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Abstract

Motivation: Figures and captions convey essential information in biomedical documents. As such,

there is a growing interest in mining published biomedical figures and in utilizing their respective

captions as a source of knowledge. Notably, an essential step underlying such mining is the extrac-

tion of figures and captions from publications. While several PDF parsing tools that extract informa-

tion from such documents are publicly available, they attempt to identify images by analyzing the

PDF encoding and structure and the complex graphical objects embedded within. As such, they

often incorrectly identify figures and captions in scientific publications, whose structure is often

non-trivial. The extraction of figures, captions and figure-caption pairs from biomedical publica-

tions is thus neither well-studied nor yet well-addressed.

Results: We introduce a new and effective system for figure and caption extraction, PDFigCapX.

Unlike existing methods, we first separate between text and graphical contents, and then utilize lay-

out information to effectively detect and extract figures and captions. We generate files containing

the figures and their associated captions and provide those as output to the end-user.

We test our system both over a public dataset of computer science documents previously used by

others, and over two newly collected sets of publications focusing on the biomedical domain. Our

experiments and results comparing PDFigCapX to other state-of-the-art systems show a significant

improvement in performance, and demonstrate the effectiveness and robustness of our approach.

Availability and implementation: Our system is publicly available for use at:

https://www.eecis.udel.edu/~compbio/PDFigCapX. The two new datasets are available at:

https://www.eecis.udel.edu/~compbio/PDFigCapX/Downloads

Contact: pengyuan@udel.edu or shatkay@udel.edu

1 Introduction

Figures and captions convey essential information in biomedical

documents. As such, there is a growing interest in mining figures

and captions appearing within biomedical publications (Ahmed

et al., 2016; Kuhn et al., 2014; Ma et al., 2015; Murphy et al.,

2001; Shatkay et al., 2006). For example, the Mouse Genome

Informatics at the Jackson Lab curates images extracted from the lit-

erature demonstrating mouse phenotypes or gene expression in the

mouse (Blake et al., 2011; Smith et al., 2018). Several platforms,

such as BioText, the Yale Image Finder, askHermes, Open-i and the

GXD database aim to enable users to search for relevant biomedical

figures and captions (Demner-Fushman et al., 2012; Finger et al.,

2017; Hearst et al., 2007; Xu et al., 2008; Yu et al., 2010).

However, the first step toward this goal, namely, extracting figure

and caption pairs from biomedical documents is neither well-studied

nor yet well-addressed. We thus introduce an effective new method

to extract figures and captions from biomedical publications.

Such extraction is not a simple task due to the complex and di-

verse layout of scientific publications and the variations in figure

structure, texture, and contents. As biomedical figures often com-

prise multiple image panels, identifying compound figures and their

constituent panels has itself been a topic of much research

(Chhatkuli et al., 2013; Li et al., 2018; Santosh et al., 2015). These
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lines of research assume that the figures are already extracted from

the publications, and do not focus on the extraction task.

We note that much work has been dedicated to analyze historical

scanned documents, in which each document page is viewed as an

image. Image-analysis methods, such as region classification or con-

nected component based approaches were employed for identifying

document structure (Bhowmik et al., 2018; Mehri et al., 2017;

O’Gorman, 1993; Shafait et al., 2008). However, most of the scien-

tific literature over the past two decades is stored in Portable

Document Format (PDF) and not as scanned documents. As such,

effective methods that extract images from PDF files are needed, and

are the focus of the work reported here.

Most current biomedical publications are stored in PDF, in which

figures are encoded as raster graphics (e.g. PNG, JPEG) or as vector

graphics (e.g. SVG, EPS). Quite a few generic tools are available online,

such as Apache PDFBox (https://pdfbox.apache.org), PDFMiner

(https://github.com/euske/pdfminer) and Xpdf (http://www.xpdfreader.

com), for converting a PDF document into a structured XML/HTML

format and extracting figures. However, as these tools do not distin-

guish figure captions from the rest of the text in the article, they do not

associate figures with their respective captions. Moreover, the above

tools often extract individual components within the figure, rather

than the complete figure as a whole. Figure 1 shows an example of a

vector graphic image extracted by employing Xpdf. The original figure

(Fig. 1a), which consists of numerous bars, line fragments and dots, is

broken by Xpdf into multiple small images corresponding to the indi-

vidual parts, shown in Figure 1b. Thus, these tools leave much to be

desired for extracting figures or figure-caption pairs.

Specific approaches aiming to extract biomedical figures and cap-

tions from PDF documents utilizing readily available tools have been

proposed (e.g. Choudhury et al., 2013; Lopez et al., 2011), but neither

method handles vector graphics within documents. Identifying vector

graphics that form actual figures is challenging because vector graphics

may represent graphical objects that are not figures, such as the border

line at a page’s margin or mathematical symbols within the document.

