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Markov Models in Medical Decision Making:
A Practical Guide

FRANK A. SONNENBERG, MD, J. ROBERT BECK, MD

Markov models are useful when a decision problem involves risk that is continuous over
time, when the timing of events is important, and when important events may happen more
than once. Representing such clinical settings with conventional decision trees is difficult
and may require unrealistic simplifying assumptions. Markov models assume that a patient
is always in one of a finite number of discrete health states, called Markov states. All events
are represented as transitions from one state to another. A Markov model may be evaluated
by matrix algebra, as a cohort simulation, or as a Monte Carlo simulation. A newer repre-
sentation of Markov models, the Markov-cycle tree, uses a tree representation of clinical
events and may be evaluated either as a cohort simulation or as a Monte Carlo simulation.
The ability of the Markov model to represent repetitive events and the time dependence of
both probabilities and utilities allows for more accurate representation of clinical settings that
involve these issues. Key words: Markov models; Markov-cycle decision tree; decision mak-
ing. (Med Decis Making 1993;13:322-338)

A decision tree models the prognosis of a patient sub-
sequent to the choice of a management strategy. For

example, a strategy involving surgery may model the
events of surgical death, surgical complications, and
various outcomes of the surgical treatment itself. For
practical reasons, the analysis must be restricted to a
finite time frame, often referred to as the time horizon
of the analysis. This means that, aside from death, the
outcomes chosen to be represented by terminal nodes
of the tree may not be final outcomes, but may simply
represent convenient stopping points for the scope of
the analysis. Thus, every tree contains terminal nodes
that represent &dquo;subsequent prognosis&dquo; for a particular
combination of patient characteristics and events.
There are various ways in which a decision analyst

can assign values to these terminal nodes of the de-
cision tree. In some cases the outcome measure is a
crude life expectancy; in others it is a quality-adjusted
life expectancy.’ One method for estimating life ex-
pectancy is the declining exponential approximation
of life expectancy (DEALE),2 which calculates a patient-
specific mortality rate for a given combination of pa-
tient characteristics and comorbid diseases. Life ex-

pectancies may also be obtained from Gompertz models

of survival’ or from standard life tables.’ This paper
explores another method for estimating life expec-
tancy, the Markov model.

In 1983, Beck and Pauker described the use of Mar-
kov models for determining prognosis in medical ap-
plications.’ Since that introduction, Markov models
have been applied with increasing frequency in pub-
lished decision analyses.’-9 Microcomputer software
has been developed to permit constructing and eval-
uating Markov models more easily. For these reasons,
a revisit of the Markov model is timely. This paper
serves both as a review of the theory behind the Mar-
kov model of prognosis and as a practical guide for
the construction of Markov models using microcom-
puter decision-analytic software.
Markov models are particularly useful when a de-

cision problem involves a risk that is ongoing over time.
Some clinical examples are the risk of hemorrhage
while on anticoagulant therapy, the risk of rupture of
an abdominal aortic aneurysm, and the risk of mor-

tality in any person, whether sick or healthy. There
are two important consequences of events that have
ongoing risk. First, the times at which the events will
occur are uncertain. This has important implications
because the utility of an outcome often depends on
when it occurs. For example, a stroke that occurs im-
mediately may have a different impact on the patient
than one that occurs ten years later. For economic

analyses, both costs and utilities are discounted&dquo;,&dquo;
such that later events have less impact than earlier
ones. The second consequence is that a given event
may occur more than once. As the following example
shows, representing events that are repetitive or that
occur with uncertain timing is difficult using a simple
tree model.
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A Specific Example
Consider a patient who has a prosthetic heart valve

and is receiving anticoagulant therapy. Such a patient
may have an embolic or hemorrhagic event at any time.
Either kind of event causes morbidity (short-term and/
or chronic) and may result in the patient’s death. The
decision tree fragment in figure 1 shows one way of
representing the prognosis for such a patient. The first
chance node, labelled ANTICOAG, has three branches,
labelled BLEED, EMBOLUS, and NO EVENT. Both BLEED and

EMBOLUS may be either FATAL or NON-FATAL. If NO EVENT

occurs, the patient remains WELL.
There are several shortcomings with this model. First,

the model does not specify when events occur. Sec-
ond, the structure implies that either hemorrhage or
embolus may occur only once. In fact, either may oc-
cur more than once. Finally, at the terminal nodes
labelled POST EMBOLUS, POST BLEED, and WELL, the analyst
still is faced with the problem of assigning utilities, a
task equivalent to specifying the prognosis for each of
these non-fatal outcomes.

The first problem, specifying when events occur,
may be addressed by using the tree structure in figure
1 and making the assumption that either BLEED or
EMBOLUS occurs at the average time consistent with
the known rate of each complication. For example, if
the rate of hemorrhage is a constant 0.05 per person
per year, then the average time before the occurrence

of a hemorrhage is 1/0.05 or 20 years. Thus, the event
of having a fatal hemorrhage will be associated with
a utility of 20 years of normal-quality survival. However,
the patient’s normal life expectancy may be less than
20 years. Thus, the occurrence of a stroke would have
the paradoxical effect of improving the patient’s life
expectancy. Other approaches, such as assuming that
the stroke occurs halfway through the patient’s nor-
mal life expectancy, are arbitrary and may lessen the
fidelity of the analysis.
Both the timing of events and the representation of

events that may occur more than once can be ad-

dressed by using a recursive decision tree.12 In a re-
cursive tree, some nodes have branches that have ap-

peared previously in the tree. Each repetition of the
tree structure represents a convenient length of time
and any event may be considered repeatedly. A re-
cursive tree that models the anticoagulation problem
is depicted in figure 2.

Here, the nodes representing the previous terminal
nodes POST-BLEED, POST-EMBOLUS, and No EVENT are re-

placed by the chance node ANTICOAG, which appeared
previously at the root of the tree. Each occurrence of
BLEED or EMBOLUS represents a distinct time period, so
the recursive model can represent when events occur.
However, despite this relatively simple model and car-
rying out the recursion for only two time periods, the
tree in figure 2 is &dquo;bushy,&dquo; with 17 terminal branches.
If each level of recursion represents one year, then

FIGURE 1. Simple tree fragment modeling complications of antico-
agulant therapy.

carrying out this analysis for even five years would
result in a tree with hundreds of terminal branches.

Thus, a recursive model is tractable only for a very
short time horizon.

