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Abstract 

Much current research is concerned with extracting 
biomedical facts from text, so far with relatively modest 
results. Our work is motivated by the idea that text 
mining can be improved, if the system could first 
identify text regions that are rich in scientific content, 
retrieve documents that have many such regions, and 
focus on fact extraction from these regions. We call 
these parts of the text “high utility regions”. In this 
preliminary report we describe the basic ideas, the initial 
steps we took, and the annotation guidelines we devised 
to construct a comprehensive training and test corpus 
that would enable us to apply and evaluate machine 
learning methods for identifying high-utility regions. 
 

Introduction 
The past few years have seen an impressive growth 
in the amount of research dedicated to biomedical 
text mining, (several recent reviews include 
[3,4,16]). The field that originally focused on 
medical text [1,6,15,18] has expanded since the 
onset of the “genomic era” into the biological 
domain. Research in the area includes work on 
information extraction from the biomedical 
literature [2,7,12,19,20], as well as on information 
retrieval and text categorization [5,8,9,17]. 
 

The efforts on information extraction concentrate 
on identifying bio-entities (mostly genes and 
proteins) and the relationships among them, while 
current efforts on information retrieval, with a few 
exceptions, aim at identifying documents for 
specific database curation tasks and categorization 
of papers into various ontological entries. [9]  
 

However, the fact that a gene is mentioned, and 
even information about it is provided, does not 
necessarily imply that the information is reliable or 
useful. Krauthammer et al.[10] suggested a critical 
examination of literature contents in molecular 
biology, and recent work by Light et al.[13] also 
examined the validity and reliability of statements 
made in the literature.  
 

Taking the idea of identifying reliable literature one 
step further, we introduce here the concept of High 

Utility Regions. These are regions in the text that 
we intuitively characterize as focusing on scientific 
findings, stated with a high confidence, and 
preferably supported by experimental evidence. 
Following this line of reasoning, we devised criteria 
for characterizing statements made in the literature 
along several axes, which we describe further in the 
following sections. The axes that we introduce 
include focus (e.g. scientific vs. general), polarity 
(positive vs. negative statement), level of certainty, 
strength of evidence, and direction/trend (increase 
or decrease in certain measurement). The utility of 
a region, as a source for scientific knowledge, can 
be evaluated based on its “coordinates” along these 
axes. Earlier work on annotation of scientific text 
(e.g. [21,11,14]) focused on the partition of text 
into zones, according to the type of discourse and 
the components of scientific argumentation (e.g. 
background, framework, aim). In contrast, we 
define a set of dimensions, along which each 
statement in the text is characterized. 
 

Our present study is motivated by the need to 
identify and characterize locations in published 
papers where reliable scientific facts can be 
typically found. We ultimately aim to develop 
machine-learning methods for classifying 
statements along these multiple dimensions. 
 

While the above goals motivate ongoing work, 
underlying their realization is another major 
component, namely the establishment of a large and 
reliable body of annotated text for training and 
testing. In this manuscript we focus on several 
aspects of the corpus preparation while the learning 
tasks will be addressed elsewhere.  
 

The planning and the building of the annotated 
corpus have two main beneficial outcomes: 
Composing a set of well-formed and tested 
guidelines for annotators, and generating an 
annotated corpus for testing and training text-
mining methods. We believe that the lessons 



learned, as well as the guidelines themselves, could 
be useful to other researchers. 
 

The rest of the paper describes the work we have 
done to characterize phrases along the multiple axes 
mentioned above, and to build the training/test 
corpus around this characterization. We start with 
an overview of the dimensions used for 
characterizing text fragments, and follow with a 
more detailed description of the annotation 
guidelines. We then discuss a test we conducted to 
evaluate these guidelines by measuring inter-
annotator agreement. 
 

Characterization Axes 
We examine full-text scientific journal papers, from 
multiple domains of biomedical discourse. Each 
assertion in the corpus (where an assertion may be 
a sentence or just a fragment of a sentence, as 
described below) can be characterized by its type, 
and marked-up along the following dimensions, 
which we broadly define as follows: 
• Focus. Indicates the type of the information 

conveyed by the assertion. Focus can be either:  
Scientific: Describes findings and  discovery; 
Tagged by the letter S. 
Generic: General state of knowledge and science 
outside the scope of the paper, the structure of the 
paper itself, or the state of the world. Such 
statements are not usually based on scientific 
experiment, and would probably be as valid, if 
made by a layperson. Tagged as G. 
Methodology: Describes a procedure that was 
used to execute an experiment or a study, denoted 
by the letter M. 