Limited methods handling such figures have been proposed before

(Choudhury et al., 2015; Shao and Futrelle, 2006) for extracting fig-

ures consisting of simple geometric components, such as curves and

rectangles (e.g. line graphs, bar charts etc.), but have not been general-

ized to more complex figures, nor translated into working tools.

More recent methods, typically based on multiple domain-specific

heuristic rules, have been developed for specific research areas, such

as high-energy physics (PDFPlotExtractor, Praczyk et al., 2013) and

computer science (pdffigures2, Clark and Divvala, 2016). While these

tools utilize clustering and classification for separating certain types of

graphics, vector graphics are often incorrectly extracted due to the

complex figure and document structure. Moreover, as demonstrated

by our experiments, these methods do not accurately extract figures

and their respective captions from documents outside the domain in

which they were developed, and specifically from biomedical docu-

ments where publications vary greatly in contents and layout.

In this paper, we present a new and effective scheme for extracting

figure and associated captions from biomedical documents, which also

proves to work well across different domains. Unlike earlier methods,

our method does not directly analyze the raw graphical objects encoded

in the PDF. Rather, it separates the text contents from the graphical

contents of the PDF file, and applies Connected Component Analysis

(CCA) (Gonzalez and Woods, 2002; Li et al., 2018; Shatkay et al.,

2006) to the graphical contents in order to detect individual figures.

Figure-caption pairs are then recovered by processing layout informa-

tion of the PDF as well as the text-part extracted from the PDF file.

The rest of the paper presents the details of our method, and dem-

onstrates its effectiveness through a series of experiments. Section 2

discusses the method itself; in Section 3, we present the experiments

used to assess the performance of our method, along with the results

obtained by our method and by other state-of-the-art systems used for

comparison; Section 4 discusses and analyzes the results, while

Section 5 concludes and outlines directions for future work.

2 Methods

Our goal is to extract figures and associated captions from biomed-

ical documents. The complete framework for our approach is sum-

marized in Figure 2. We first parse each PDF document (Step 1),

employing the publicly available Xpdf parsing tool, which separates

the PDF file into text-stripped pages that contain only graphical con-

tents, while the text contents is stored in an HTML file.

Fig. 1. An example of image extraction of a vector graphics figure by the PDF

parsing tool, Xpdf. (a) The original figure taken from Cui et al. (2012), Fig. 3. (b)

The image, as extracted by Xpdf, broken into its small constituent image parts

Fig. 2. Summary of our figure and caption extraction process. Step 1: the PDF document (Christoffels et al., 2009) is parsed using the Xpdf tool, into text contents

stored as an HTML file, along with text-stripped pages that hold only graphical contents; Step 2: basic layout information is obtained from the HTML file; Step 3:

potential captions and potential figure regions are identified; Step 4: graphical contents of figures are detected by applying CCA to the text-stripped pages; Step

5: information stemming from Steps 3 and 4 is used to disambiguate and determine actual figure regions; Step 6: figure captions detected in Step 3 and associ-

ated with figures in Step 5 are expanded to include the adjacent text block
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As noted above, publications discussing different topics or origi-

nating from different journals typically have different layouts. Basic

layout information is obtained from the HTML file (Step 2), includ-

ing the number of columns, contents region boundaries etc. To de-

tect potential caption headers, we scan the HTML file for text lines

beginning with terms such as Fig or FIG (Step 3), and record their

position within the PDF page layout. As a figure typically appears

directly above or below its caption, we designate the regions above

and below the caption position as a potential figure region.

Within each text-stripped page, we employ CCA to identify graph-

ical contents that are potential figure constituents (Step 4). Potential

figure regions identified in Step 3 that are actually populated by graph-

ical contents as detected in Step 4, are unambiguously designated as

figure regions (Step 5). The associated figure caption is formed by

expanding the continuous text block (Step 6) next to the potential cap-

tion header position detected in Step 3. The complete figure and its

associated caption are then added as a pair to an output file. The rest

of this section provides detail about each of the steps.

2.1 PDF parsing
We initially parse the document using the publicly available tool,

Xpdf, which partitions the PDF file contents into textual contents

stored in an HTML file as text objects, and graphical contents

stored as text-stripped image-pages containing only the graphics

from the original file. Each text object stored in the HTML typically

corresponds to a text line in the PDF document, along with position

information (starting point coordinates, font type and size, etc.)

indicating the line’s exact starting position and size within the PDF

document. The position and length of each text line in the original

PDF can thus be estimated using the stored information. Figure 3

demonstrates the result of the parsing process applied to a single

PDF page, where Figure 3a shows the original PDF page and

Figure 3b shows the text-stripped page containing the graphical con-

tents; the text objects comprising text lines and their respective posi-

tions are shown as rectangles in Figure 3c.

