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SUMMARY

The analysis of routinely collected surveillance data is an important challenge in public health practice. We
present a method based on a hidden Markov model for monitoring such time series. The model character-
izes the sequence of measurements by assuming that its probability density function depends on the state of
an underlying Markov chain. The parameter vector includes distribution parameters and transition
probabilities between the states. Maximum likelihood estimates are obtained with a modi"ed EM algo-
rithm. Extensions are provided to take into account trend and seasonality in the data. The method is
demonstrated on two examples: the "rst seeks to characterize in#uenza-like illness incidence rates with
a mixture of Gaussian distributions, and the other, poliomyelitis counts with mixture of Poisson distribu-
tions. The results justify a wider use of this method for analysing surveillance data. Copyright ( 1999 John
Wiley & Sons, Ltd.

1. INTRODUCTION

The constant increase in the number and complexity of epidemiologic surveillance systems leads
to ever more data collection and thus to massive databases that, to be exploited, require
appropriate methods for synthesizing the information they contain. These data, collected by time
and place, are nearly always presented in the form of epidemiologic indicators (incidence,
prevalence) at regular time intervals (weeks, months). They are then analysed with statistical
models. Among these, ARIMA (AutoRegressive Integrated Moving Average)1}4 models are often
used, for example, to predict an incidence rate that takes into account the serial correlation of the
data. Nevertheless, using these models implies that transformation of the data leads to a station-
ary time series, for which a single underlying probability distribution is assumed. These two
hypotheses are not necessarily true, however; the data may present abrupt and wide changes of
magnitude as well as irregular periodicity, in situations such as epidemics, modi"cations of the
case-de"nition, screening, or vaccination.



Improved methods for the detection of &unexpected' phenomena and non-stationary data have
been developed. They are based on Bayesian algorithms5}7 transposed from the domain of
biomedicine to that of epidemiologic surveillance. The choice of the initial values of the model's
parameters is di$cult, however, since it must be based on prior knowledge of the phenomenon
studied } knowledge that is not always available.

There are still other methods8,9 that have been suggested and shown to be e!ective (for
example, in the detection of epidemics),10 but they have the disadvantage of requiring arbitrary
assumptions about the nature of the phenomenon under surveillance.

We propose a method for monitoring surveillance data that is based on a hidden Markov
model. The method assumes that the data are generated from a "nite mixture of distributions
governed by an underlying Markov chain. Separate states can thus be distinguished in the data,
without arbitrary choices about either the number of transitions between states, or the instant
when these transitions take place. Hidden Markov models have been used in many areas,
including automatic speech recognition,11}13 electrocardiographic signal analysis,14 epileptic
seizure frequency analysis,15,16 DNA sequence analysis,17 the modelling of neuron "ring18 and
meteorology.19 To our knowledge, only one study, which used as a mixture of binomial
distributions, has applied this type of method to epidemiologic data.20 We propose applying this
model to other distributions (Gaussian, Poisson) particularly appropriate in the analysis of
population surveillance data. The model is presented using an example } the characterization of
the incidence rates of in#uenza-like illness.

2. INFLUENZA-LIKE ILLNESS DATA

In#uenza-like illness (ILI) data were obtained from the Sentinelles Network,21 a national
computerized surveillance system involving 1 per cent (n"500) of all general practitioners in
France. Within the system, an ILI is de"ned as the combination of a sudden fever of at least 393C
with respiratory signs and myalgia. Weekly ILI incidence rates are computed taking into account
the size of the underlying population and the representativeness of the participating physicians.
We have considered the data collected between January 1985 and December 1996 (available at
www.b3e.jussieu.fr/sentiweb/).22 Figure 1 represents the time series of ILI weekly incidence rates.
It shows a clear mixture of two dynamics: a low-level dynamic with incidence rates that vary
according to a seasonal pattern (the non-epidemic dynamic) and a high-level dynamic, in which
the incidence rate increases sharply at irregular intervals (the epidemic dynamic).