• Polarity: Indicates whether the assertion is made 
using positive terms (e.g. “we found that…”, 
tagged as P) or negative (e.g. “There was no 
significant change in…”, tagged as N). 

• Certainty: Indicates the degree of certainty 
regarding the validity of the assertion. The 
annotation uses a scale of 0-3 to measure 
certainty level, of both positive and negative 
statements. 
The lowest degree (0) represents complete 
uncertainty, (e.g. “it is unknown if…” or “it is 
unclear whether…” etc.). The highest degree, (3), 
represents complete certainty (an accepted, 
known and/or proven fact). Intermediate degrees: 
(1) represents a low certainty, while (2) is 
assigned to high-likelihood expressions that are 
still short of complete certainty. 

• Evidence: Indicates, for each fragment, if the 
assertion it makes is supported by experimental 
evidence. The evidence tag is the letter E, 
followed by a single digit, (0-3), indicating the 
type of evidence or its absence. The tag  
E0 is used when there is no indication of 
evidence, as well as in cases where the text 
explicitly states lack of evidence. The tag E1 
indicates that a claim of evidence exists in the 
text. (e.g. “It was shown that….”), but the 
evidence itself is not given. The tag E2 is  used 
when the evidence is not given within the text, 
but explicit reference is made to another paper 
supporting the assertion. The tag E3 is used when 
evidence is directly provided in the text, for 
instance, expressed as a reference to the 
experimental result reported within the paper 
(e.g. “our results show”…), a reference to a 
figure demonstrating the results, or other direct 
reference. (Further details are beyond the scope 
of this note). 

• Direction/Trend: Indicates whether the assertion 
reports an increase or a decrease in a specific 
phenomenon, finding or activity. An increase is 
denoted by a “+” while a decrease is denoted by a 
“– ”. 

 

A significant advantage of separating the polarity 
from the direction is the provision of a 
straightforward way to handle occurrences of 
double-negation, and an almost completely 
mechanical way for annotators to tag such cases. 
The polarity refers to what the authors observed or 
did not observe. For instance “We have seen a 
significant…” has a positive (P) polarity while 
“There was no…” has a negative (N) polarity, 
regardless of what was observed. The state of the 
observed object is encoded in the direction or the 
trend indicated for the finding or observation. To 
continue our example, if the sentence is “We have 
seen a significant reduction in the expression 
level…” the sentence still has positive polarity, but 
its trend is negative (-). On the other hand the 
sentence “There was no significant increase in the 
expression of…” has a negative polarity, along with 
an upward trend (“increase) denoted by a +. 
 

An important aspect of characterizing text using the 
tags above, is defining the appropriate units to 
which such tags are assigned. One could consider 
tagging several levels of text-units, from whole 
sections, through paragraphs, to sentences and 
individual phrases. Paragraphs usually contain too 



much variation to merit a single tag. Individual 
sentences may vary greatly in scientific content and 
polarity. Moreover, even within sentences, there is 
often variability in content, polarity and the level of 
evidence.  
 

Therefore we suggest that a separate tagging be 
assigned to each fragment within a sentence. 
Fragmentation takes place either when there is a 
change in content along any of the 5 dimensions 
listed above (e.g. a statement’s polarity changes 
from positive to negative) or at conjunction points 
in compound sentences. Each tag starts with the 
ordinal number of the fragment within the sentence.  
 

Figure 1 provides several examples of tags assigned 
to sentence fragments using the method discussed 
above. The first one is an unfragmented sentence, 
with a science focus, high confidence and 
experimental evidence indicated by the words “we 
demonstrate”. The second example has a negative 
trend (-) due to the term “inhibited”, while the third 
example has a negative polarity (“did not 
identify”). The 4th and 5th examples are of 
methodology and generic sentences, while the last 
example demonstrates the fragmentation of a 
sentence into three annotated fragments based on 
changes in polarity and direction. 
 
