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Abstract—In this paper, we attempt to build a pipeline that 
identifies and extracts disease-drug relationships via sentence 
classification, and demonstrate the feasibility and utility of our 
approach using tardive dyskinesia as a case study. We 
manually developed and annotated a biomedical training 
corpus for tardive dyskinesia. Using 10-fold cross validation, 
we tested and trained a naïve Bayes classifier to identify 
sentences pertaining to disease-drug relationships. Our 
precision, recall, and F-measure were all approximately 66%, 
and area under the ROC curve was over 80%. Our method 
helps to elucidate various drug effects on tardive dyskinesia 
and constitutes an initial effort toward the task of disease-drug 
relationship extraction. 
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Bayes model; Relationship extraction 

I.  INTRODUCTION 
Advances in computational and biological methods have 

greatly accelerated the pace of scientific discovery and 
produced a tremendous amount of experimental and 
computational data in the biomedical domain. Given the 
wealth of information that is available both in scientific 
papers and electronic databases, one particular challenge in 
biomedicine is to detect disease-drug associations and to 
organize them in a meaningful way that will accelerate 
pharmacogenetic research [1]. The main motivation for this 
paper is to devise a method that assists researchers to quickly 
identify disease-drug relationships from the biomedical 
literature and to classify those relationships into specific 
categories to enable better understanding of various drug 
effects. Specifically, we use tardive dyskinesia (TD) as a 
case study for our approach. 

TD is a serious, irreversible neurological disorder 
characterized by repetitive, involuntary, and purposeless 
movements of various body parts. Although the prevalence 
rates are difficult to estimate and have reportedly differed 
across studies, a meta-analysis including 39,187 subjects 
with antipsychotic disorders from 76 studies found an overall 
prevalence of 24.2% [2]. Current research suggests that TD 
may result primarily from neuroleptic-induced D2 receptor 
hypersensitivity in the nigrostriatal pathway [3]. People 
affected by TD exhibit signs of abnormal movements and are 
subjected to humiliation and embarrassment, which lead to 
social stigma and inability to lead a normal lifestyle. This 

paper uses TD as a case study to build a model that seeks to 
better understand TD-related drugs and other symptomatic 
observations in association with TD. 

 In order to develop such a model and a classification 
system, we first set out to manually assemble and annotate a 
biomedical training corpus concerning TD via sentence 
classification. To identify relevant sentences related to drug 
effects in TD, we employed a naïve Bayes modeling 
classifier using the WEKA implementation (Waikato 
Environment for Knowledge Analysis) [4]. To assess the 
system, we employed the 10-fold cross-validation method to 
evaluate using precision, recall, F-measure, and area under 
the ROC curve. Our weighted average for precision, recall, 
and F-measure were all approximately 66%, and area under 
the ROC curve was over 80%. 

We organize the rest of the paper as follows: First, we 
describe current tools to mine disease-drug associations from 
the biomedical literature. Then, we explain our method to 
annotate the biomedical training corpus for TD. We continue 
with the development and evaluation of our classification 
model. Finally, we present a discussion of the results and 
future work. 

II. BACKGROUND AND RELATED WORK 
Given the vast bodies of phenotypic and pharmaceutical 

data that are available both in scientific papers and electronic 
databases, researchers now face the challenge of integrating 
this data to detect disease-drug associations and construct 
meaningful scientific queries to support knowledge 
discovery. Several text mining tools have been developed to 
facilitate this purpose. MedMiner [5] is a keyword-based 
system that requires the user or programmer to supply the 
drug and gene names. EDGAR [6], which stands for 
Extraction of Drugs, Genes and Relations, is a natural 
language processing system that extracts information about 
drugs and genes relevant to cancer from the biomedical 
literature. The system is still under development and its 
performance has not been quantitatively assessed [6]. 

Textpresso [7] supports full text literature search over 
categories of terms pertaining to several model organisms 
including C. elegans and Mouse. Some other biomedical text 
mining systems include MedGene [8], LitMiner [9], iHOP 
[10], and ALIBABA [11]. However, these text mining tools 
were designed only to identify and extract relevant terms 
without further analysis on the specific relationships between 

2012 IEEE International Conference on Bioinformatics and Biomedicine 

 978-1-4673-2560-8/12/$31.00 ©2012 IEEE 548



biological entities and facts. As such, researchers using these 
systems in an attempt to identify adverse drug effects in a 
specific disease may obtain much data that may contain 
many false positives. For example, a search for TD and its 
associated drugs using Textpresso for mouse yielded 859 
matches in 115 documents. Given the large number of 
matches returned, it would be a very time-consuming task 
for a researcher to analyze the type of relationships that exist 
between the objects identified and to understand specific 
drug effects for this particular disease. 