Of particular interest here is the timing of ILI epidemics. More generally, a basic question that
we address involves the de"nition of an epidemic, usually de"ned as the occurrence of a number
of cases of a disease, in a given period of time and in a given population, that exceeds the
&expected ' number.23 This de"nition thus assumes a mixture of two (or more) dynamics } one for
the &expected' number of cases, another for the &excess' cases. Hidden Markov models provide the
most natural way of making inferences about such phenomena, by assigning di!erent probability
distributions to the two dynamics.

3. HIDDEN MARKOV MODELS

We begin by assuming that the observations, y
t
, t"1,2, n are a realization of the stochastic

process >"(>
t
; t"1,2 , n). The basic idea of hidden Markov models is to associate with each

>
t
an unobserved random variable S

t
that determines the conditional distribution of >

t
; if S

t
"j,
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Figure 1. Weekly in#uenza-like illness (ILI) incidence rates, France, 1985}1996.

then the conditional distribution of >
t

has density f
jt
(y

t
; h

j
), where f

jt
belongs to a given

parameterized family, and h
j
are parameters to be estimated.

We assume that the unobserved sequence MS
t
N follows an m-state homogeneous Markov chain

of order 1 with stationary transition probabilities

a
ij
"P (S

t
"j DS

t~1
"i ), i, j"1,2,m.

Note that a stationary Markov chain is homogeneous, whereas the converse is not always true.
We further assume that conditionally on the random variables S

t
, the variables >

t
are indepen-

dent. As the sequence of states is unobserved, this Markov-dependent mixture model is called
a hidden Markov model.

To illustrate, suppose that there are two underlying distributions ( j"1, 2) associated with ILI
incidence rates; y

t
represents the observed ILI incidence rate at week t and is assumed to be

generated from one of the two distributions, and a
12

represents the probability of switching from
distribution 1 to 2 in two successive weeks.

4. PARAMETER ESTIMATION

4.1. Likelihood computation

Let t"(h
1
,2, h

m
, a

11
,2, a

mm
) denote the complete parameter vector to be estimated. The

likelihood function for t, given the data, is de"ned as the joint density of the random variables
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The likelihood function for t can thus be obtained by summing all possible sequences of
states:

¸
n
(t)"

m
+

s1/1

2

m
+

sn/1

a
s1

f
j1
(y

1
; h

j
)

n
<
t/2

a
st~1st

f
jt
(y

t
; h

j
).

When the likelihood function is written in this form, the number of operations required for one
evaluation is of the order of 2nmn,11 which seems computationally intractable. It can, however, be
rewritten so that one evaluation requires only of the order of nm2 operations. This evaluation uses
Baum's recursive method,24 which computes the quantities a

j
(t)"f (y

1
,2 , y

t
, S

t
"j ) and evalu-

ates the likelihood as ¸
n
(t)"+m

j/1
a
j
(n) (see Appendix I).

The likelihood function can be maximized directly by numerical methods19,20, 25}27 or with an
iterative scheme such as the EM algorithm.14}16,28,29 Comparison of the performance of these
various maximization methods has been discussed26,27 and suggests that direct maximization
methods are preferable in terms of computing time.

In our work, we have used a version of the EM algorithm for several reasons: this is the most
popular and widely used maximization method for HMMs and is well-adapted to the underlying
Markov structure. Also its implementation is reasonably easy and usually leads to explicit
formulae for parameter estimates at the M-step.

4.2. The EM algorithm

Two recent bibliographic reviews of EM-related papers30,31 have shown the popularity of this
algorithm. Its basic principle is an iterative scheme that "rst computes the conditional expecta-
tions of the unobserved states of the E-step, given the parameters, and then maximizes the
likelihood function, given the data and the expected states (called the &complete-data' likelihood)
at the M-step.