 We demonstrate that ICG-001 binds specifically to CBP. **1SP3E3 

 

The binding of both forms of β-catenin to CBP is completely inhibited by ICG-001 (Fig. 
3B Top, lane 4). **1SP3E3- 
 

A recent Japanese study, for example, did not identify any exon 3 missense 
mutations. **1SN3E1 
 

Anesthetized rats (methoxyflurane) were perfused with 4% buffered 
paraformaldehyde.  **1MP3E3 
 

Mechanistic arguments have been put forward for either pattern in humans. **1G 
 

We demonstrate that ICG-001 binds specifically to CBP **1SP2E3 
but not the related transcriptional coactivator p300, **2SN2E3 
thereby disrupting the interaction of CBP with beta-catenin. **3SP2E3- 

Figure 1. Examples of annotation tags. 
 
Testing the Guidelines 
The guidelines evolved through numerous iterations 
in which they were used to tag fragments from 
articles, ranging in style from reviews to research 
publications, from several biomedical domains. We 
test the guidelines by applying them to a set of 
paragraphs extracted from several papers, and 
evaluating our own inter-annotator agreement. 
While our own familiarity with these guidelines 
may seem to bias the results, the annotators who 
will tag the corpus will undergo training which 
would bring them to a similar level of familiarity 

with these guidelines. The evaluation setting and 
the results are described below. 
 

Evaluation Procedure: As some of the text 
properties we examine are local (e.g. polarity) 
while others may depend on context (e.g. 
evidence), the evaluation corpus was built by first 
selecting whole paragraphs rather than individual 
sentences from scientific papers.  The paragraphs 
were taken from 6 recent molecular biology articles 
(3 published in Science and 3 in Cell), representing 
the full diversity of the article sections (abstract, 
introduction, results, methods, and discussion), and 
covering a variety of styles including editorials, 
reviews, and research articles. This evaluation 
corpus comprises a total of 81 sentences. 

Each of the 3 authors independently fragmented the 
individual sentences into “annotation units” and 
annotated each unit along the axes given above, 
using the annotation guidelines.  We then measured 
the annotation agreement rate along each of the 
axes. We chose to use this measure rather than the 
well-known Kappa coefficient since there are clear 
shortcomings in using the common chance-based 
Null-model in the Kappa measure [22] when the 
three annotators are following common guidelines 
applied to the same corpus and are therefore clearly 
not unconditionally independent. 
 

Evaluation results: The average pair-wise inter-
annotator agreements for individual text properties 
(axes) are shown in the Table 1. 

Axes Focus Pol. Cert. Evid. Trend
Average
Agreement

0.83 0.81 0.70 0.73 0.81

Table 1 Average Inter-Annotator Agreement 
 

Out of 81 sentences, 54 were fragmented at the 
same point by all three evaluators, resulting in a 
total of 62 fragments in which agreement can be 
easily measured. We also measured agreement  
rates for the rest of the 27 sentences by aligning 
their fragment annotations, but this analysis is 
beyond the scope of this paper.  The average 
agreement rate between every pair of annotators, 
along each of the axes (Focus, Polarity, Certainty, 
Evidence and Trend) is summarized in Table 1. For 
the most part, these numbers reflect high rates of 
inter-annotator agreement. Detailed analysis (not 
shown) suggests that most of the annotation 
differences on Polarity occur when some 
annotators assign polarity to fragments with non-
science focus while others do not. The relatively 



low agreement rates on Evidence and Certainty 
suggest a need for revision of the annotation 
guidelines along these two axes before embarking 
on the annotation of the full-fledged corpus.  
 

Ongoing Work 
This paper introduces the concept of high-utility 
regions in text, and discusses the first stages of 
work towards identifying such regions in the 
biomedical literature. Our contribution here is the 
definition of criteria towards identifying such text, 
and of annotation guidelines. A training and test 
corpus, which will encompass hundreds of full-text 
papers and thousands of annotated sentences is 
currently under construction, where multiple 
annotators will tag each piece of text. This part of 
the task will be underway when the paper is 
presented. We are working on the construction of 
appropriate classifiers to automatically assign such 
tags. This work will be the topic of future reports. 
 

The potential value of this work is three pronged: In 
the construction of the corpus, in the definition of 
several significant axes for biomedical text 
classification, and in the characterization of high-
utility regions – as measured by scientific content, 
evidence and certainty. Our work towards 
identifying such regions automatically is expected 
to affect both extraction and retrieval from the 
biomedical literature. 
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