The Markov Model

The Markov model provides a far more convenient
way of modelling prognosis for clinical problems with
ongoing risk. The model assumes that the patient is
always in one of a finite number of states of health
referred to as Markov states. All events of interest are
modelled as transitions from one state to another. Each
state is assigned a utility, and the contribution of this
utility to the overall prognosis depends on the length
of time spent in the state. In our example of a patient
with a prosthetic heart valve, these states are WELL,
DISABLED, and DEAD. For the sake of simplicity in this
example, we assume that either a bleed or a non-fatal
embolus will result in the same state (DISABLED) and
that the disability is permanent.
The time horizon of the analysis is divided into equal

increments of time, referred to as Markov cycles. Dur-
ing each cycle, the patient may make a transition from
one state to another. Figure 3 shows a commonly used
representation of Markov processes, called a state-
transition diagram, in which each state is represented
by a circle. Arrows connecting two different states in-
dicate allowed transitions. Arrows leading from a state
to itself indicate that the patient may remain in that
state in consecutive cycles. Only certain transitions
are allowed. For example, a person in the WELL state
may make a transition to the DISABLED state, but a
transition from DISABLED to WELL is not allowed. A per-
son in either the WELL state or the DISABLED state may
die and thus make a transition to the DEAD state. How-
ever, a person who is in the DEAD state, obviously,
cannot make a transition to any other state. Therefore,
a single arrow emanates from the DEAD state, leading
back to itself. It is assumed that a patient in a given
state can make only a single state transition during a
cycle.
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FIGURE 2. Recursive tree mod-

eling complications of antico-
agulant therapy.

The length of the cycle is chosen to represent a

clinically meaningful time interval. For a model that
spans the entire life history of a patient and relatively
rare events the cycle length can be one year. On the
other hand, if the time frame is shorter and models
events that may occur much more frequently, the cycle
time must be shorter, for example monthly or even
weekly. The cycle time also must be shorter if a rate
changes rapidly over time. An example is the risk of
perioperative myocardial infarction (MI) following pre-
vious MI that declines to a stable value over six months.&dquo;
The rapidity of this change in risk dictates a monthly
cycle time. Often the choice of a cycle time will be

determined by the available probability data. For ex-
ample, if only yearly probabilities are available, there
is little advantage to using a monthly cycle length.

INCREMENTAL UTILITY

Evaluation of a Markov process yields the average
number of cycles (or analogously, the average amount
of time) spent in each state. Seen another way, the

patient is &dquo;given credit&dquo; for the time spent in each
state. If the only attribute of interest is duration of

survival, then one need only add together the average
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FIGURE 3. Markov-state diagram. Each circle represents a Markov
state. Arrows indicate allowed transitions.

times spent in the individual states to arrive at an

expected survival for the process.

n

Expected utility = ~ ts
s=l i

where ts is the time spent in state s.

Usually, however, the quality of survival is consid-
ered important. Each state is associated with a quality
factor representing the quality of life in that state rel-
ative to perfect health. The utility that is associated
with spending one cycle in a particular state is referred
to as the incremental utility. Consider the Markov pro-
cess depicted in figure 3. If the incremental utility of
the DISABLED state is 0.7, then spending the cycle in
the DISABLED state contributes 0.7 quality-adjusted cycles
to the expected utility. Utility accrued for the entire
Markov process is the total number of cycles spent in
each state, each multiplied by the incremental utility
for that state.

n

Expected utility = ~ ts X Us
s=l i

Let us assume that the DEAD state has an incremen-

tal utility of zero,* and that the WELL state has an in-
cremental utility of 1.0. This means that for every cycle
spent in the WELL state the patient is credited with a
quantity of utility equal to the duration of a single
Markov cycle. If the patient spends, on average, 2.5
cycles in the WELL state and 1.25 cycles in the DISABLED
state before entering the DEAD state, the utility assigned
would be (2.5 X 1) + (1.25 X 0.7), or 3.9 quality-ad-
justed cycles. This number is the quality-adjusted life
expectancy of the patient.

* For medical examples, the incremental utility of the absorbing
DEAD state must be zero, because the patient will spend an infinite
amount of time in the DEAD state and if the incremental utility were
non-zero, the net utility for the Markov process would be infinite.

When performing cost-effectiveness analyses, a
separate incremental utility may be specified for each
state, representing the financial cost of being in that
state for one cycle. The model is evaluated separately
for cost and survival. Cost-effectiveness ratios are cal-
culated as for a standard decision tree.10,11

TYPES OF MARKOV PROCESSES

Markov processes are categorized according to
whether the state-transition probabilities are constant
over time or not. In the most general type of Markov
process, the transition probabilities may change over
time. For example, the transition probability for the
transition from WELL to DEAD consists of two compo-
nents. The first component is the probability of dying
from unrelated causes. In general, this probability
changes over time because, as the patient gets older,
the probability of dying from unrelated causes will
increase continuously. The second component is the
probability of suffering a fatal hemorrhage or embolus
during the cycle. This may or may not be constant
over time.

A special type of Markov process in which the tran-
sition probabilities are constant over time is called a
Markov chain. If it has an absorbing state, its behavior
over time can be determined as an exact solution by
simple matrix algebra, as discussed below. The DEALE
can be used to derive the constant mortality rates
needed to implement a Markov chain. However, the
availability of specialized software to evaluate Markov
processes and the greater accuracy afforded by age-
specific mortality rates have resulted in greater reli-
ance on Markov processes with time-variant proba-
bilities.

The net probability of making a transition from one
state to another during a single cycle is called a tran-
sition probability. The Markov process is completely
defined by the probability distribution among the
starting states and the probabilities for the individual
allowed transitions. For a Markov model of n states,
there will be n2 transition probabilities. When these
probabilities are constant with respect to time, they
can be represented by an n x n matrix, as shown in
table 1. Probabilities representing disallowed transi-
tions will, of course, be zero. This matrix, called the P

matrix, forms the basis for the fundamental matrix
solution of Markov chains described in detail by Beck
and Pauker.’

TaMe 1 . P Matrix
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FIGURE 4. Markov-state diagram. The shaded circle labeled &dquo;STROKE&dquo;
represents a temporary state.

THE MARKOV PROPERTY

The model illustrated in figure 3 is compatible with
a number of different models collectively referred to
as finite stochastic processes. In order for this model
to represent a Markov process, one additional restric-
tion applies. This restriction, sometimes referred to as
the Markovian assumption’ or the Markov property) 14
specifies that the behavior of the process subsequent
to any cycle depends only on its description in that
cycle. That is, the process has no memory for earlier
cycles. Thus, in our example, if someone is in the

DISABLED state after cycle n, we know the probability
that he or she will end up in the DEAD state after cycle
n + 1. It does not matter how much time the person

spent in the WELL state before becoming DISABLED. Put
another way, all patients in the DISABLED state have the
same prognosis regardless of their previous histories.
For this reason, a separate state must be created for
each subset of the cohort that has a distinct utility or
prognosis. If we want to assign someone disabled from
a bleed a different utility or risk of death than someone
disabled from an embolus, we must create two dis-
abled states. The Markovian assumption is not fol-
lowed strictly in medical problems. However, the as-
sumption is necessary in order to model prognosis
with a finite number of states.