The unobserved states are represented by indicator random variables that we de"ne as
follows:

l
jk

(t)"1 if s
t~1

"j and s
t
"k

and

u
j
(t)"1 if s

t
"j.

3466 Y. LE STRAT AND F. CARRAT

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 3463}3478 (1999)



The complete-data log-likelihood can be expressed directly from (1) as
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Let u be one iteration of the EM algorithm. At the E-step, l( (u)
jk

(t) and uL (u)
j

(t), which are the
conditional expectations of l

jk
(t) and u

j
(t), are computed with the &forward}backward' algorithm

(see Appendix I).24 Then, at the M-step, they are applied to (2) to obtain new estimates of
a( (u`1)
jk

and hK (u`1)
j

. The number of computations in any E-step is of the order of 2nm2 calcu-
lations.11

The EM algorithm has some well-known limitations, however.30 One criticism is that its
convergence can be slow. Another weakness concerns its strong dependence on the starting
position. A third limitation is that it may converge to a saddle point rather than a maximum of
the likelihood function.

Stochastic versions of the EM algorithm have been developed to overcome these limitations.
These include the stochastic EM algorithm (SEM),32,33 the stochastic approximation EM
algorithm (SAEM)34 and the Monte Carlo EM algorithm (MCEM).35,36 The "rst two algo-
rithms incorporate a stochastic step (S-step) between the E-step and the M-step by introducing
random perturbations for the estimation of uL (u)

j
(t). These perturbations are introduced mainly to

extricate the parameter sequence from any potentially unstable stationary point of the likelihood
function. The random perturbations in SEM are too large when the number of observations is
small34 even though SEM overcomes most of the limitations of EM. The SAEM algorithm has
a median position between EM and SEM. By contrast to SEM, the random perturbations that
SAEM introduces decrease to 0 as the number of iterations increases. This implies that it will
perform best for small sample sizes. These considerations led us to choose the SAEM algorithm as
an alternative to the EM algorithm.

4.3. The SAEM algorithm

The SAEM algorithm introduces an S-step just after the E-step and before the M-step. During the
S-step new values of uL (u)

j
(t), which we note as uL (u)/%8

j
(t) are computed by the following method.

First, for each t"1,2, n, random perturbations are generated by a time-dependent random
variable c(u)

j
(t) that follows a multinomial distribution of one draw of m categories with probabil-

ities p
j
"uL (u)

j
(t), j"1,2,m. For example, in the case of a two-state hidden Markov model,

n uniform (0, 1) random numbers ;(t) are generated. Then c(u)
1

(t)"1 and c(u)
2

(t)"0 if
0); (t))uL (u)

1
(t). Otherwise c(u)

1
(t)"0 and c(u)

2
(t)"1.

Second, to avoid numerical singularities, the means 1/n +n
t/1

c(u)
j

(t) are calculated for each
j"1,2, m. If each mean is smaller than a given threshold, which we note c(n), then we return to
the previous step and draw new values of c(u)

j
(t). The threshold c (n) is chosen so that 0(c(n)(1

and lim
n?=

c(n)"0; a possible choice is c (n)"1/n.
Third, for each t, uL (u)/%8

j
(t) is calculated by

uL (u)/%8
j

(t)"(1!c(u))uL (u)
j

(t)#c(u)c(u)
j

(t).

The function c (u) is chosen so that it starts with c(0)"1, stays near 1 during the "rst iterations
and decreases slowly towards 0 when u increases to an arbitrarily-chosen maximum number of
iterations I. A possible choice is c (u)"cos (nu/2I). To our knowledge, no rule is indicated for
choosing I. A value of I"500 was su$cient to allow convergence.
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5. SELECTING AND COMPARING HIDDEN MARKOV MODELS

Likelihood-based criteria, such as Akaike or Bayesian information criteria (BIC), can be used to
select the number of states of the hidden Markov model and to compare non-nested models. We
used the Bayesian information criterion37 because it does not favour the more complicated model
asymptotically.38 We note the maximized log-likelihood as l

.!9
and the number of free para-

meters as k. Then

BIC"l
.!9

!

log(n)k

2
.