2.2 Document layout acquisition
Scientific documents usually adhere to typical layout and organization

guidelines (e.g. margins are fixed and all contents appear within these

margins). Obtaining layout parameters is thus important in guiding

the figure and caption detection process. As text lines typically occupy

most of the area in scientific publications, we use position information

of text objects extracted in Step 1 to calculate the layout parameters.

Text-line height and width: the text-line height, lheight, and width,

lwidth, indicate the typical height and width of text lines in body

text—which are usually a function of font size and style. As text

within the paper’s body typically has a characteristic font size, the

text-line height and width parameters are set to the most frequently

occurring value (i.e. the mode) of height and of width among all text

objects obtained from the PDF file.

Contents region: this is the total region of the page in which any

textual or figure contents can appear, typically located within well-

defined margins. Notably, non-contents items such as the journal

logo, date or side bars often appear on the margins, outside the con-

tents region. Figure 3a shows the contents region and the respective

margins for a single PDF page.

To identify the contents region we record the leftmost top point,

ðxlt; yltÞ, and the rightmost bottom point, ðxrb; yrbÞ, among the posi-

tions of all text lines of length lwidth appearing within all the pages

of the PDF file. The contents region is represented as a bounding

box, [xlt; ylt; cwidth; cheight], where cwidth and cheight, correspond to the

width and height of the contents region, calculated as cwidth ¼ jxrb�
xltj and cheight ¼ jyrb � yltj, respectively.

Number of columns: the number of columns within a page is an es-

sential piece of information, as it has much impact on figure location

and appearance. For instance, figures in single-column documents

often span the whole width of the page and as such are typically wider

than figures appearing in multi-column documents. The number of

columns, denoted colno, is calculated as: colno ¼ floorðcwidth=lwidthÞ.

2.3 Identification of potential caption and figure regions
To identify likely candidate captions and figures, we begin by detect-

ing a putative bounding box for each potential caption, utilizing the

text information stored in the structured HTML file. As captions

typically start with the prefix Fig or FIG, we consider each text line

starting with such a prefix as a potential caption. For each potential

caption, Capi, we record its position as it appears in the HTML file

(see Section 2.1), and initially set the width of its bounding box to

be the length of its first text line.

A figure is usually placed either directly above the topmost line of

its caption, below its bottom line or to the side of its caption—where

the figure’s top or bottom are aligned with the top or the bottom of

the caption, respectively. As such, the figure region typically lies in

close proximity to the caption region. We thus use the potential cap-

tion location to identify potential figure locations.

For a single-column page, with a single potential caption in it,

Capi, the potential figure region, denoted PFigi, is initially estimated

as the whole contents region of the page, ½xlt; ylt; cwidth; cheight�, as

defined in Section 2.2. If the page contains multiple potential captions,

the height of the potential figure region PFigi, associated with caption

Capi, spans from the position of the previous caption Capi�1 to that of

Capi; the width remains that of the contents region, cwidth. For the first

caption in a page (Cap1), the associated potential figure region starts

from the top of the contents region. The figure region associated with

the bottom-most caption in the page includes the area all the way to

the bottom of the contents region. Figure 4a illustrates potential cap-

tion and figure regions for a single-column document.

For multi column documents, the process is similar; the only dif-

ference is in the determination of the potential figure width. If the

potential caption spans across the center of the page, the figure is

assumed to span the whole page width, and as such the width of the

potential figure region is set to the width of the whole contents region,

cwidth; otherwise, the width of the potential figure region is set to the

width of a single column, lwidth. Figure 4b shows an example of poten-

tial caption and figure regions within a multi column document.

2.4 Graphical contents detection
To detect the actual figures, we first detect their constituent parts

within each text-stripped PDF page, by employing CCA (Gonzalez

Fig. 3. An example of a PDF page (Christoffels et al., 2009, p.1) parsed using

Xpdf. (a) The original PDF page before parsing, where the contents region is

shown within the dashed red box. (b) The text-stripped page containing the

graphical contents only. (c) The text objects (rectangles) representing the

text-lines extracted, along with their respective position on the original page
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and Woods, 2002; Li et al., 2018; Shatkay et al., 2006). Typically,

graphical contents within PDF pages consist of non-white areas.