MARKOV STATES

In order for a Markov process to terminate, it must
have at least one state that the patient cannot leave.
Such states are called absorbing states because, after
a sufficient number of cycles have passed, the entire
cohort will have been absorbed by those states. In
medical examples the absorbing states must represent
death because it is the only state a patient cannot
leave. There is usually no need for more than one DEAD

state, because the incremental utility for the DEAD state
is zero. However, if one wishes to keep track of the
causes of death, then more than one DEAD state may
be used.

Temporary states are required whenever there is an
event that has only short-term effects. Such states are
defined by having transitions only to other states and
not to themselves. This guarantees that the patient
can spend, at most, one cycle in that state. Figure 4
illustrates a Markov process that is the same as that

shown in figure 3 except that a temporary state has
been added, labeled STROKE. An arrow leads to STROKE

only from the WELL state, and there is no arrow from
the STROKE back to itself. This ensures that a patient
may spend no more than a single cycle in the STROKE
state. Temporary states have two uses. The first use is
to apply a utility or cost adjustment specific to the
temporary state for a single cycle. The second use is
to assign temporarily different transition probabilities.
For example, the probability of death may be higher
in the STROKE state than in either the WELL state or the
DISABLED state.

A special arrangement of temporary states consists
of an array of temporary states arranged so that each
has a transition only to the next. These states are called
tunnel states because they can be visited only in a fixed
sequence, analogous to passing through a tunnel. The
purpose of an array of tunnel states is to apply to
incremental utility or to transition probabilities a tem-
porary adjustment that lasts more than one cycle.
An example of tunnel states is depicted in figure 5.

The three tunnel states, shaded and labelled POST Mil

through POST M13, represent the first three months fol-
lowing an MI. The POST Mil state is associated with the
highest risk of perioperative death. POST MI2 and POST
M13 are associated with successively lower risks of per-
ioperative death. If a patient passes through all three
tunnel states without having surgery, he or she enters
the POST Mi state, in which the risk of perioperative
death is constant.

Because of the Markovian assumption, it is not pos-
sible for the prognosis of a patient in a given state to
depend on events prior to arriving in that state. Often,
however, patients in a given state, for example WELL,
may actually have different prognoses depending on
previous events. For example, consider a patient who
is WELL but has a history of gallstones. Each cycle, the
patient has a certain probability of developing com-
plications from the gallstones. Following a cholecys-
tectomy, the patient will again be WELL but no longer
has the same probability of developing biliary com-
plications. Thus, the state WELL actually contains two
distinct populations of people, those with gallstones
and those who have had a cholecystectomy. In order
for the model to reflect the different prognoses for
these two classes of well patients, it must contain two
distinct well states, one representing WELL WITH GALL-
STONES and the other representing WELL, STATUS-POST
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FIGURE 5. Tunnel states: the three shaded circles represent tem-

porary states that can be visited only in a fixed sequence.

CHOLECYSTECTOMY. In general, if prognosis depends in
any way on past history, it requires that there be one
distinct state to represent the different histories.

USE OF THE MARKOV PROCESS IN

DECISION ANALYSIS

The Markov process models prognosis for a given
patient and thus is analogous to a utility in an ordinaiy
decision tree. For example, if we are trying to choose
between surgeiy and medical therapy, we may con-
struct a decision tree like that shown in figure 6A. In
this case, events of interest, such as operative death
and cure, are modelled by tree structure &dquo;outside&dquo; the
Markov process. The Markov process is being used
simply to calculate survival for a terminal node of the
tree. This structure is inefficient, because it requires
that an entire Markov process be run for each terminal

node, of which there may be dozens or even hundreds.
A far more efficient structure is shown in figure 6B. In
this case, the Markov process incorporates all events
of interest and the decision analysis is reduced simply
to comparing the values of two Markov processes. The
use of the cycle tree representation (discussed in detail
below) permits representing all relevant events within
the Markov process.

1#nufllati’is of Markov Models

THE FUNDAMENTAL MATRIX SOLUTION

When the Markov process has constant transition

probabilities (and constant incremental utilities) for
all states, the expected utility may be calculated by
matrix algebra to yield the fundamental matrix, which
shows, for each starting state, the expected length of
time spent in the state. The matrix solution is fast and

provides an &dquo;exact&dquo; solution that is not affected by the
cycle length. There are three main disadvantages of
the matrix formation. The first is the difficulty in per-
forming matrix inversion. However, this is less of a

problem than when Beck and Pauker’ described the
technique, because many commonly available micro-
computer spreadsheet programs now perform matrix
algebra. The second disadvantage is the restriction to
constant transition probabilities. The third disadvan-
tage is the need to represent all the possible ways of
making a transition from one state to another as a
single transition probability. At least for medical ap-
plications, the matrix algebra solution has been largely
relegated to the history books. For more details of the
matrix algebra solution the reader is referred to Beck
and Pauker.’

FIGURE 6. Use of Markov processes in a decision model. In panel A
(top), the Markov process is used only as a utility. In panel B (bottom),
the Markov process is used to represent all events.
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FIGURE 7. Markov cohort simulation. PanelA (top), shows the initial
distribution with all patients in the WELL state. Panel B (middle)
shows the distribution partway through the simulation. Panel C
(bottom) shows the final distribution, with the entire cohort in the

DEAD state.