The models with the highest BIC values were selected.

6. RECONSTRUCTING THE MOST LIKELY SEQUENCE OF STATES

Reconstructing the most likely sequence of states associated with the time series under study is
useful in analysing epidemiologic surveillance data. This sequence cannot, however, simply
be deduced by calculating max

j
(uL

j
(t) ), which only determines the most likely state at time t,

without regard to the probability of any particular sequence of states. The Viterbi algorithm,12,39
which is a recursive procedure, can be used to uncover the most likely state sequence (see
Appendix II).

7. MODEL EXTENSIONS

Epidemiologic surveillance data often reveal trend or seasonality, as Figure 1 shows for the ILI
data. These features can be introduced in this model by de"ning the distribution parameters as
linear or periodic functions of time. Let b

j
represent a linear trend and d

j
, e

j
be the parameters

associated with an r-period seasonality. The mean of a mixture of Gaussian distributions can then
be parameterized as

k
j
(t)"c

j
#b

j
t#d

j
cos A

2nt

r B#e
j
sin A

2nt

r B .

For a mixture of Poisson distributions, the parameter can be expressed by

log(j
j
(t) )"c

j
#b

j
t#d

j
cos A

2nt

r B#e
j
sin A

2nt

r B.
The logarithm function is used to ensure positive values of j

j
(t).

Introducing these additional terms, however, can lead to di$culties with likelihood maximiza-
tion. With a Gaussian distribution, the parameters are obtained by simple linear algebra. For
Poisson distributions, though, the M-step does not always have a closed-form solution, and
estimates cannot be obtained by an explicit expression. To avoid this problem, we used the
algorithm of Rai and Matthews,40 which consists of an unchanged E-step and has only one cycle
in the iterative solution of the likelihood maximization. Other standard maximization algorithms
can also be considered at the M-step. Examples include the simplex or Newton}Raphson
algorithms.
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8. ILLUSTRATION

8.1. In6uenza-like illness data

Hidden Markov models were applied to ILI data, by using a mixture of Gaussian distributions.
Several models were tested with or without trend terms. Depending on the BIC values, models
were improved by the inclusion of trend terms. Linear trend and periodic parameters (r"52)
were included as described above.

Table I shows the transition probability matrix, the stationary probabilities, the maximized
log-likelihood value, and the BIC corresponding to each hidden Markov model tested
(six containing from one to six states). The maximized log-likelihood of the two-state model
is substantially better than that of the one-state model; BIC is highest for the "ve-state
model. Because what we know, graphically, epidemiologically and biologically, about ILI
incidence rates suggests a mixture of two dynamics (non-epidemic, epidemic), we focus on the
two-state model. State 1 is associated with the highest mean and has a stationary probability of 26
per cent. The probability that any given week is in state 1 (uL

1
(t)) is shown in Figure 2. This

probability is always close to 0 or to 1, which indicates that the model clearly di!erentiates
between the two states.

Figure 3 shows the most likely state sequence obtained with the two-state model. Two distinct
states are clearly visible, one epidemic (state 1), and the other not (state 2). Moreover, the results
obtained are consistent (92)3 per cent concordance) with the current method used by the
Sentinelles system to determine the existence of an ILI epidemic.10 Results disagreed between the
two methods only in one direction; 48 weeks were classi"ed as epidemic by the hidden Markov
model and non-epidemic by the other method.

8.2. Poliomyelitis data

Epidemiologic data are often presented as counts, a form that suggests an underlying Poisson
distribution. To illustrate the use of hidden Markov models with data containing a mixture of
Poisson distributions, we apply this method to the time series of monthly poliomyelitis cases in
the United States between January 1970 and December 1983 (available at http://www.maths.
monash.edu.au/&hyndman/tseries/health/polio.dat).