As such, we employ a binary mask to separate the non-white

foreground from the background, by setting an intensity threshold

value t. Pixels whose intensity is greater than t are set to 1 (white),

i.e. background, while all other pixels constitute the foreground and

are thus set to 0 (black). In our experiments the threshold t is set to

0.95. We note that disconnected small parts of the figure, such as in-

dividual data points in graphs, parts of figure legends or arrows may

be detected as individual distinct components by CCA. To ensure

those small objects are incorporated into the detected figure, we di-

late the foreground in the masked image, thus enlarging the small

objects and connecting them to the rest of the figure. We then apply

Connected Component Labeling (Gonzalez and Woods, 2002) to

the dilated image, thus identifying connected components that con-

stitute the actual figure contents. We then set a bounding box

around each connected component, encompassing the smallest rect-

angle containing all the pixels within the component.

Figure 5 illustrates the detection process: The text-stripped PDF

page is shown in Figure 5a. Figure 5b shows the application of the

binary mask, and Figure 5c shows its dilation. Figure 5d shows con-

nected components detected by our method, each surrounded by a

bounding box shown as a blue rectangle.

2.5 Disambiguation of figure regions
Notably, as demonstrated by Figure 5, the previous step results in rela-

tively small figure-constituents, which may combine to form one or

more individual complete figures. To unambiguously identify the ac-

tual complete individual figures within each potential figure region

PFigi (see Section 2.3), we merge all bounding boxes of connected

components within each potential region into a single figure denoted

Figi. We note that text-elements that are essential parts of some figures

(e.g. figure legends, or axes labels in graphs) are initially removed and

stored in the HTML file as text objects during the initial parsing step

(Section 2.1). To recover the textual contents and place it back into

the figure, we merge each figure region Figi with all the text objects

located close to it, i.e. within Manhattan distance smaller than 1/2 a

line-height from the figure region, or with those objects located be-

tween the figure region and its respective potential caption region.

Figure 6 provides an example of the figure disambiguation process.

Figure 6b shows the connected components detected as explained in

Section 2.4, surrounded by solid blue bounding boxes, while the

dashed green box indicates the potential caption; the outermost thicker

orange box indicates the potential figure region. Figure 6c shows the

figure region identified at the end of the disambiguation step.

2.6 Caption expansion
As discussed in Section 2.3, headers of potential captions that can help

locate associated figures are first detected using prefixes such as Fig or

FIG. To expand the header associated with each potential caption

Capi into a complete caption, we detect the continuous text block fol-

lowing the potential header. The text block is defined as a sequence of

text objects, where the last object ends with a period and its width is

lower than that of the bounding box surrounding Capi (see Section

2.3), or where the last object is followed by a vertical gap (i.e. by a gap

whose height exceeds the regular gap between body text lines).

To estimate the position of a caption on a page, we first merge

the bounding boxes of all text objects within the text block defined

above. The complete caption to be associated with a figure Figi is

formed by combining the text content of all text objects from top to

bottom within the detected text block. The complete figure and its

associated caption are then stored as part of the output files, along

with their bounding boxes that indicate their respective position on

the corresponding PDF page.

3 Experiments and results

We compare the performance of our system to that of two publicly

available state-of-the-art systems, pdffigures2 (Clark and Divvala,

2016) and PDFPlotExtractor (Praczyk et al., 2013), performing

three tasks: figure extraction, caption extraction and the combined

task of figure-caption pair extraction. Three different datasets for

which we have the ground-truth are used. The first has been

assembled and used before by the developers of pdffigures2 (Clark

and Divvala, 2016). As pdffigures2 was developed by and for com-

puter scientists, the dataset comprises non-biomedical publications.

To test the systems on biomedical publications we assembled and

annotated two additional datasets representing different biomedical

domains, as further described in Section 3.1. All the documents used in

our experiments are PDF documents and are all successfully processed

by all three methods. The evaluation process and measures, the datasets

and the experimental results are all discussed below.

3.1 Datasets and evaluation
We test the performance of our system on three datasets. The first,

denoted CS-150, was introduced by Clark and Divvala (2015) for

testing their system pdffigures2, focusing on computer science publi-

cations. The dataset comprises 150 PDF publications, selected from

three top computer science conferences published during the period

Fig. 4. Identification of potential caption and figure regions. Potential captions

are indicated as small solid boxes and the associated potential figure regions

are shown as large dashed boxes. (a) Example of potential caption and figure

regions within a single-column document. Notably, at this stage, the indi-

cated rectangles are only potential figure regions, and as such the number of

potential figures can exceed the number of potential captions. (b) Example of

potential caption and figure regions within a two-column document

Fig. 5. Graphical contents detection: (a) a text-stripped page (enlarged region

from Christoffels et al., 2009, p.1); (b) binary mask generated to separate fore-

ground (black) from background (white); (c) dilation of the foreground. Regions

shown in black (foreground) in panel b are enlarged via dilation. Closely adja-

cent black regions (e.g. rectangles on the top row) are merged, thus resulting in

connected components and (d) the graphical contents detected by employing

CCA. Each detected component is framed by a blue bounding box
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2009–2014, of which 10 were published in 2009, 20 in 2014 and 30

publications in each of the years 2010–2013. Figures and captions

were manually annotated using bounding boxes and labeled by Clark

et al. when the dataset was created. There are 458 figures, 458 captions

and respectively 458 figure-caption pairs annotated in the dataset.