MARKOV COHORT SIMULATION

The Markov cohort simulation is the most intuitive

representation of a Markov process. The difference
between a cohort simulation and the matrix formu-

lation may be thought of as analogous to the difference
between determining the area under a curve by divid-
ing it into blocks and summing their areas versus cal-

culating the area by solving the integral of the function
describing the curve. The simulation considers a hy-
pothetical cohort of patients beginning the process
with some distribution among the starting states. Con-
sider again the prognosis of a patient who has a pros-
thetic heart valve, represented by the Markov-state dia-
gram in figure 3. Figure 7A illustrates the cohort at the
beginning of the simulation. In this example, all pa-
tients are in the WELL state. However, it is not necessary
to have all patients in the same state at the beginning
of the simulation. For example, if the strategy repre-
sents surgery, a fraction of the cohort may begin the

simulation in the DEAD state as a result of operative
mortality.
The simulation is &dquo;run&dquo; as follows. For each cycle,

the fraction of the cohort initially in each state is par-
titioned among all states according to the transition
probabilities specified by the P matrix. This results in
a new distribution of the cohort among the various
states for the subsequent cycle. The utility accrued for
the cycle is referred to as the cycle sum and is cal-
culated by the formula:

where n is the number of states, fs is the fraction of
the cohort in state s, and U, is the incremental utility
of state s. The cycle sum is added to a running total
that is referred to as the cumulative utility. Figure 7B
shows the distribution of the cohort after a few cycles.
Fifty percent of the cohort remains in the WELL state.
Thirty percent of the cohort is in the SICK state and
20% in the DEAD state. The simulation is run for enough
cycles so that the entire cohort is in the DEAD state
(fig. 7C).
The cohort simulation can be represented in tabular

form, as shown in table 2. This method may be im-

plemented easily using a microcomputer spreadsheet
program. The first row of the table represents the start-

ing distribution. A hypothetical cohort of 10,000 pa-
tients begins in the WELL state. The second row shows
the distribution at the end of the first cycle. In ac-
cordance with the transition probabilities specified in
the P-matrix (table 1), 2,000 patients (20% of the original
cohort) have moved to the DISABLED state and another

2,000 patients to the DEAD state. This leaves 6,000 (60%)
remaining in the WELL state. This process is repeated
in subsequent cycles. The fifth column in table 2 shows
the calculation of the cycle sum, which is the sum of
the number of cohort members in each state multi-

plied by the incremental utility for that state. For ex-
ample, because the incremental utility of the DISABLED
state is 0.7, the cycle sum during cycle 1 is equal to
(6,000 X 1) + (2,000 X 0.7) = 7,400. The DEAD state

does not contribute to the cycle sum because its in-

Table 2 . Markov Cohort Simulation
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cremental utility is zero. The sixth column shows the 
‘

cumulative utility following each cycle.
Because the probabilities of leaving the WELL and

DEAD states are finite and the probability of leaving the
DEAD sate is zero, more and more of the cohort ends

up in the DEAD state. The fraction of the cohort in the
DEAD state actually is always less than 100% because,
during each cycle, there is a finite probability of a
patient’s remaining alive. For this reason, the simu-
lation is stopped when the cycle sum falls below some
arbitrarily small threshold (e.g., 1 person-cycle) or when
the fraction of the cohort remaining alive falls below
a certain amount. In this case, the cycle sum falls
below 1 after 24 cycles. The expected utility for this
Markov cohort simulation is equal to the cumulative
utility when the cohort has been completely absorbed
divided by the original size of the cohort. In this case,
the expected utility is 23,752/10,000, or 2.3752 quality-
adjusted cycles. The unadjusted life expectancy may
be found by summing the entries in the columns for
the WELL and DISABLED states and dividing by the cohort
size. Notice that the cohort memberships at the start
do not contribute to these sums. Thus, the cohort
members will spend, on average, 1.5 cycles in the WELL
state and 1.25 cycles in the DISABLED state, for a net
unadjusted life expectancy of 2.75 cycles.

THE HALF-CYCLE CORRECTION

The Markov model assumes that during a single
cycle, each patient undergoes no more than one state
transition. One way to visualize the Markov process is

to imagine that a clock makes one &dquo;tick&dquo; for each cycle
length. At each tick, the distribution of states is ad-
justed to reflect the transitions made during the pre-
ceding cycle. The Markov cohort simulation requires
explicit bookkeeping (as illustrated in table 2) during
each cycle to give credit according to the fraction of
the cohort in each state. In the example illustrated in
table 2, the bookkeeping was performed at the end of
each cycle.

In reality, transitions occur not only at the clock
ticks, but continuously throughout each cycle. There-
fore, counting the membership only at the beginning
or at the end of the cycle will lead to errors. The
process of carrying out a Markov simulation is anal-
ogous to calculating expected survival that is equal to
the area under a survival curve. Figure 8 shows a sur-
vival curve for members of a state. The smoothness of

the curve reflects the continuous nature of state tran-
sitions. Each rectangle under the curve represents the
accounting of the cohort membership during one cycle
when the count is performed at the end of each cycle.
The area of the rectangles consistently underestimates
the area under the curve. Counting at the beginning
of each cycle, as in figure 9, consistently overestimates
survival. To more accurately reflect the continuous
nature of the state transitions, we make the assump-

FIGURE 8. Counting cohort membership at the end of each cycle.

FIGURE 9. Counting cohort membership at the beginning of each
cycle.

FIGURE 10. Illustration of the half-cycle correction.
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tion that state transitions occur, on average, hayway
through each cycle. There is no way to determine the
state membership in the middle of the cycle. However,
if we consider the count at the end of each cycle to
be in the middle of a cycle that begins halfway through
the previous cycle and ends halfway through the sub-
sequent cycle, as in figure 10, then the under- and
overestimations will be balanced. This is equivalent to
shifting all cycles one half cycle to the right. We must
then add a half cycle for the starting membership at
the beginning to compensate for this shift to the right.
Adding a half cycle for the example in table 2 results
in an expected utility of 2.875 quality-adjusted cycles
and a life expectancy of 3.25 cycles.
The shift to the right makes no difference at the end

of the simulation if the cohort is completely absorbed
because the state membership at that time is infini-
tesimal. However, if the simulation is terminated prior
to the absorption of the cohort, the shift to the right
will result in overestimation of the expected survival.
Therefore, for simulations that terminate prior to ab-

sorption, an additional correction must be made by
subtracting a half cycle for members of the state who
are still alive at the end of the simulation. The im-

portance of the half cycle correction depends on cycle
length. If the cycle length is veiy short relative to av-
erage survival, the difference between actual survival
and simulated survival (as shown in figure 8) will be
small. If the cycle time is larger relative to suivival, the
difference will be more significant. The interested reader
should note that the fundamental matrix represen-
tation is equivalent to counting state membership at
the beginning of each cycle. Therefore) the correction
that should be applied to the result of a matrix solution
is subtraction of one half cycle from the membership
of each starting state.

FIGURE 11. Probability tree corresponding to the WELL state.