We tested several models and observed the best results from the non-seasonal two-state hidden
Markov model, which yielded the highest BIC value (!270)28, compared with !302)58 for
a one-state model, !277)04 for a three-state model, and !274)38 for a seasonal two-state
model). The initial state was state 1.

The transition probability matrix was

A
0)932 0)068

0)331 0)670B.
Its corresponding stationary probabilities (0)840, 0)160) and parameter values were

j
1
"0)791 and j

2
"4)180.

Figure 4 shows the probability of state 2 in any given month, and Figure 5 the optimal state
sequence obtained with the Viterbi algorithm.
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Table I. Comparison of seasonal Gaussian hidden Markov models "tted to weekly ILI incidence rates

m c
j

b
j

d
j

e
j

*
j
s Transition probability matrices Stationary Log- kt BIC

probabilities likelihood

1 1)716 !0)0015 1)641 0)550 7)721 1)000 1)000 !1360)05 5 !1376)14
2 *1)597 0)0009 3)349 0)517 29)295 0)919 0)081 0)260 !286)60 12 !325)23

0)551 !0)0006 0)286 0)053 0)146 0)028 0)972 0)740
3 *2)927 !0)0007 3)282 !0)005 37)264 0)889 0)000 0)111 0)202 !41)45 21 !109)05

0)302 !0)0002 0)176 0)032 0)040 0)000 0)946 0)054 0)494
0)775 !0)0007 0)384 0)184 0)527 0)074 0)088 0)839 0)303

4 9)216 !0)0052 0)354 !4)687 47)946 0)874 0)000 0)111 0)015 0)155 39)67 32 !63)33
0)299 !0)0002 0)178 0)032 0)042 0)000 0)935 0)000 0)065 0)491

*0)930 !0)0001 0)652 0)187 1)565 0)165 0)000 0)634 0)201 0)126
0)653 !0)0005 0)332 0)145 0)334 0)000 0)141 0)122 0)738 0)228

5 14)640 !0)0077 !1)986 !8)465 68)712 0)790 0)018 0)192 0)000 0)000 0)099 84)45 45 !60)40
0)654 !0)0005 0)332 0)145 0)349 0)000 0)738 0)000 0)121 0)140 0)229
4)150 !0)0017 0)269 !1)412 11)009 0)405 0)000 0)274 0)322 0)000 0)055

*0)931 !0)0001 0)656 0)185 1)616 0)000 0)205 0)165 0)630 0)000 0)127
0)299 !0)0002 0)178 0)032 0)042 0)000 0)065 0)000 0)000 0)935 0)491

6 14)498 !0)0077 !1)844 !8)384 68)002 0)793 0)017 0)190 0)000 0)000 0)000 0)100 129)32 60 !63)81
0)862 !0)0011 0)522 0)134 0)525 0)000 0)741 0)000 0)110 0)100 0)049 0)191
4)095 !0)0019 0)434 !1)396 10)882 0)407 0)000 0)252 0)340 0)000 0)000 0)054
1)167 !0)0005 0)773 0)136 1)787 0)000 0)263 0)268 0)425 0)044 0)000 0)081
0)312 !0)0002 0)171 0)102 0)031 0)000 0)033 0)000 0)000 0)922 0)045 0)351

*0)552 !0)0008 0)335 !0)045 0)226 0)000 0)065 0)000 0)033 0)022 0)880 0)223

m"number of states)
* the initial state of the Markov chain that maximized the likelihood

s *
j
"

+n
t/1

uL
j
(t)y2

t
+n

t/1
uL
j
(t)

) The variance p2
j
(t) is estimated by p( 2

j
(t) "*

j
!k( 2

j
(t) (see Appendix I))

t k is the number of free parameters, equal to 5m parameters (c
j
, b

j
, d

j
, e

j
, *

j
)#m(m!1) free transition probabilities
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Figure 2. Estimated probabilities of state 1 over time for ILI

