
ISSUES IN CONFORMANCE TESTING:

MULTIPLE SEMICONTROLLABLE

INTERFACES

Mariusz A. Fecko

Computer and Information Science Department

University of Delaware, Newark, DE

M. �Umit Uyar�

Department of Electrical Engineering

City College of the City University of New York

Adarshpal S. Sethi, Paul D. Amer

Computer and Information Science Department

University of Delaware, Newark, DE

Abstract

In a testing environment, where an IUT communicates with multiple entities, a tester
may have di�ering degrees of controllability on the interactions between these entities
and the IUT: directly controllable, semicontrollable, or uncontrollable. In this paper,
a graph conversion algorithm is introduced that o�ers the testability of both the
directly and semicontrollable inputs, while avoiding race conditions. Although, for
the most general case, the graph conversion results in an exponentially large number
of nodes, practical considerations make the converted graph size feasible. Currently,
this methodology is being applied to generate tests for MIL-STD 188-220B, which
increases the number of testable state transitions from approximately 200 to over 700.

�Dr. Uyar performed this research while a Visiting Associate Professor at University of
Delaware.

1 INTRODUCTION

Due to increasing complexity of communication protocols, automated genera-
tion of conformance tests based on the formal descriptions has been an active
research area [Ural, 1992] - [Sarikaya et al., 1987]. One problem that exists in
today's conformance testing stems from the limited controllability of an Im-
plementation Under Test (IUT), which almost always renders certain protocol
features untestable. Ideally, testers should be able to generate every possible
input that is de�ned in the Finite State Machine (FSM) modeling an IUT.
Similarly, all outputs generated by an IUT should be observable by the testers.

Unfortunately, in practice, these two situations often are not possible.
Testers may not have a direct access to all interface(s) in which the IUT accepts
inputs. Typically, for an (N)-layer IUT, an exposed interface exists only be-
tween the IUT and the (N-1)-Service Provider [IS9646, 1991]. Interfaces with
the upper layer, or with the peer entities (such as timers, etc.) are not directly
accessible. In such cases, the interactions that involve these not directly con-
trollable interfaces introduce non-determinism and/or race conditions during
testing, leaving certain portions of the IUT model untestable.

Consider an (N)-layer IUT communicating with an entity FSMi that does
not have interfaces directly accessible by the tester (i.e., the tester cannot apply
inputs to FSMi). In some cases, FSMi can be utilized to generate otherwise
not directly controllable inputs to the IUT. An output from the IUT to the
FSMi can force the FSMi to generate a response as the desired input from
FSMi to the IUT. If the tester can apply an appropriate input to the IUT,
the IUT, in turn, triggers such an interaction between the IUT and FSMi.
In this case, some of the interfaces become semicontrollable (as opposed to
uncontrollable).

Another di�culty that arises when there are multiple interfaces interacting
with the IUT is the possible occurrence of race conditions. If an IUT moves into
a state at which several inputs from di�erent interfaces are waiting, choosing
which input is consumed �rst may cause non-determinism.

There are many real-life protocols that possess either semicontrollable in-
puts, or race conditions, or both, due to a tester's limited control over the
interactions between the IUT and other communicating entities. For example,
in MIL-STD 188-220B [188-220B, 1998], over 70% of the transitions cannot be
directly controlled. The race conditions can be shown in the IEEE 802.2 LLC
Connection Component protocol [ISO8802-2, 1994].

Some problems due to the limited controllability over the IUT are addressed
in the literature. Testing embedded systems [Rayner, 1987, Timohovich, 1993]
where uncontrollable events may take place is discussed in [Phalippou, 1992]
and [Cavalli et al., 1996]. The ferry clip testing method by [Zeng et al., 1989],
and the Astride testing method by [Ra�q and Castanet, 1990] are introduced
to enhance the controllability of inputs to an IUT. Deriving test sequences by
combining the IUT and a single entity communicating with it into a global FSM
are proposed in [Timohovich, 1993]. The testing system considered in this paper
does not assume any user-de�ned entities within the SUT (as implied by [Zeng
et al., 1989] and [Ra�q and Castanet, 1990]). Also, a global FSM is not built
to avoid state explosion problem.