THE MARKOV-CYCLE TREE

In the preceding discussion, transition probabilities
were provided as if they were elemental data supplied
with a problem. However, for actual clinical settings,
transition probabilities may be quite complicated to
calculate because transitions from one state to another

may happen in a variety of ways. For example, a patient
in the WELL state may make a transition to the DEAD

state by having a fatal stroke, by having an accident,
or by dying of complications of a coexisting disease.
Each transition probability must take into account all
of these transition paths. Hollenberg15 devised an el-
egant representation of Markov processes in which the
possible events taking place during each cycle are rep-
resented by a probability tree.
The probability tree corresponding to the WELL state

is illustrated in figure 11. It contains a chance node

modeling the occurrence of death from age, sex, and
race (ASR)-specific mortality, the branch labelled DIE
ASR. If the patient does not die from natural causes,
the branch labelled SURVIVE leads to a chance node

modelling whether the patient has a BLEED or an EM-
BOLUS, either of which may be fatal. If neither BLEED

nor EMBOLUS occurs (the branch NO EVENT), the patient
remains WELL. Each terminal node in the probability
tree is labelled with the name of the state in which a

patient reaching that terminal node will begin the next
cycle. Thus, a patient reaching any terminal node la-
belled DEAD will begin the next cycle in the DEAD state.
A patient surviving either an embolus or a bleed will
begin the next cycle in the DISABLED state. The prob-
ability tree for patients beginning in the DISABLED state
is identical to that for the WELL state, except that pa-
tients having NO EVENT will still be DISABLED. The prob-
ability tree for patients beginning in the DEAD state
consists only of the terminal node labelled with the
name of the DEAD state since no event is possible, and
a patient in the DEAD state will always remain in that
state.

The subtrees are attached to a special type of node
designated a Markov node as depicted in figure 12.
There is one branch of the Markov node for each Mar-

kov state. Each probability from the Markov node to
one of its branches is equal to the probability that the
patient will start in the corresponding state. The Mar-
kov node together with its attached subtrees is referred
to as a Markov-cycle tree15 and, along with the incre-
mental utilities and the probabilities of the branches
of chance nodes, is a complete representation of a
Markov process. Starting at any state branch, the sum
of the probabilities of all paths leading to terminal
nodes labelled with the name of a particular ending
state is equal to the transition probability from the
beginning state to the ending state. For example, the
highlighted paths in figure 12 show all transitions from
WELL to DISABLED.
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EVALUATING CYCLE TREES

A cycle tree may be evaluated as a Markov cohort
simulation. First, the starting composition of the co-
hort is determined by partitioning the cohort among
the states according to the probabilities leading from
the Markov node to the individual branches. Each sub-

tree is then traced from its root to its termini (&dquo;folding
forward&dquo;), partitioning the subcohort for the corre-
sponding state according to the probability tree. The
result is a new distribution of the cohort among the

states, which reflects how the cohort appears after a

single cycle. The fraction of the cohort currently in
each state is then credited with the appropriate in-
cremental utility to form the cycle sum, which is added
to the cumulative utility. The new distribution of the
cohort is then used as the starting distribution for the
next cycle. The process is repeated until some pre-
determined criterion is reached, usually when the
quantity of utility accumulating for each state drops
below some specified small quantity. This occurs when
the fraction of the cohort in the DEAD state approaches
one.

ADVANTAGES OF THE CYCLE TREE REPRESENTATION

Cycle trees have many of the same advantages that
decision trees have for modelling complex clinical sit-
uations. They allow the analyst to break up a large
problem into smaller, more manageable ones. This
clarifies issues for the analyst and for others trying to
understand the results. The use of subtrees promotes
appropriate symmetiy among the various states, thus
enhancing the fidelity of the model. The model pro-
vides a great deal of flexibility when changing or re-
fining a Markov model. If a single component proba-
bility or a detail of a subtree needs to be changed, this
can be done without recalculating the aggregate tran-
sition probabilities. Finally, the disaggregation of tran-
sition probabilities permits sensitivity analysis to be
performed on any component probability. Because of
its advantages, the cycle tree representation has been
used most often in recently published Markov deci-
sion analyses.’-’

MONTE CARLO SIMULATION

As an alternative to simulating the prognosis of a
hypothetical cohort of patients, the Monte Carlo sim-
ulation determines the prognoses of a large number
of individual patients. This is illustrated in figure 13.
Each patient begins in the starting state (i.e., the WELL
state), and at the end of each cycle, a random-number
generator is used together with the transition proba-
bilities to determine in which state the patient will
begin the next cycle. Just as for the cohort simulation,
the patient is given credit for each cycle spent in a

FIGURE 12. Complete Markov-cycle tree corresponding to the an-
ticoagulation problem.

non-DEAD state and each state may be adjusted for
quality of life. When the patient enters the DEAD state,
the simulation is stopped. For the example in figure
13, the patient spends two cycles in the WELL state and
three cycles in the DISABLED state before being &dquo;ab-

sorbed,&dquo; resulting in a utility of (2 X 1) + (3 X 0.7) or

4.1 quality-adjusted cycles. The process is repeated a
very large number (on the order of 104) of times. Each
trial generates a quality-adjusted survival time. After a
large number of trials, these constitute a distribution
of survival values. The mean value of this distribution

will be similar to the expected utility obtained by a
cohort simulation. However, in addition to the mean

survival, statistical measures such as variance and

standard deviation of the expected utility may be de-
termined from this distribution. It should be noted

that a Markov cycle tree may be evaluated as a Monte
Carlo simulation.

 at National Institutes of Health Library on January 21, 2009 http://mdm.sagepub.comDownloaded from 

http://mdm.sagepub.com


332

FIGURE 13. Monte Carlo simulation. The figure shows the state tran-
sitions of a single person until death occurs during cycle 6.

COMPARING THE DIFFERENT REPRESENTATIONS

Each representation has specific advantages and
disadvantages for particular purposes. The simula-
tions (Markov cohort, Monte Carlo, and cycle tree) per-
mit the analyst to specify transition probabilities and
incremental utilities that vary with time. Such variation

is necessary to model certain clinical realities, such as
the increase in baseline mortality rate with age. A dis-
advantage common to all simulations (cohort, cycle
tree, and Monte Carlo) is the necessity for repetitive
and time-consuming calculations. However, the avail-
ability of specialized microcomputer software to per-
form these simulations has made this much less of an

issue. The fundamental matrix solution is very fast
because it involves only matrix algebra and provides
an &dquo;exact&dquo; solution that is not sensitive to cycle time
(as in the cohort simulation) or number of trials (as in
the Monte Carlo simulation). The major disadvantages

of the matrix formulation are the restriction to prob-
lems with constant transition probabilities, the need
to express each composite transition probability as a
single number, and the difficulty of performing matrix
algebra. The matrix manipulations required for a Mar-
kov process with a large number of states may require
special computational resources. The Monte Carlo
method and the matrix solutions provide measures of
variability, if these are desired. Such measures are not
possible with a cohort simulation. The features of the
three representations are summarized in table 3.

