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Abstract 
Recent studies highlight temporal ultrasound data 

as highly promising in differentiating between malig­
nant and benign tissues in prostate cancer patients. 
Since Hidden Markov Models can be used for cap­
turing order and patterns in time varying signals, we 
employ them to model temporal aspects of ultrasound 
data that are typically not incorporated in existing 
models. By comparing order-preserving and order­
altering models, we demonstrate that the order en­
coded in the series is necessary to model the variability 
in ultrasound data of prostate tissues. In future stud­
ies, we will investigate the influence of order on the 
differentiation between malignant and benign tissues. 

1. Introduction 

Prostate cancer is the second leading cause of death 
in male cancer patients, with a total of 27,540 esti­
mated deaths in the United States for 2015 alone [1]. 
Core needle biopsy of the prostate under Trans-Rectal 
UltraSound (TRUS) guidance is used for definitive 
diagnosis of prostate cancer. TRUS guided biopsies are 
prone to both under-diagnosis and over-diagnosis [2]. 
In addition, TRUS guidance is not accurate enough 
for patient specific targeting in the prostate. The lack 
of accurate guidance is due to the low sensitivity and 
specificity of standard ultrasound imaging in differen­
tiating between cancerous and normal regions in the 
prostate. 

Recent research efforts are directed toward devel­
oping targeted biopsies that focus on regions with 
a high probability of being cancerous. These ap­
proaches augment biopsy procedures by providing 
tissue-specific information, from the analysis of the 
ultrasound signals or pre-operative Magnetic Reso­
nance Imaging (MRI), in order to increase the proba­
bility of targeting cancerous regions [3]. Differentiation 
between cancerous and normal tissue is known as 
tissue characterization and is based on various types 
of ultrasound data analysis. In this work, we focus on 
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analyzing temporal ultrasound radio frequency echo 
signals (hereinafter referred to as RF time series), 
which have been introduced by Moradi et al. and have 
been since applied toward the detection of prostate 
cancer, breast cancer and ablated tissue [4]. An RF 
time series is a sequence of ultrasound frames captured 
from a specific location in the tissue, over a specific 
period of time, without intentionally moving the ultra­
sound transducer or the tissue. It relays the response 
of tissues to repetitive ultrasound irradiation. It also 
carries tissue-specific information that can be used 
to differentiate between cancer and normal tissues. 
Typically, tissue-specific information, is extracted from 
RF time series in the frequency domain (such as 
wavelet and mean central frequency) and used in a 
machine learning framework. 

Since RF time series are time varying signals, we 
investigate here the utility of Hidden Markov Models 
(HMMs) to model the variability of these time series 
in cancerous vs normal prostate tissue. HMMs are 
stochastic models that capture temporal relations and 
order in time series. They are often used to model 
and analyze time series data under the simplifying 
assumption of the Markov property, namely, that the 
state at a certain time point depends only on the 
state at the preceding time point and conditionally 
independent of all other time points. HMMs can be 
learned in an unsupervised fashion, and can also be 
used in the supervised context to learn class-specific 
structures from labeled-data. Thus HMMs are widely 
used in machine learning. Rabiner et at. demonstrated 
the use of HMMs primarily in the context of speech 
recognition [5]. HMMs are also often utilized to model 
biological data such as proteins and DNA sequences 
[6]. However, we are not aware of any previous work 
in which HMMs are utilized to model RF ultrasound 
data, which is the focus of the work presented here. 

We hypothesize that the order of the values in the 
RF time series carries significant information needed 
to model the variability in the signal. To capture the 



temporal order of points in the RF signals and demon­
strate its role in describing sequence variability, we 
use HMMs to model RF time series of prostate cancer 
patients based on their original temporal order as 
well as under various levels of order shuffling applied 
to the signals. We assess the difference between the 
order-preserving model and the order-altering model, 
by comparing the probability distribution induced by 
the HMM trained on the ordered RF time series 
to the distribution induced by the HMM trained on 
the shuffled series. For comparing models, we use a 
symmetric divergence measure based on the Kullback­
Leiber (KL) divergence [7]. 

In the next section, we describe the data and its 
representation. We then present the proposed HMM 
and the comparison approach along with the results. 
Finally we provide conclusions and future work. 

2. Data 

The data was gathered (under informed consent and 
approval of IERB) via in-vivo and ex-vivo imaging 
of cancerous prostates, obtained from 10 patients who 
have undergone radical prostatectomy as part of their 
treatment (see [3] for details). After removal of the 
prostate, MRI images of the specimen were obtained 
[8]. The prostate was then sliced into 4.4 mrn-thick 
sections; high-resolution imaging and annotation of the 
malignant areas was performed by a physician and con­
firmed by a genitourinary pathologist. 3D reconstruc­
tion of the tissue sections was then performed [9], and 
subsequently registered to in vivo ultrasound imaging 
as described in [3]. This process yields an overlay of 
the pathology assessments onto the utrasound images 
used as the ground truth. 