The CS-150 set is limited to computer science publications,

which typically differ in figure and text organization and in contents

from biomedical publications. To assess performance specifically

within the biomedical domain, we have built and annotated two

additional larger datasets—each comprising 200 documents, both

focused on biomedical publications, using two distinct data sources

as further described below. Noting that PDF image and text coding

varies significantly between older and newer PDF files, which can

impact figure-extraction performance, we retained the same year

range 2009–2014 as in the CS-150 dataset in one of our new data-

sets, while examining a larger range of years in the other. Two anno-

tators manually identified and recorded bounding boxes around

figures and around their respective captions when both appear on

the same page. As about 1.5% of the captions in our datasets span

across a page boundary, in those cases only the part of the caption

appearing on the same page as the figure was recorded. As the

process is mechanical in nature, throughout the annotation of

thousands of figures there were only nine disagreements to resolve,

all limited to the decision of figure-caption paring. These nine

disagreements were resolved by discussion between the two

annotators.

The first dataset we created, denoted GXD-200, contains 200 docu-

ments concerning gene expression in the mouse. These were selected at

random from a collection curated by Jackson Lab’s Gene Expression

Database (GXD) (Finger et al., 2017), dating to the period 2009–2014.

The GXD-200 publications contain 1335 figures, 1298 figure-

associated captions and 1298 figure-caption pairs. We note that the

number of figures here exceeds the number of captions, as some pages

showed figures or parts of figures without associated captions.

The second dataset, denoted PMC-200, contains 200 biomedical

documents spanning a larger range of years, namely 1990–2017, as

well as a broader range of subjects. The publications were collected at

random from the PubMed Central Open Access Subset (https://www.

ncbi.nlm.nih.gov/pmc/tools/openftlist). Open Access Subset (2018).

Within this collection, 34 articles were published between 1990 and

2008, 83 between 2009 and 2014 and 83 after 2014. The publications

contain 1042 figures, 1032 captions and 1032 figure-caption pairs.

The list of biomedical documents in GXD-200 and PMC-200, as well

as the ground-truth image/caption annotations for these two datasets

will be made available with the publication of this paper.

To evaluate our extraction performance, we use the standard

evaluation metrics of precision, recall and F-score defined as:

Precision ¼ # of figures ðand=or captionsÞ correctly extracted

# of figures ðand=or captionsÞ extracted
;

Recall ¼ # of figures ðand=or captionsÞ correctly extracted

# of figures ðand=or captionsÞ in the ground� truth
;

F � Score ¼ 2 � Precision � Recall

Precisionþ Recall
:

A figure or a caption is considered to be correctly extracted if the

overlap-ratio between the respective bounding boxes, defined as:

Area½ðbound: box detected by our methodÞ \ ðground� truth bound: boxÞ�
Area½ðbound: box detected by our methodÞ [ ðground� truth bound: boxÞ� ;

is greater than 3/5. We use here a slightly lower threshold (6%

lower) than that used before for assessing object-detection within

biomedical images (see e.g. De Herrera et al., 2013, 2015, 2016)

due to the challenge of labeling single-line caption—whose exact

boundaries tend to vary slightly across images and annotators. A

figure-caption pair is deemed to be correctly extracted when both

the figure and its respective caption are correctly extracted and the

association between the two is correctly identified.

3.2 Results
Table 1 presents the results obtained by the three systems compared

in this study, in terms of precision, recall and F-score, when perform-

ing figure extraction (A), caption extraction (B) and figure-caption

pair extraction (C). The second to fourth columns in the table show

results from experiments over the CS-150 dataset. We note that this

dataset is focused on computer science and machine learning; the sys-

tem pdffigures2—which was specifically built for this domain—indeed

attains the highest performance when extracting figures from this

dataset (98.88% precision, 95.85% recall, 97.34% F-score). Our

method, which is not specifically designed for this domain, still han-

dles figure extraction from this dataset well, with 93.50% precision,

88.00% recall and 90.67% F-score, while outperforming the pdffig-

ures2 and the PDFPlotExtractor systems on the tasks of caption and

caption-figure pair extraction over the CS-150 dataset.