Tpmsiflon Probabilides

CONVERSION OF RATES TO PROBABILITIES

The tendency of a patient to make a transition from
one state to another is described by the rate of tran-
sition. The rate describes the number of occurrences
of an event (such as death) for a given number of
patients per unit of time and is analogous to an in-
stantaneous velocity. Rates range from zero to infinity.
A probability, on the other hand, describes the like-
lihood that an event will occur in a given length of
time. Probabilities range from zero to 1. Rates may be
converted to probabilities if their proper relationship
is considered.

The probability of an event that occurs at a constant
rate (r) in a specified time (t) is given by the equation:

This equation can be easily understood by examining
the survival curve for a process defined by a constant
rate. The equation describing this survival curve is:

where f is the fraction surviving at time t and r is the
constant transition rate. At any given time, the fraction

Table 3 9 Characteristics of Markov Approaches*

... --- -. - -

* Adapted from Beck et al.5
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that has experienced the event is equal to 1 - f. Thus,
the curve describing the probability that the event will
occur in time t is simply 1 - f, or 1 - e - rt as shown

in equation 1. The probability of transition in time t
is always less than the corresponding rate per time t
because as the cohort members die, fewer are at risk
for the transition later in the time period. When the
rate is small or t is short, the rate and probability are

very similar. Often, data supplied for an analysis pro-
vide rates of complications. For use in a Markov anal-
ysis, these rates must be converted to the correspond-
ing transition probabilities by substituting the Markov-
cycle length for t in equation 1.

PRECAUTIONS IN CHANGING THE CYCLE LENGTH

When changing the Markov-cycle duration from yearly
to monthly, one cannot simply divide the calculated
transition probabilities by 12 to arrive at the appro-
priate transition probabilities for the shorter cycle. If
the original rate is a yearly rate, then the monthly
probability is p = 1 - e - r/12. If one has only the yearly
transition probability and not the rate, the transition
probability can be converted to a rate by solving equa-
tion 2 for r:

Then, the calculated rate is used, as above, to recal-
culate the transition probability.

TIME DEPENDENCE OF PROBABILITIES

In the most general case, the transition probabilities
in a Markov model vary with time. An obvious example
is the probability of death, which increases as the co-
hort ages. If the time horizon for the analysis is a long
one, the mortality rate will increase significantly dur-
ing later cycles. There are two ways of handling such
changing probabilities. One is with a continuous func-
tion, such as the Gompertz function.3 For each clock
cycle, the appropriate mortality rate is calculated from
a formula and converted to a transition probability.
Some rates are not easily described as a simple func-

tion. One example is the actual mortality rate over a
lifetime, which initially is high during early childhood,
falls to a minimum during late childhood, and then
gradually increases during adulthood. Another ex-
ample is the risk of acquiring a disease (such as Hodg-
kins’ disease) that has a bimodal age distribution. In
such cases, the necessary rates (or corresponding
probabilities) may be stored in a table, indexed by cycle
number, and retrieved as the Markov model is eval-
uated. Some computer software used for evaluating
Markov processes provides facilities for constructing
and using such tables.

DISCOUNTING: TIME DEPENDENCE OF UTILITIES

Incremental utilities, like transition probabilities, may
vary with time. One important application of this time
dependence is the discounting used in cost-effec-
tiveness analyses.’° This is based on the fact that costs
or benefits occurring immediately are valued more
highly than those occurring in the future. The dis-
counting formula is:

where Ut is the increment utility at time t, Uo is the
initial incremental utility, and d is the discount rate.10
Because of the time variance, discounting cannot be
used when the fundamental matrix solution is used.

A Med Example
The following example is a Markov implementation

of a decision analysis that has been published in detail
elsewhere as an ordinary decision tree.l6,’; This anal-
ysis was performed for an actual patient at the New
England Medical Center. The implementation of the
model is a Markov-cycle tree as used by two specific
decision analysis microcomputer programs Decision
Maker1s and SMLTREE.’9

Case history. A 42-year-old man had had a cadaveric
kidney transplant 18 months previously and had done
well except for an early rejection episode, which had
been treated successfully. He had maintained normal
kidney function. While he was receiving standard
treatment with azathioprine and prednisone, how-
ever, two synchronous malignant melanomas ap-
peared and required wide resection. Continuation of
immunosuppressive therapy increases the chance of
another, possibly lethal melanoma. Cessation of this
therapy ensures that the patient’s kidney will be re-
jected and will require his return to dialysis, a ther-
apeutic modality he prefers to avoid.
The key assumptions in the construction of this

model are:

1. If therapy is stopped, the patient will reject the
kidney immediately.

2. If therapy is continued, the patient still may reject
the kidney, but with a lower probability.

3. If the patient rejects the kidney despite contin-
uation of therapy, the therapy will be stopped at
the time the rejection occurs.

4. A second transplant will not be considered.

5. Quality of life is lower on dialysis than with a
functioning transplant. Based on the original util-
ity assessment from the patient, the utility of life
on dialysis was 0.7 and that of life with a func-
tioning transplant 1.0&dquo;6
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FIGURE 14. Simple decision tree for the kid-
ney transplant, melanoma case.

6. No adjustment is made to quality of life for having
recurrent melanoma.

7. The patient’s life expectancy is reduced because
of having had a renal transplant and a previous
melanoma. It will be further reduced if the patient
goes on dialysis or if melanoma recurs.

The simple tree modeling this problem is shown in
figure 14. There are two branches of the decision node,
representing CONTINUE and STOP therapy, respectively.
In the case of CONTINUE) a chance node models the

occurrence of REJECT or NO REJECT. The development
of a new melanoma is modelled by the chance node
with the branches MELANOMA and No MELANOMA. Ter-

minal nodes represent the six possible combinations
of therapy, renal status, and occurrence of a new mel-
anoma. The two combinations representing sTOY Trrrr~-
APY and NO REJECT are assumed not to occur. Proba-

bilities in this model must be assigned to reflect the
different risks of developing a new melanoma de-
pending on whether or not therapy has been contin-
ued. The lowest probability is for patients whose ther-
apy is stopped immediately. The highest probability
is for those whose therapy is continued indefinitely.
Because therapy will be stopped, patients who ex-
perience rejection after an initial period of continuing
therapy will have an intermediate risk of melanoma
recurrence.