III. METHODS 

A. Overview of the Pipeline 
Fig. 1 shows an overview of our pipeline for document 

retrieval and sentence classification. It combines publicly 
available open-source components such as Genia Sentence 
Splitter [12] and Weka [4] with Perl scripts for data 
processing that we have written for this purpose. TD-related 
abstracts are retrieved from the PubMed database, fed into 
the Genia Sentence Splitter, tagged for drug name mentions, 
then manually categorized. Next, the text is tokenized into 
individual words and passed to Weka to build a sentence 
classifier. The classifier is compared against manual 
annotation and evaluated. 

B. Document Retrieval and Sentence Classification 
We first retrieved a set of abstracts that are related to TD 

from PubMed. According to the Unified Medical Language 
System (UMLS) Metathesaurus [13], which is a large (more 
than 620,000 concepts) compilation of several controlled 
vocabularies in the biomedical domain, TD has several 
textual variants that should be used when retrieving relevant 
biomedical text. A search using tardive dyskinesia and its 
related synonyms in either the title or abstract was 
performed. A total of 2783 PubMed abstracts were retrieved, 
of which 1734 were published between 1/1/1990-
12/12/2011. We omit abstracts published earlier than 
1/1/1990 because they do not contain the most up-to-date 
information about the disease in which we are interested. 
Fig. 2 shows the number of PubMed articles pertaining to 
TD, as a function of publication year for all articles and those 
that have an actual abstract stored. 

The abstracts were passed to the GENIA Sentence 
Splitter [12], whose performance is reported to be an F-score 
of 99.7% [12]. A total of 16468 sentences were correctly 
obtained from 1734 PubMed abstracts, giving an average of 
9 sentences per abstract, with a maximum of 38 sentences 

 

and a minimum of 2 sentences as shown in Fig. 3. 
The sentences were then passed to a Perl script that looks 

for specific drug mentions. The drug ontology that we start 
with has 1494 drug names and synonyms from DrugBank’s 
list of FDA-approved drugs. An additional 337 small 
molecules and 1138 drug classes from PharmGKB [14] were 
subsequently added. The resulting drug ontology was then 
manually curated by the first author, altogether consisting of 
2968 drugs, small molecules, and drug classes. This drug 
ontology may be used to mine drug name and class mentions 
in relation to other diseases in the future. By including drug 
classes, our system is able to correctly identify 12.90% more 
TD-specific sentences compared to only having drug names. 

Out of a total of 16468 sentences, 3993 (24.25%) 
sentences were found to contain one or more drug names. 
Those were parsed from 1734 PubMed abstracts, which gave 
an average of 2-3 drug-related sentences per abstract. We 
used a random set of 607 drug-containing sentences, and 
examined the number of drug mentions per sentence. When 
there are multiple drug name mentions in a sentence, we use 
the first drug because this is typically the focus of the 
sentence, except when a connector such as and or or was 
used. This was found to be true 95.72% of the time (581 
sentences). Following this pattern, we associated the disease 
with the first drug mentioned and found 574 (94.56%) 
sentences to contain one drug name, and 33 (5.44%) 
sentences to contain two or more drug names. 

Extensive manual classification of the 607 sentences was 
carried out by three annotators to ensure consistency. Two of 
these annotators are authors of this paper (which may 
constitute a limitation in classification results); one is 
independent from the paper and is blinded to the design and 
development of our system. All three annotators are 
experienced biologists holding at least an MSc degree, are 
familiar with pharmacology and have several years of 
professional annotation experience. 

The sentences were classified into one of three 
categories: sentences that demonstrate benefit of a drug in 
relation to a disease were assigned to the Positive category, 
i.e. the drug is used to treat the disease. Sentences that 
involve negative effects between a drug and a disease were 
assigned to the Negative category, i.e. the drug induces the 
disease or is associated with progression of the disease. 
Sentences that belong to neither the positive nor the negative 
effect category were assigned to the Neither category. This 
occurs when the drug has no relation to the biological disease 
or when the sentence is inconclusive or exploratory in nature. 

The agreement rate between at least two of the annotators

Figure 1. Document retrieval and sentence classification pipeline
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Figure 2. Number of TD articles by publication year 

 

 
Figure 3. Number of sentences per abstract 

 
was 88.6%, and among all three annotators was 81.25%. The 
disagreement was primarily between the Negative and 
Neither classes. In case of disagreement, categories were 
assigned by majority votes among all three annotators. We 
excluded sentences that had three-way disagreement. The 
number of annotated sentences that belong to each category 
is shown in Table I. For training and testing a classifier, we 
use the 604 sentences for which the classification was 
determined into one of the three main classes. 

C. Building a Naïve Bayes Classifier 
Following manual annotation, the next step entails 

generating a classifier using the annotated dataset for training 
and testing. For preprocessing the data and training/testing 
the naïve Bayes classifier, we use the Weka [4] tools, which 
have been used in a variety of other applications. We use the 
naïve Bayes classifier as it is simple and computationally 
efficient, and has relatively good predictive performance [15, 
16].  