The next three columns in the table show results obtained over

the GXD-200 dataset, while the rightmost three columns show

results attained over the PMC-200 dataset. Our method attains the

highest recall and the highest F-score in all three tasks over these

two datasets. The differences between the results obtained by our

system and those attained by pdffigures2 and PDFPlotExtractor are

statistically significant (p�0:0001, paired t-test).

Figure 7 shows examples of four PDF pages annotated with

bounding boxes around figures and captions reflecting the extrac-

tion results obtained by our system, compared with those obtained

by the other two methods. The results obtained by our system are

shown at the top (Fig. 7a–d), while results obtained by pdffigures2

(Fig. 7a1–d1) and PDFPlotExtractor (Fig. 7a2–d2) are shown in the

middle and at the bottom.

In the following section we further analyze and discuss these results.

4 Discussion

As indicated above, the system pdffigures2 was developed for han-

dling computer science papers, and as such shows excellent perform-

ance, for figure extraction from the CS-150 dataset, developed by its

authors (98.88% precision, 95.85% recall, 97.34% F-score).

Notably, the difference between the figure-extraction results

Fig. 6. An example of the figure disambiguation process. (a) The original PDF

page (Christoffels et al., 2009, p.1). (b) Blue bounding boxes surrounding con-

nected components, while the potential caption region is surrounded by a

green dashed box; the entire potential figure region is shown encompassed

by a thick orange box. (c) The figure region, shown within a red box, as identi-

fied at the end of the disambiguation process
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obtained by pdffigures2 and that obtained by our system is not stat-

istically significant (P>0.05, paired t-test). Our method, which is

not designed for this domain, still handles this dataset well, with

93.50% precision, 88.00% recall and 90.67% F-score on the figure-

extraction task—outperforming the PDFPlotExtractor system

(p� 0:0001). As shown in Table 1B and C, our system outperforms

both of the other systems on caption extraction and caption-figure

pair extraction over the CS-150 dataset.

When applied to the GXD-200 dataset (fifth to seventh columns),

our method attains a significantly higher recall (93.03%) than the two

other systems (65.91, 69.89%) for figure extraction, where the differ-

ence is highly statically significant (p�0:0001). We note that while the

precision attained by our method over this dataset is slightly lower than

that of pdffigures2, our recall and F-score are much higher (by 15%).

All three systems show the lowest performance on the more general

PMC-200 dataset; this deterioration is much more pronounced in the

pdffigures2 and the PDFPlotExtractor systems. Notably, the PMC-200

dataset contains articles published during the period 1990–2017, where

PDF image and text coding varies significantly between older and newer

PDF files. As both pdffigures2 and PDFPlotExtractor rely on direct

analysis of encoded raw graphical objects, the performance of these sys-

tems is significantly impacted by the coding variations. In contrast, our

system attains a significantly higher recall (90.79%) than that of the

other two systems (41.47, 64.49%, p�0:0001) on the same dataset,

with only a slight loss (<2%) in precision compared to pdffigures2.

These results demonstrate that our method provides an effective

and robust means for figure extraction from PDF; it is particularly

suitable in the realm of biomedical document curation, where rele-

vant articles may span a wide range of publication years (thus vary-

ing in PDF encodings), and where recall is often viewed as more

important than precision (Fang et al., 2012; Müller et al., 2004).

As seen in Table 1B, our method attains the highest precision, re-

call and F-score for caption extraction over both the CS-150 and the

PMC-200 datasets. The difference in recall is particularly notable.

Over the GXD-200 dataset (fifth to seventh columns), the precision

of our method (88.74%) is slightly lower than that of pdffigures2

(90.01%), but our recall and F-score are again significantly higher

than those obtained by the other two systems (p�0:0001).

In terms of caption extraction, the deterioration in performance of

all three systems over the PMC-200 dataset is more pronounced than

it is for figure extraction (Table 1A, rightmost columns). Among the

PMC-200 articles, 34 were older documents published during the

period 1990–2008, and 10 of those are scanned PDF documents, ra-

ther than originally produced in PDF format. Such scanning, which

involves optical character recognition of the text, often leads to errors

that make captions more difficult to detect. Thus, for caption extrac-

tion, the pdffigures2 tool shows a recall level of 38.18%, while

PDFPlotExtractor’s recall is at 56.98%. In contrast, our method

shows a significantly higher recall in the face of these hurdles, namely,

81.40% on the same dataset (p�0:0001). Our system thus proves to

be much more resilient and reliable in identifying captions in a broad

range of PDF files compared to currently available systems.