Because it was a simple tree, the original model
required several simplifying assumptions. The first was
that recurrent melanoma occurred at a fixed time in

the future (one year)16 although, in reality, it may occur
at any time. The second was that transplant rejection
occurred at a fixed time, the midpoint of the patient’s
life expectancy. Therefore, the utility of continuing
therapy, then experiencing transplant rejection was
assigned the average of the utilities for transplant and
dialysis. If the patient values time on dialysis differ-
ently now compared with later, this is an oversimpli-
fication. The third assumption was that the probability

of melanoma recurrence in this intermediate scenario

was the average of the high and low probabilities. Again,
this is an oversimplification because the patient ac-
tually has a high probability while on the therapy and
a low probability while off it. The Markov model can
address all of these issues.

’I’he Markov decision model is shown in figure 15
and figure 16. ’I’he root of the tree in figure 15 is a

decision node with two branches representing the two
choices CONTINUE and sTOP. The Markov-cycle tree de-
picted in figure 16 consists of a Markov node with one
branch for each Markov state. If we assume that the

utility of a state depends only on whether the patient
is on dialysis or not and that the probability of mel-
anoma depends only on whether or not the patient
is receiving immunosuppressive therapy, then only
five states are required to represent the scenario. These
are (from top to bottom) TRANSWEL (transplant well),
TRANSMEL (transplant with melanoma), DIALWELL (di-

alysis, no melanoma), DIALMEL (dialysis and mela-
noma), and DEAD. Separate states are not needed based
on treatment because it is assumed that patients in
the transplant states are on immunosuppressive ther-
apy and those in the dialysis states are not.

FIGURE 15. Root of the tree representing the Markov model of the
kidney transplant, melanoma case.
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INITIAL PROBABILITIES

The first task is to assign probabilities to the branches
of the Markov node. Recall that these probabilities rep-
resent the probabilities of starting in the individual
states. For the CONTINUE strategy, all patients begin in
the TRANSWEL state, so the probability of that state should
be 1. Similarly, for the STOP strategy, all patients begin
in the oraLwELL state. We can implement these as-
sumptions by assigning the probabilities of the

TRANSWEL and DIALWELL branches as variables. A bind-

ing set between the strategy branch and the Markov
node can set the appropriate variable to 1. Thus, the
same Markov-cycle tree can be used as a subtree&dquo; to
represent the prognosis for both strategies.

SUBSEQUENT PROGNOSIS

Each branch of the Markov node is attached to a

subtree that models the possible events for each Mar-
kov state. The most complex is for the TRANSWEL state,
shown at the top of figure 16. The first event modelled
is the chance of dying from all causes (the branch Die).
Die leads to a terminal node. In this case the utility is
DEAD, because a patient who dies during one cycle will
begin the next cycle in the DEAD state. For patients
who do not die (the branch Survive), the next chance
node models the chance of transplant rejection (the
branches Reject and NoReject). Subsequent to each of
these branches is a chance node modelling the risk
of recurrent melanoma (the branches Recur and
NoRecur and Recur2 and NoRecur2). Each of these

branches leads to a terminal node. For Recur following
Reject, the appropriate state is DIALMEL, for Recur2 fol-
lowing NoReject the appropriate sate is TRANSMEL. For
NoRecur following Reject and NoRecur2 following
NoReject, the appropriate states are DIALWELL and

TRANSWEL, respectively. Only the latter branch repre-
sents a return to the starting state.
The event tree for the TRANSMEL state is also shown

in figure 16. It is simpler than that for TRANSWEL be-
cause the risk of melanoma recurrence need not be

modeled. Assignment of terminal states is similar to
that for the TRANSWEL state except that patients may
not make a transition to the TRANSWEL or DIALWELL state.

Similarly, the probability tree for the DIALWELL state
models only the risks of death and of melanoma re-
currence and that for the DIALMEL state models only
the risk of death. The event tree for the DEAD state is

simply a terminal node assigned to the state DEAD,
since no event is possible and all patients return to
the DEAD state in the subsequent cycle.

CHOICE OF CYCLE LENGTH

Before the probabilities can be assigned, the analyst
must decide on the cycle length. The cycle length
should be short enough so that events that change
over time can be represented by changes in successive

FIGURE 16. Markov-cycle tree representing the kidney transplant,
melanoma case.

cycles. For example, if the risk of allograft rejection
were markedly different in month 3 than in month 1,
then a monthly cycle should be used. Another con-
sideration is that the cohort simulation is an approx-
imation and will more closely approximate the &dquo;exact&dquo; 

&dquo;

solution when the cycle length is short. In practice,
however, it makes little difference whether the cycle
length is one year or one month, if the appropriate
half-cycle corrections are made.20 A final consideration
is evaluation time. A monthly cycle length will result
in a 12-fold increase in evaluation time over a yearly
cycle length. For this example, since there is no im-
portant change during a year, a yearly cycle length is
used.

ASSIGNMENT OF PROBABILITIES

The next task is to assign probabilities to the events
in each event tree. Each state has a chance node rep-
resenting the occurrence of death during a given cycle.
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DEFERRED EVALUATION

There are two ways to introduce the expression de-
fining the probability of death into the Markov decision
model. At first glance, it may seem that the expression
above can be placed in a binding proximal to the Mar-
kov node, since it is shared by all branches. However,
the values of mEXCESS are different for the individual
states. Moreover, the value of the expression for pDIE
should change for each cycle of the simulation as mASR
increases. A simple binding would be evaluated only
once and thus would not allow the value of the expres-
sion to change. One solution is to place a binding with
the above expression on each branch of the Markov
node. However, this is cumbersome, because it re-

quires entering the expression four times (it isn’t needed
for the DEAD state), and slows evaluation, because the
entire expression must be placed on the binding stack
during the evaluation of each state during each cycle.
An ideal solution is provided by deferring the eval-

uation of the expression until the value of pDIE is
needed, thus ensuring that the evaluation will use the
current value of m.CYCLE and the appropriate local
value of mEXCESS. This is accomplished using the
PASSBIND function in Decision Maker&dquo; and SMLTREE.19
This function tells the computer program to place the
entire expression on the binding stack instead of eval-
uating the expression first. Thus, when the value of
pDIE is needed at any time, anywhere in the tree, the
expression will be evaluated with the prevailing values
of m.CYCLE and mEXCESS. The expression thus can
be entered in a binding proximal to the Markov node.
The required binding expression is:

Each branch of the Markov node then needs a binding
for the appropriate value of mEXCESS. The values of
the probabilities of pReject and pRecur depend on
whether the patient is on immunosuppressive therapy
and therefore must be specified for each state. The
values of mEXCESS, pReject, and pRecur for each state
are shown in table 4.