IUTN-PDUs

(N-1)-Service Provider

SUT

Lower
Tester (N)-layer

(N+1)-layer
...

PCOs
FSM1

...
I0

I1 I2

IF-1

I F
FSMF

FSMF-1

FSM2

IUT

SUT

FSM1

I

I

1

0a

b c

d

(a) (b)

Figure 1 (a) Testing IUT with multiple interfaces; (b) Testing (N)-layer IUT with an

(N+1)-layer semicontrollable interface.

This paper introduces a methodology that utilizes an IUT's semicontrollable
interfaces while avoiding the race conditions. An algorithm is presented to
modify an IUT's directed graph representation such that the semicontrollable
portions of the IUT become directly controllable, where possible. In the most
general case, such a graph conversion results in an exponentially large number
of nodes. However, special considerations such as a small number of interfaces
interacting with an IUT, and diagnostics considerations can make the problem
size feasible for most practical cases.

The algorithm presented in this paper is being applied to MIL-STD 188-
220B protocol to generate conformance tests. Initial results are promising: the
number of testable transitions increased to over 700 from approximately 200
for the Class A { Type 1 Service Datalink module [Fecko et al., 1997].

This paper is organized as follows. Section 2 formally de�nes the control-
lability problem, which is practically motivated in Section 3 by examples from
real-life protocols. Section 4 de�nes a system model for a testing environment
with multiple interfaces with di�erent degrees of controllability. Practical issues
are introduced into this model in Section 5. An algorithm to modify an IUT's
graph so that semicontrollable interfaces can be fully utilized while avoiding
the race conditions is presented in Section 6. In Section 7, the application of
minimum-cost test sequence generation techniques is discussed.

2 CONTROLLABILITY PROBLEM

Consider a testing environment shown in Figure 1 (a). The System Under
Test (SUT) contains an IUT, which interacts with F FSMs. FSM1; � � � ; FSMF ,
implemented inside the SUT, interact with the IUT through interfaces
I1; � � � ; IF . The points at which a testing system can apply inputs to and
observe outputs from the IUT are called points of control and observation

(PCOs) [IS9646, 1991]. Each IUT's interface is associated with a full-duplex
PCO through which inputs and outputs can be exchanged. The inputs can be
of three di�erent types:

� directly controllable: a tester can directly apply the inputs to the IUT
through the PCO

� semicontrollable: a tester cannot directly apply the inputs to the IUT
through the PCO. However, it is possible to utilize one of the FSMs
interacting with the IUT to supply these inputs indirectly

� uncontrollable: the inputs may be supplied through a PCO without any
explicit action of the tester. This means that inputs may be generated
during testing without the tester's control

The inputs at a given PCO can belong to one or more of these three types.
If a PCO has any semicontrollable inputs and does not have any uncontrol-
lable inputs, we say that its associated interface is semicontrollable. If there
are no semicontrollable or uncontrollable inputs, the interface is called directly
controllable. In this paper, without loss of generality, we consider that each
interface has only one type of input: either directly controllable or semicontrol-
lable. The analysis also is applicable to interfaces with a combination of directly
controllable and semicontrollable inputs (excluding uncontrollable ones).

A typical example of a directly controllable interface is a Lower Tester
FSM [IS9646, 1991]. A timer FSM, whose only inputs come from an IUT
(e.g., start, restart, and stop the timer), is a typical semicontrollable interface.

In the testing framework of Figure 1 (a), the tester is unable to supply inputs
directly to the IUT through interfaces I1; � � � ; IF . Therefore, the interfaces
I1; � � � ; IF are only semicontrollable, provided that FSM1; � � � ; FSMF can be
utilized to supply inputs to the IUT. On the other hand, the tester can apply
inputs to the IUT directly by using a Lower Tester (LT), which exchanges
N-PDUs with the IUT by using the (N-1)-Service Provider. The interface
I0 between the LT and the IUT is therefore directly controllable (I0 can be
considered an interface between the LT and the IUT, because the (N-1)-Service
Provider acts as a pass-through that does not alter inputs or outputs).