Ultrasound imaging techniques do not provide ac­
curate information about the location of very small 
objects, due to the scattering phenomenon: the echoes 
reflected from such small objects in soft tissues are 
scattered in all directions rather than solely in the 
direction back to the transducer. Thus, the annotation 
of ultrasound images is based on groups of RF values, 
not a single value, corresponding to areas that can be 
easily visualized by clinicians. Imani et al. proposed 
the use of RF values corresponding to areas, known as 
of Regions Of Interest (ROIs), of 1.7x1.7mm in size 
[3]. In this paper, we use the same ROI size. 

The RF time series of each patient consists of 128 
frames, where each frame corresponds to an image 
taken at a single time point and consists of 1276x64 
intensity values. Each value reflects the echo intensity 
captured from a specific location in the screened area. 
Figure 1 shows an illustration of RF time series data 
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Figure 1: Ultrasound RF echo time series for one patient. It consists 
of 128 frames. each corresponding to a single point in time, where each 
frame comprises of 1276 pixels in the axial direction and 64 pixels in the 
lateral direction. The encircled area in the middle denotes the RF values 
corresponding to the prostate. The arrows are pointing at a group of selected 
regions of interest. 

where the encircled area denotes the RF intensity 
values corresponding to the prostate. A grid of 1.7 x 
1.7mm squares is overlaid on each frame. The grid 
divides each frame into ROIs of 44 RF values in the 
axial direction and 2 values in the lateral direction. The 
ROI grid is depicted in Figure 1. The arrows in Figure 
1 point to selected ROIs. Data from the 10 subjects, 
with clearly labeled normal and cancerous ROIs, are 
used in the analysis described here. The available data 
consists of 625 selected ROIs of which 314 are can­
cerous and 311 are normal as selected by Imani et al. 
[3]. We use the mean intensities of all RF values in 
each selected ROI as the time domain feature modeled 
by the HMM. Due to the scattering phenomenon, the 
imaging technique does not accurately reflect single 
RF values, as a single RF value can be attributed 
to noise or may be generated by multiple scatterers. 
Therefore, averaging the information of 44x2 intensity 
values into a single mean value minimizes the impact 
of noise in the RF time series without significant loss 
of information, and helps reduce the dimensionality of 
the data. 

Since the mean values are real numbers and our 
HMMs are based on discrete observations (see Section 
3 for details,) we discretize the resulting time series 
values. The range of mean values is identified by 
finding the minimum and maximum values of ROI 
means in all patients. This range is then uniformly 
divided into En sub-ranges (bins). The ordinal number 
of each bin is used to represent the mean values falling 
in the sub-range values associated with the bin. We 
chose En = 128 based on the cost measure proposed 
by Shimazaki et al. [10]. To generate the shuffled RF 
time series, we randomly sample S pairs from the time 
points in each ROJ and swap the values between each 
pair. We generated six shuffled versions of the RF time 
series with S equal to 10, 20, 30, 40, 50 and 64. 



3. HMM for Order Assessment 

We assume that the extent of the tissue response to 
ultrasound radiation at certain time-point, depends only 
on the response in the previous time point, and has no 
memory of prior time points. An HMM is defined as a 
pair of two stochastic processes where the first process 
consists of transitions among states that are unobserv­
able and can only be estimated through the second 
process that generates a sequence of observed symbols 
[5]. In this work, we use a discrete HMM to model 
discretized RF time series signals. An HMM is for­
mally defined using five elements: the set of N states 
{SI, ... SN}; the set of M observations {VI, ... VM}; 
the state transition probability distribution matrix, A; 
the observation symbol probability distribution matrix, 
B and the initial state distribution vector, II [5]. 

In our proposed HMM, each time point in the RF 
signal corresponds to a state in the hidden model. Since 
RF time points have a left-to-right order, our HMMs 
are described as strictly left-to-right models. The only 
state transitions allowed are from the state at time point 
t to the state at time point t + 1 for all time points 
t = {I, ... T - I}. The observations associated with 
the states are the bin numbers corresponding to echo 
values in the RF time series. We view each RF time 
series of a single ROI as a time varying stochastic 
random process that we model using HMMs. The 
length of our observation sequence is T =128 and we 
use the same number (128) as the number of states N; 
the set of possible observation symbols is the alphabet 
V = 1, 2, 3 ... 128. The transition matrix A whose 
elements are aij is defined as: 

aij = Pr(Sj at (t + l)ISi at t) = 1, 'ifj = i + 1 

where i E {l, ... N - l},j E {2, ... N} otherwise aij = 0, 
while the observation matrix B whose elements are 
bjk is defined as: 

bj k = Pr(Vk at tlSj at t) = #o� �[:tof: �t t' 

where k E {I, ... M},j E {I, ... N}, 
The initial vector II is defined such that 7fl = 1 and 
7fi = 0 for all i i= 1. We use the cancerous ROIs to 
train an HMM that corresponds to cancerous data (to 
which refer as the cancerous HMM) and the normal 
ROIs to train a normal HMM. In addition, we use 
the six shuffled versions of the RF time series to train 
another set of six cancerous and six normal HMMs. 