Figure 3. The state sequence of weeekly ILI incidence rates obtained by applying the Viterbi algorithm

MONITORING EPIDEMIOLOGIC SURVEILLANCE DATA USING MARKOV MODELS 3471

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 3463}3478 (1999)



Figure 4. Estimated probabilities of state 2 over time for poliomyelitis

Figure 5. The state sequence of monthly poliomyelitis counts, U.S.A. 1970}1983, obtained by applying the Viterbi
algorithm
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Four periods were associated with state 2: one between June and December 1970; a second
between October and November 1972; a third between September 1978 and August 1979, another
in November and December 1983.

The "rst three periods coincided with the three poliomyelitis outbreaks reported in United
States over this period, in Texas (1970), Connecticut (1972), and in Pennsylvania, Wisconsin, Iowa
and Missouri (1979).41 The "nal period was not classi"ed as epidemic following the CDC's
classi"cation.42 It corresponded to six cases which occurred in oral poliomyelitis vaccine
recipients and four subsequent cases among contacts of these subjects.

9. DISCUSSION

We have shown here that hidden Markov models are useful for analysing epidemiologic
surveillance data. When a two-state hidden Markov model was applied to the analysis of ILI
incidence rates, it clearly di!erentiated between epidemic and non-epidemic rates. We used this
model as an illustration because it ful"lled a standard epidemiologic objective, that is, to
determine the timing of epidemic periods. The best results for the likelihood criterion, however,
came from a "ve-state model. There are several explanations for this discrepancy. First, the choice
of Gaussian distributions may be inappropriate in this case, since it implies that negative values of
ILI rates could theoretically be observed. Other choices for the distributions (for example,
Gamma, Weibull) would have been more appropriate but would have led to computational
di$culties during the maximization steps. Second, the validity of the hypothesis that ILI
incidence rates are independent conditional on the state, is questionable. In particular, during
epidemic periods, incidence rates increase successively for a period and then decrease, again over
consecutive time intervals. It would have been possible to deal with this problem by introducing
autoregressive terms in the model or by explicitly modelling the state duration.11 Again, for
simplicity, we did not use these two methods in this paper. None the less, these limitations should
not obscure the model's substantial advantages. In particular, it does not require any arbitrary
choice about the timing of epidemic periods. Furthermore, in the two-state model, a threshold can
be computed directly from the non-epidemic state (by estimating k (t) and p2(t) ) and used as an
early warning system, exactly as in ARIMA models.4

Applied to poliomyelitis data, the hidden Markov model clearly identi"ed, without any
arbitrary hypothesis, all three outbreaks reported over the data period. The use of this method to
analyse such count data was straightforward. We did not calculate the standard errors of
parameters, which would be useful, for example, to determine con"dence intervals. The paramet-
ric bootstrap method26 can be used for this purpose, but will require extensive computation.

Another attractive aspect of hidden Markov models, not shown in this paper, lies in the
possibility of introducing covariates into the model, for example, by de"ning the distribution
parameters as a function of the covariates. This is particularly important with epidemiologic
monitoring data, to correlate disease and exposure rates, or to evaluate the e!ect of an interven-
tion on the observed disease rate (for example, modi"cation of the case de"nition, or a public
health intervention).20

Finally, we want to stress that hidden Markov models provide a very #exible tool for analysing
time series of discrete values. They should rapidly join the array of methods used for monitoring
epidemiologic surveillance data.

All computations were performed on a UNIX station using computer programs written in C.
The source code is available on request.