Last, Table 1C shows the results for the combined task of figure-

caption pair extraction. Notably, all three methods show lower per-

formance on this task as it requires both the figure and its respective

caption to be correctly extracted. The lower performance is more pro-

nounced in the results obtained on the GXD-200 and PMC-200 data-

sets as the figure-caption organization in biomedical publications is

more complex than that in computer science publications. Over the

CS-150 and PMC-200 datasets our method again attains both the

highest precision and the highest recall. Notably, our recall and preci-

sion on the PMC-200 dataset are significantly higher than those of the

other state-of-the-art methods (83.26% compared with 75.98% in

precision; 76.16% compared with 39.34% in recall; 79.55% com-

pared with 48.71% in F-score; p�0:0001). Over the GXD-200 data-

set (fifth to seventh columns), the precision of our method (82.52%)

is again slightly lower than that of pdffigures2 (84.45%), while retain-

ing a significantly higher recall (84.75% compared with 60.6%) and a

much higher F-score (83.65% compared with 70.56%), where the dif-

ference is highly statistically significant (p�0:0001). These results

again demonstrate and validate our method as an effective and robust

means for extracting figure-caption pairs.

Figure 7a–d shows several examples of figures and captions

extracted by PDFigCapX. Our system correctly extracts the figure

and its associated caption both in the simpler cases where the indi-

vidual figure appears directly above the caption within a single- or a

double-column page (Fig. 7a and b), and in more complex cases,

where multiple figures and captions appear on the same page

(Fig. 7c), or when the caption is placed adjacent to—but not directly

above/below—the Figure 7d.

Table 1. Results obtained by our system, PDFigCapX, and by other state-of-the-art systems on the three tasks: figure extraction (A), caption

extraction (B) and figure-caption pair extraction (C)

CS-150 GXD-200 PMC-200

Precision (%) Recall (%) F-score (%) Precision (%) Recall (%) F-score (%) Precision (%) Recall (%) F-score (%)

(A) Figure extraction

pdffigures2 98.88 95.85 97.34 91.85 65.91 76.75 89.32 41.47 56.64

PDFPlotExtractor 64.52 85.37 73.49 56.85 69.89 62.70 38.89 64.49 48.52

PDFigCapX 93.50 88.00 90.67 89.86 93.03 91.42 87.67 90.79 89.20

(B) Caption extraction

pdffigures2 88.51 85.81 87.14 90.01 65.24 75.65 80.90 38.18 51.88

PDFPlotExtractor 64.76 79.47 71.36 88.69 86.44 87.55 50.26 56.98 53.41

PDFigCapX 94.93 87.55 91.09 88.74 91.14 89.92 88.98 81.40 85.02

(C) Figure and caption pair extraction

pdffigures2 87.39 84.71 86.03 84.45 60.60 70.56 75.98 35.85 48.71

PDFPlotExtractor 60.01 73.79 66.19 60.47 57.30 58.84 34.70 39.34 36.87

PDFigCapX 90.07 84.71 87.31 82.52 84.75 83.62 83.26 76.16 79.55

Note: The method is indicated in the leftmost column. The next three columns show the precision, recall and F-score obtained over the CS-150 dataset (458 fig-

ures, captions and pairs); the fifth to seventh columns show the same for the GXD-200 dataset (1335 figures, 1298 captions and 1298 pairs); the three rightmost

columns show the results obtained on the PMC-200 dataset (1042 figures, 1032 captions and 1032 pairs). The highest values attained are shown in boldface.
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In contrast, Figure 7a1–d1 and a2–d2 demonstrates the (incorrect)

extraction performed over the same pages by the other two systems,

pdffigures2 and PDFPlotExtractor. As mentioned earlier, both sys-

tems directly handle the graphical objects encoded in the PDF in order

to extract figures, and as such misidentify some of the figures

embedded within a complex document structure—even when the lay-

out appears simple (e.g. Fig. 7a1, a2, b1 and b2). For instance, pdffig-

ures2 may not find nor extract any figures or captions on a page

(Fig. 7a1 and c1), while misidentifying caption regions (Fig. 7b1) or

figure regions (Fig. 7d1). On the other hand, PDFPlotExtractor over-

estimates certain figure boundaries (Fig. 7a2–d2), and misidentifies

figure and caption regions (Fig. 7b2).

We note that while our method correctly extracts most figures

and captions, there are still a few cases in which the extraction is in-

accurate. For the figure-extraction task, particularly challenging are

cases in which small graphical contents (e.g. mathematical symbols,

formulae, reference brackets and border lines) appear in close prox-

imity to a figure, making it is hard to determine whether the figure’s

boundaries include/exclude the adjacent graphical contents.