The trained HMMs represent tissues response to 
prolonged ultrasound irradiation, over time. We ran 
multiple experiments to compare between ordered and 
shuffled models while changing the number of shuffled 
time points. We compare the HMMs to determine if the 
order of points in the RF time series carries informa­
tion necessary to model the signals. The comparison 
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of HMMs assesses how different the transItIon and 
emission probability distributions of HMMs trained 
with RF times series in their original order (order­
preserving HMM referred to as ordered HMM) and 
the ones trained with shuffled RF time series (order­
altering HMM referred to as shuffled HMM). 

To compare HMMs, we use Monte-Carlo sampling 
to obtain pairs of simulated observation sequences, 
where in each pair, one sequence, Seqi, is sampled 
from the ordered HMM, Ai, and the other, Seqj, is 
sampled from the shuffled HMM, Aj. We then calculate 
the KL-divergence Di of Ai from Aj and the KL­
divergence Dj of Aj from Ai, as suggested by Juang 
et al. [7]. The KL-divergence measure between two 
models Ai and Aj is calculated as: 

Di(Ai,Aj) = logP(SeqiIAi) -logP(SeqiIAj) (1) 

where Seqi is a simulated sequence sampled from 
model Ai, logP( -IAi) and logP( -IAj) are the log 
probabilities of a sequence given the models Ai and Aj. 
Since the divergence measure is non-negative and not 
symmetric, Juang et al. propose the calculation of the 
average of the two KL-divergence values Di and Dj, 
between two models Ai ang

. 
At;. 

as a symmetric KL­

divergence measure Ds = � [7]. 

If the order of points does not carry information 
about the RF time series and their variability, the 
ordered HMM and the shuffled HMM are expected to 
be almost equivalent and the KL-divergence between 
them is expected to be close to zero. When the com­
pared HMMs are equivalent, the log probabilities of a 
sequence given each of the HMMs are identical and 
the divergence is zero. Otherwise if the HMMs are not 
equivalent, the divergence is expected to be a positive 
real number. As the difference between the models 
increases, the KL-divergence between them increases 
as well. 

4. Results and Discussion 

After training seven cancerous HMMs and seven 
normal HMMs (one ordered and six shuffled), we 
repeatedly generated 500 observation-sequences from 
each of the HMMs to overcome any bias introduced by 
the random shuffling and sampling of the observation 
sequences. Using an ordered sequence and a shuffled 
one we calculated the symmetric KL-divergence Ds. 
Each pair of the simulated sequences from the two 
compared models gives rise to a single Ds. We cal­
culated 500 symmetric KL-divergence values between 
the ordered cancerous HMMs and each of the shuffled 
cancerous HMMs and similarly for each of the normal 
HMMs. We then averaged 500 KL-divergence values 



Figure 2: The average symmetric KL-divergence between order-preserving 
and order-altering HMMs as a function of the number of shuffled time points 
in the signal along with their standard deviations over 500 runs. The line 
with triangular markers shows the average KL-divergence for the HMMs of 
cancerous ROls and the line with circular markers shows the KL-divergence 
for the HMMs of normal ROls. 

to obtain a mean estimate of the difference between 
ordered HMMs and each of the shuffled HMMs. As 
shown in Figure 2, we plot the mean KL-divergence 
values between the ordered and the shuffled HMMs 
as a function of the number of shuffled time points. 
The plot with triangular markers shows the results 
obtained when data from cancerous regions are used 
to train the HMMs (both the ordered and the shuffled 
models), whereas the plot with circular markers shows 
results obtained when the training data used comes 
from normal tissue regions (for both the ordered and 
the shuffled models). As shuffling the sequence order 
adds noise the signal, we anticipate an increase in the 
symmetric KL-divergence (between the ordered and 
shuffled HMMs) as the number of shuffled time points 
increases, which is indeed visible in the figure. 

The increase in the symmetric KL-divergence be­
tween the ordered and shuffled HMMs as a function 
of the amount of shuffling demonstrates that the se­
quential order in the data carries significant informa­
tion that can have value in modeling the response of 
prostate tissues to ultrasound irradiation in a proba­
bilistic model. The graph does not show a difference in 
the trend (non-decreasing) between cancerous and non­
cancerous models except for an insignificant decrease 
between point 30 and 40. However, the KL-divergence 
mean values of the cancerous models are larger than 
those of the normal models. The cancerous models ap­
pear more sensitive to random shuffling, until the point 
where the sequences are shuffled beyond recognition 
where more than 50% of the time points are substituted 
and nothing of the original order is retained. 
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5. Conclusion 

We have proposed using a probabilistic modeling 
scheme based on HMMs for RF time series obtained 
from prostate cancer patients. Modeling the RF time 
series in the time domain using an HMM lets us cap­
ture the temporal order in the RF time series, which is 
not taken into account in previous studies. The increase 
in the value of mean symmetric KL-divergence, as 
the amount of shuffling introduced into the sequence 
increases, indicates that the order of points carries 
information necessary to model the variability in the 
responses of prostate tissues to ultrasound irradiation. 
In future work, we will explore the impact of incor­
porating temporal-order into the tissue-classification 
process, and its utility when using RF time series as a 
basis for characterizing normal vs cancerous tissues. 
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