To test the IUT's transitions triggered by the inputs from Ii, the tester
must use one of the directly controllable interfaces to force the IUT to generate
outputs to Ii. These outputs are applied to FSMi at Ii's PCO. As response
to these outputs, FSMi will send back inputs to the IUT through Ii. These
inputs will trigger the appropriate transitions in the IUT.

Consider the SUT shown in Figure 1 (b). The LT, which exchanges N-PDUs
with an (N)-layer IUT, represents a directly controllable interface I0. Since the
interface I1 is not exposed in the SUT, a tester can neither directly apply
inputs to the IUT nor observe the IUT's outputs to the (N+1)-layer. In this
case, I1 is at best only semicontrollable. To apply (N+1)-layer's inputs to the
IUT through I1, the LT must generate inputs to the IUT through its directly
controllable interface I0. In response, the IUT will generate outputs to FSM1

through I1. Subsequently, in response to these outputs, FSM1 will generate
inputs to the IUT at I1.

This paper addresses the problem of generating optimal realizable test se-
quences in an environment with multiple semicontrollable interfaces. This prob-
lem will be referred to as the controllability problem.

Transition Input (Event) Output (Action)

T0 Data_Request I_CMD
T1 I_CMD (P=0) and P_Flag=0 Data_Indication
T2 I_CMD (P=1) with Unexpected N(s) Rej_RSP (F=1)
T3 Data_Request I_CMD
T4 I_CMD Data_Indication
T5 I_RSP (F=1) with Unexpected N(s) Rej_XXX (X=0)

Upper layer FSM

T2

T3

T5

T1

T4

LLC layer IUT

Data Request Data Indication

SUT

T0

Normal

Await

Reject

 Lower Tester

semicontrollable interface

directly controllable
 interface

Figure 2 802.2 Type 2 Connection Component LLC Speci�cation [ISO8802-2, 1994]

3 PRACTICAL MOTIVATION

As motivation for solving the controllability problem, two real protocols where
an SUT's (N+1)-layer must be utilized indirectly to test certain transitions
within the (N)-layer IUT are considered. They also illustrate an important
point that must be taken into account while utilizing an (N+1)-layer indirectly
{ avoiding race conditions.

MIL-STD 188-220B [188-220B, 1998] is a military standard for interoper-
ability of command, control, communications, computers, and intelligence over
Combat Net Radios. In the testing framework used to test 188-220B, the upper
layers cannot be directly controlled. This makes the IUT's transitions that are
triggered by the inputs coming from the upper layer not directly testable.

In fact, 70% of the transitions are based on semicontrollable inputs. Without
indirect testing, test coverage would be seriously reduced. However, by applying
the technique introduced in this paper, almost all (>95%) transitions de�ned
in the speci�cation can be tested (the number of testable transitions rose to
over 700 from approximately 200 for the Class A { Type 1 Service Datalink
module [188-220B, 1998, Fecko et al., 1997]).

Figure 2 shows a portion of the IEEE 802.2 [ISO8802-2, 1994] LLC Type
2 Connection Component. The SUT consists of the LLC layer IUT and the
implementation of the upper layer (UL), whose FSM is semicontrollable. Tran-
sitions T1 and T4 output a Data Indication to the UL. Transitions T0 and T3
require input Data Request from the UL.

Testing transition T3 requires the input Data Request to be applied to the
IUT. Since this input can only be applied from the UL, an indirect event trigger-
ing sequence must be used. The UL FSM contains a transition with an input of
Data Indication and an output of Data Request . By generatingData Indication
from the IUT to the UL, the tester can indirectly generate Data Request .