MONITORING EPIDEMIOLOGIC SURVEILLANCE DATA USING MARKOV MODELS 3473

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 3463}3478 (1999)



APPENDIX I: THE EM ALGORITHM

The estimation of parameters by the EM algorithm starts by initializing the parameters

(a(0)
1

,2, a(0)
m

) , (h(0)
1

,2 , h(0)
m

)

as well as the transition probability matrix

[a(0)
jk

]
1)j,k)m

"C
a(0)
11

2 a(0)
1m

F } F

a(0)
m1

2 a(0)
mm

D .
At each iteration u, u"1,2 , I, the E-step is followed by the M-step.

The E-step

The forward}backward algorithm24 was used to replace l
jk

(t) and u
j
(t) by their conditional

expectations l(
jk

(t) and uL
j
(t), given the following observations and current parameter estimates:

l(
jk

(t)"P (S
t~1

"j, S
t
"k Dy

1
,2 , y

n
) and uL

j
(t)"P (S

t
"j Dy

1
,2 , y

n
).

The values of lL
jk

(t) and uL
j
(t) were obtained by computing

a
j
(t)"f (y

1
,2, y

t
, S

t
"j ) and b

j
(t)"f (y

t`1
,2 , y

n
DS

t
"j )

with the recursive &forward}backward' formulae.
Speci"cally, for j"1,2,m

a(u)
j

(1)"a(0)
j

f
j1
(y

1
; hK (u)

j
)

and

a(u)
j

(t)"
m
+
k/1

a(u)
k

(t!1)aL (u)
kj

f
jt
(y

t
; hK (u)

j
) t"2,2 ,n.

Then

b(u)
j

(n)"1

and

b(u)
j

(t)"
m
+
k/1

aL (u)
jk

f
kt`1

(y
t`1

; hK (u)
k

)b(u)
k

(t#1) t"n!1,2 , 1.

The likelihood is calculated by

¸
n
(t)"

m
+
j/1

a(u)
j

(t)b(u)
j

(t) t"1,2, n
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and particularly by

¸
n
(t)"

m
+
j/1

a(u)
j

(n).

Next, for t"1,2, n the conditional expectations lL (u)
jk

(t) and uL (u)
j

(t) were computed by

uL (u)
j

(t)"
a(u)
j

(t)b(u)
j

(t)

+m
l/1

a(u)
l

(n)

and

lL (u)
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aL (u)
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f
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(y

t
; hK (u)

k
)a(u)

j
(t!1)b(u)

k
(t)

+m
l/1

a(u)
l

(n)
.

We used Leroux and Puterman's scaling method29 to avoid the numerical instability of the
computation of a

j
(t) and b

j
(t) . Instead, they were divided by 10p, with p such that 10~p +m

j/1
a
j
(t)

and 10~p +m
j/1

b
j
(t) lie between 0)1 and 1.

The M-step

This maximizes the two parts of the complete-data log-likelihood separately. Maximization of the
"rst part yields the values of the transition probabilities:

aL (u`1)
jk

"

+n
t/2

lL (u)
jk

(t)

+n
t/2

+m
l/1

lL (u)
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(t)
.

The stationary probabilities a
j
are given by
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j

"

+n
t/1

uL (u)
j

(t)

+m
k/1

+n
t/1
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k
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.

We estimate h
j
by maximizing the second part of the complete-data log-likelihood:

n
+
t/1

uL (u)
j

(t) log f
jt
(y

t
; h

j
) .

Using the Gaussian case with mean k
j
and variance p2

j
implies that
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and that
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In the Poisson case with parameter j
j

j) (u`1)
j
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+n
t/1
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APPENDIX II

The Viterbi algorithm allows the best state-sequence to be deduced by computing

m
tk
" max

s1 ,2, st~1

f (S
1
"s

1
,2, S

t
"k, y

1
,2, y

t
), for t"2,2, n.

That is, m
tk

is the highest density along a single path at time t.
The recursive computation of m

tk
is straightforward:

m
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j
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f
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Then, the index sequence of states jK
t
is calculated starting from jK

n
"arg max

j
(m

nj
), and recursively

for t"n!1,2, 1 by
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t
"arg max

j
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).
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