ASSIGNING UTILITIES

As described above, utilities in a Markov cohort sim-
ulation are associated with a state, rather than with
terminal nodes of the tree. Therefore, each state must
be assigned an incremental utility that reflects the
value of being in that state for one cycle. In Decision
Maker18 and SML TREE) 19 this is accomplished by setting
the values of three special variables. The variable
m.uINCR represents the incremental utility of a state
for one cycle. The variable m.uINIT is a one-time ad-
justment to the incremental utility that is made at the
beginning of the Markov simulation. It is used to im-

This probability is based on the mortality rate for each
state, which consists of two components, the baseline

mortality rate and the excess mortality due to any
comorbid diseases. The baseline mortality rate (mASR)
depends on the patient’s age, sex, and race. We can
assign a different mASR for each cycle to reflect the
increasing mortality rate as patients get older. The
most convenient way to implement this is to use a

table of age-specific mortality rates and look up the
appropriate value for each cycle. With a yearly cycle
length, the patient’s age at the end of cycle n is:

There are three refinements to the age used to cal-
culate the cycle-specific age. First, because we assume
that transitions occur, on average, halfway through a
cycle, the age should be reduced by 0.5 cycle. Second,
published mortality rates for patients of a given age
(e.g., 50 years old) are derived from all patients between
that age and the next (50 and 51 years). Thus, the
published rate for age 50 actually applies to a group
with an average age of 50.5 years and the cycle-specific
age should be reduced by an additional 0.5 year to
retrieve the appropriate rate. Finally, deaths are slightly
more likely to occur among the older members of a
heterogeneous cohort and toward the end of a year
(when all members are older), so that the observed
death rate applies to patients who are slightly older
than the average. Empirically, reducing the age by an
additional 0.1 to 0.2 years corrects for these effects.

Thus, the starting age should be corrected according
to the formula:

where cyclen is the length of the Markov cycle in years.
For a detailed discussion of these corrections, the in-
terested reader is referred to Sonnenberg and Wong.’O
The mortality rate may be retrieved from the table

(MTABLE) by the following expression, where StartAge
is corrected as above and m.CYCLE is the Markov-cycle
number:

For this example, the initial value of mASR is 0.0036/
year (for a 43-year-old male). The excess component
of mortality due to the patient’s coexisting diseases is
added to the baseline mortality rate to produce a total
compound mortality rate.2 The total mortality rate may
then be used to calculate the probability of death dur-
ing any cycle:
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TO* 4 o Mortality Rates and Probabilities

plement the half-cycle correction and therefore its value
is usually set to 0.5 X m.uINCR. The variable m.uTAIL
is used when the Markov cohort simulation is termi-

nated before the entire cohort is in the absorbing state.
Its value is added to the incremental utility for a state
at the end of the simulation. The tail utility has two
uses. One is to represent the prognosis beyond the
stopping point in the Markov simulation. For example,
if a Markov process is used only to represent the events
taking place during the first six months following an
operation, then m.uTAIL will represent the life ex-

pectancy of the patient beyond the first six months.
The second use is to apply the half-cycle correction
to a simulation that is stopped prior to absorption of
the cohort, even if the subsequent prognosis is of no
interest. In this case, the tail utility must be set to - 0.5
X m.uINCR.

The values of these special variables are set with
bindings on each branch of the Markov node. For the
TRANSWEL and TRANSMEL states the bindings are:

The value of m.uINCR is 1 because there is no utility
decrement for the TRANSPLANT states. m.u.TAIL is 0 be-
cause we are planning to run the simulation until the
cohort is completely absorbed.

For the DwLwELL and DIALMEL states, the bindings
are:

because the DIALYSIS states are associated with a utility
of only 0.7 relative to perfect health.16

For the DEAD state, the bindings are:
., ,.- .

because no utility accrues for membership in the DEAD
state. In practice, these bindings may be omitted for
the DEAD state because if their values are not specified,
they will be assumed to be zero.

MARKOV-STATE BINDINGS: A REFINEMENT

Examination of figure 16 reveals that a chance node
with branches Reject and NoReject appears in two

places in the tree. Similarly, a chance node with
branches Recur and NoRecur appears in three places
in the tree. We would like to use a common subtree

to represent these events in all portions of the tree.
The problem is that several of the branches are ter-
minal nodes and their utilities apply only to one spe-
cific context. The solution to this problem is the use
of Markov-state bindings. When Markov-state names
are used on the right side of a binding expression, the
program substitutes the state on the right side for the
variable on the left side wherever it appears. This per-
mits representing the prognoses of all four non-dead
states with a single subtree, as in figure 17. With the
state bindings shown, this Markov-cycle tree will be
functionally identical to the one in figure 16.

EVALUATION

When the Markov model is evaluated as a cohort

simulation, the expected utilities are:

CONTINUE THERAPY 7.4

STOP THERAPY 5.2

Thus, the analysis favors continuing therapy by a large
margin, more than two quality-adjusted life years. If
the quality adjustment is removed from the analysis
(by setting quality of life on dialysis to unity), then the
results are:

Conelusion

Markov models consider a patient to be in one of a
finite number of discrete states of health. All clinically
important events are modelled as transitions from one
state to another. Markov processes may be repre-
sented by a cohort simulation (one trial, multiple sub-
jects), by a Monte Carlo simulation (many trials, a sin-
gle subject for each), or by a matrix algebra solution.
The matrix algebra solution requires the least com-
putation, but can be used only when transition prob-
abilities are constant, a special case of the Markov
process called a Markov chain. The Markov-cycle tree
is a formalism that combines the modelling power of
the Markov process with the clarity and convenience
of a decision-tree representation. Specialized com-
puter software18,19 has been developed to implement
Markov-cycle trees.
The assignment of quality adjustments to incre-

mental utility permits Markov analyses to yield quality-
adjusted life expectancy. Discounting may be applied
to incremental utilities in cost-effectiveness analyses.
The Markov model provides a means of modelling clin-
ical problems in which risk is continuous over time,
in which events may occur more than once, and when
the utility of an outcome depends on when it occurs.

 at National Institutes of Health Library on January 21, 2009 http://mdm.sagepub.comDownloaded from 

http://mdm.sagepub.com


338

FIGURE 17. Markov-cycle tree using subtrees and state bindings.

Most analytic problems involve at least one of these
considerations. Modelling such problems with con-
ventional decision trees may require unrealistic or un-
justified simplifying assumptions and may be com-
putationally intractable. Thus, the use of Markov models
has the potential to permit the development of deci-
sion models that more faithfully represent clinical
problems.
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