The procedure carried out to train our naïve Bayes 
classifier is the following: We used programs in Weka to 
break sentences into individual words based on blank spaces 
and punctuation marks, and eliminate words whose term 
frequencies were fewer than 3 times. We experimented with 
several thresholds on term frequency, and 3 was established 
to be the best cutoff point to build an effective classifier. Our 
baseline measurement against which we compare our results 

 
TABLE I. MANUAL CLASSIFICATION RESULTS 

# articles 607 
Positive (1) 191 
Negative (2) 161 
Neither (3) 252 
Excluded 3 

obtained using the naïve Bayes classifier for the Positive, 
Negative, and Neither classes were 0.32, 0.27, and 0.41, 
respectively. 

Some examples of words along with their corresponding 
conditional probabilities as calculated by training are shown 
in Table II. As expected, words associated with positive 
outcomes such as therapeutic and improvement have a 
higher probability to occur in the Positive class; whereas 
words with negative outcomes such as vacuous (as in 
vacuous chewing movement) and neurotoxic have a higher 
probability to occur in the Negative class. It is important to 
note that differences in word probability across the classes 
are quite small, so that the words are not necessarily 
informative, which might be due to the small dataset. Further 
research in feature selection is needed to aid the explicit 
choice of distinguishing terms as was done in other area [17]. 

IV. RESULTS AND DISCUSSION 
Cross validation is commonly used to evaluate 

performance of predictive modeling techniques such as naïve 
Bayes [18]. We applied 10-fold cross-validation to train and 
test the classifier, where each observation is used for testing 
exactly once. Results from the 10-fold cross-validation were 
measured in terms of precision, recall, F-measure, and area 
under the ROC curve, as shown in Table III. Precision, 
recall, and F-measure were calculated according to 
conventional definitions. 

The classifier achieved a fairly good precision, recall, and 
area under the ROC curve in classifying sentences retrieved 
from abstracts associated with TD. We were able to obtain a 
precision, recall, and area under the ROC curve of 
approximately 66%, 66%, and 83%, respectively. As a 
baseline of comparison, if we were to assign all sentences to 
the majority class – the Neither class, we would obtain 
precision and recall of only 41.68%.  
Some factors account for misclassification. Sentences 
containing multiple drug names may be associated with both 
positive and negative words. Analyzing the output of the 
classifier, we noted that 28% of the sentences (20 sentences) 
that were misclassified contained an ambiguous statement of 
the form: “Drug A is used to treat Disease B, but causes C as 
a side effect.” To address this issue of contrasting biological 
observations that contributed to classification error, we 
looked into the possibility of using syntactic and semantic 
processing to identify multiple event descriptions in the 
sentences by passing the output data to MetaMap [19] 
(results not shown). 

Misclassification also occurred in sentences that have 
multiple drug mentions, where we associated an effect with 
the drug mentioned first, as that is typically the focus of the 
sentence. However, exception to this rule occurs when  

 
TABLE II. SOME EXAMPLES OF WORD PROBABILITY 

The probability of a word given the class
Positive Negative Neither

therapeutic 0.0022 3.228E-4 9.164E-4
improvement 0.0055 6.456E-4 4.582E-4
vacuous 5.490E-4 0.0036 2.291E-4
neurotoxic 2.745E-4 0.0013 2.291E-4
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TABLE III DETAILED ACCURACY BY CLASS 
Class Precision Recall F-measure ROC area

1 0.645 0.686 0.665 0.827 
2 0.627 0.615 0.621 0.837 
3 0.691 0.667 0.679 0.824 

Weight
ed Avg. 0.66 0.659 0.659 0.828 

 
biological effects discussed do not pertain to the first drug in 
the sentence. Better method may be developed to accurately 
analyze drug mentions and reported effects. 

This work can be further extended to other biological 
diseases and can be used to mine relationships other than 
those between diseases and drugs. For instance, gene name 
mentions may be identified and associated with drug 
mentions to examine the role of genetic variants in individual 
drug response [20, 21]. Biological processes or pathways 
may also be associated with certain genes or proteins to 
understand the molecular mechanisms that underlie a disease 
[22, 23]. 

V. CONCLUSION 
We have manually developed and annotated a large 

biomedical training corpus for tardive dyskinesia by 
manually classifying sentences into one of three classes. We 
used the annotated data to train and test a naïve Bayes 
classifier, employing 10-fold cross-validation. Our precision, 
recall, and F-measure were 66%, and area under the ROC 
curve was over 80%.  We also looked into the possibility of 
using syntactic and semantic processing to identify multiple 
event descriptions in the sentences by passing the output data 
to MetaMap. 

The work includes several components that are not found 
in many of the text mining systems that extract relationships 
between diseases and drugs. These include: (1) a 
comprehensive drug ontology that consists of 2968 drugs, 
small molecules, and drug classes; (2) biomedical training 
corpus on tardive dyskinesia which has been consistently and 
extensively annotated for classification purposes; and (3) 
identification of distinct biological observations for disease-
drug relationships found in biomedical text using software 
tools that are open-source and readily available. 
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