Figure 8a illustrates such a case, in which our method mis-assigns

the whole page as the figure region. Here, PDFigCapX erroneously

merges the correct figure (top left) with additional graphical con-

tents (bottom right), although the latter graphics is not part of a fig-

ure but merely forms background for the table at the bottom of the

page. While the overestimated figure is indeed inaccurate, the

extracted region still contains the whole figure without omitting es-

sential graphics parts, thus still useful for bio-curation.

Figure 8b provides an example of a challenging caption-extraction

case, in which the caption region is underestimated by our method,

appearing as though part of the caption has been missed. The caption

bounding box as marked in the figure was estimated based on position

information of caption text objects extracted during the PDF parsing

step (see Section 2.1). As the formatting information was misidentified

by Xpdf, the caption region was incorrectly calculated. However, in

this case our method still actually correctly harvests the complete cap-

tion text, stored in the HTML file. As our evaluation measures are

based on assessing the bounding boxes of detected objects compared to

the ground truth boundaries, the evaluation measure penalizes the mis-

calculated bounding box even though the caption text itself is correctly

extracted. Our system thus actually performs better in terms of identi-

fied captions and correct figure-caption pairs than is reflected by the

evaluation metrics. A more adequate metric should take into account

the actual recovery of contents rather than bounding box coordinates;

we plan to develop such a metric as part of our future work.

5 Conclusion

We presented a new and effective method and system, PDFigCapX, for

extracting figures, captions and figure-caption pairs from biomedical

documents. Earlier methods typically detect figures by directly search-

ing the contents encoded in the PDF file and handling the raw graphical

objects embedded in it. This strategy often leads to incorrect extraction

when the figure and the document structures are complex, which is a

common phenomenon within biomedical publications. In contrast, our

method first completely separates the text contents from the graphical

contents of the PDF file, and aims to recover figures and captions utiliz-

ing layout information. It applies CCA to the graphical contents in

order to detect figures, and separately searches the text portion for cap-

tions that lie in the vicinity of the detected figures.

For testing the system and comparing it to state-of-the-art methods

we introduced two new datasets anchored in the biomedical domain,

while also using a dataset previously used by others. The latter was pre-

viously established by others for evaluating extraction from computer

Fig. 7. Examples of figures and captions extracted by our system, PDFigCapX (top), pdffigures2 (middle) and PDFPlotExtractor (bottom). Extracted figures are shown

within a solid red box; regions of extracted captions are shown in a dashed green box. A page shown without annotated boxes (a1 and c1) indicates that neither figure

nor caption was extracted from the page. Subfigure (a) shows a correct extraction by our system when a figure is located above its caption within a single-column

document. Subfigure (b) shows an extraction by our system when a figure is located above its caption within a two-column document. Subfigure (c) shows multiple fig-

ures and caption pairs extracted when the figures may span one or two columns. Subfigure (d) shows extraction of a figure and caption pair in a challenging setting

where the caption appears to the right of its respective figure within a two-column document. Subfigures (a1)–(d1) show the (incorrect) extractions obtained by pdffig-

ures2 when applied to the same respective pages. Similarly, subfigures (a2)–(d2) show the extraction obtained by PDFPlotExtractor on the same set of pages. The ori-

ginal pages (a)–(d) are taken from Seiwert et al. (2017, p.7), Nakamura et al. (2015, p.4), Pananghat et al. (2016, p.6) and Jacobs et al. (2009, p.7), respectively
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science publications. The two new annotated sets, one of which focuses

on relatively narrow set of topics and years, while the other covers a

broader range, are likely to support further development of PDF pars-

ing tools pertaining to biomedical text mining.

Our extensive experiments and results demonstrate that the new

system is highly effective in terms of precision, recall and F-score;

specifically, it significantly improves upon existing systems in terms

of recall and F-score without much loss of precision (if any).

Moreover, PDFigCapX retains its good performance over docu-

ments varying broadly in topic, style, publication year and overall

organization. As such, it is ready to be applied in practice.

As part of future work, we are considering a new evaluation met-

ric that will account for the actual recovered contents of both figures

and captions, rather than merely the correct identification of bound-

ing box positions. We shall also integrate PDFigCapX with our

compound-figure detection and segmentation tool, FigSplit (Li et al.,

2018), providing an end-to-end system for extracting image and text

contents from biomedical PDF files.
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Fig. 8. Examples of inaccurate extraction by our method. Extracted figures

are shown within a red box; estimated regions of extracted captions are

shown surrounded by a dashed green box. (a) An overestimated figure re-

gion. Our method erroneously combined the figure on the top-left with the

graphical contents serving as background to the bottom-right table (original

page from Sumida et al., 2010, p.4). (b) Caption region boundaries incorrectly

estimated due to misidentified formatting information. The caption text itself

is correctly extracted in full (original page from Bando et al., 2013, p.4)
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