accuracy is similar to the best result obtained in
ImageCLEF’15. This result is particularly noteworhy, given that the difficulty
of the Figure Separation task was increased in 2016 by adding more stitched
compound images and compound images containing multiple types of panels, as
indicated in the task description [16].

4 Conclusion

We have presented a new scheme for segmenting compound figures, including
stitched compound images. We first proposed a preprocessing step to make gaps
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Figure 5: Examples of successful segmentation obtained by our method. The
original images of (a)-(f) are taken from: Publication PMID: 18282279, Fig. 6;
PMID: 20955558, Fig. 1; PMID: 19439081, Fig. 14; PMID: 16930490, Fig. 1;
PMID: 21073692, Fig. 6; PMID: 21129218, Fig. 1, respectively.

clearer so that more images are segmented. We then introduced a method based
on Connected Components Analysis to segment images into panels. Segmenta-
tion errors were addressed through a step of segmentation quality assessment.
Notably, this step evaluates separation quality, back-tracks separation errors,
and ensures that only panels that are likely to be correct are extracted from
images. Error stemming from over- and under-segmentation in very blurry im-
ages, fragmented images, and stitched images are more difficult to address. As
such, we proposed two advanced methods to directly handle blurry and frag-
mented images, and stitched images accordingly. The results demonstrate that
our comprehensive method improves upon the panel-segmentation performance
of state-of-the-art methods.

While our method achieves a high accuracy in segmenting compound images,
there are still challenging cases that are not perfectly addressed. For example,
compound images in which both panels and gaps vary in size are hard to segment
accurately. We plan to develop methods to identify such cases and address them.
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