No transition in Reject outputs a Data Indication to the UL. Therefore, a
Data Indication must be sent to the UL while the IUT is in another state. Then
the IUT must be moved into the Reject before the UL outputs its Data Request .
For example, one straightforward solution is to use transition T1. The tester
applies to the IUT an input I CMD with the appropriate parameters and
ags.
The IUT outputs a Data Indication to the UL. Then the tester brings the IUT
to Reject state by applying an I CMD through transition T2. Now transition
T3 will be triggered by Data Request that by then has arrived from the UL.

Unfortunately, this solution has a race condition: in the Normal state, after
the Data Indication is output as a result of traversing T1, if a Data Request
arrives from the UL before the tester applies T2's input I CMD , then the
Data Request will be consumed by transition T0 before transition T2 �res.
To avoid this race condition after an indirectly generated Data Indication, the
tester must �nd a way of moving the IUT to the Reject state through states
in which a Data Request cannot be consumed. Consider Await state with
transition T4 that can be used to generate a Data Indication. There is no
race condition here, because the Await state cannot process a Data Request .
A tester has su�cient time to move the IUT to Reject state through transition
T5, where a Data Request bu�ered in the interface will trigger T3.

As can be seen from this example, the IUT can move into a state where
the IUT is forced to consume a previously bu�ered input. This creates a race
condition if the test sequence requires that a di�erent input be sent to the IUT
by the LT. Therefore, a test sequence without such race conditions will not
bring the IUT into a state where multiple inputs are pending (one from the
LT, and others from the bu�ers). Instead, the test sequence should traverse
the IUT transitions in an order that avoids these race conditions.

4 MODELING TEST SYSTEMS WITH CONTROLLABILITY ISSUES

Among the widely used speci�cation formalisms to model protocol imple-
mentations are labelled transition systems (LTS) and Finite State Machines
(FSM) [Tretmans, 1996]. In an LTS, the inputs and outputs for a system are
not distinguished, but instead represented as interactions. The LTS allows an
interaction to occur if both an implementation and an environment are able to
perform that interaction.

An FSM, on the other hand, is a subset of an LTS where, for every state tran-
sition, an input is coupled with one or more outputs (including a null output).
In this paper, an FSM model, which is su�cient to model protocols with �nite
state space and deterministic behavior, is used to represent an implementation.

Let us consider an IUT interacting with multiple semicontrollable interfaces.
The goal of test generation in this environment is to derive a set of tests ex-
ercising each transition in an IUT's FSM at least once. Speci�cally, given a
graph G representing an IUT's FSM, we want to �nd a minimum-cost tour of
G such that each transition is covered at least once.

Given the graphG(V;E) representing an FSM model of an IUT with multiple
semicontrollable interfaces, let us de�ne the following parameters:

� jV j { number of nodes in G
� F { number of semicontrollable interfaces interacting with the IUT

e12

e1

e2
e3e4

e5

B

A Ce6

e8-10

e11

e7

e13
e14

FSM FSM

IUT

1 2

SUT

 Lower
 Tester
 (LT)

I1 I2

Figure 3 IUT interacting with two semicontrollable interfaces.

� Ti � E { subset of edges in G triggered by the inputs from the i-th
semicontrollable interface

� bi { bu�er size (maximum number of inputs bu�ered) at the i-th semi-
controllable interface Ii

� Ai { set of inputs triggering transitions in Ti
� Oi { set of outputs of the IUT that force inputs in Ai to be bu�ered at Ii
� ci { number of di�erent transition classes in the IUT triggered by inputs at
Ii. Two transitions t1 and t2 belong to the same transition class Ti;j � Ti
i� they both become �reable by the same input ai;j 2 Ai

� Ui;j � E { set of transitions in the IUT with output oi;j such that, in
response to oi;j , an input ai;j 2 Ai is bu�ered at Ii

Let Ai = fai;1; : : : ; ai;cig and Oi = foi;1; : : : ; oi;mi
g. Then the sets of Ti;j , Ui;j ,

Ti, and Ui, are de�ned formally as follows:

Ti;j
def
= fe 2 E : label(e) = ai;j=oi;jg Ui;j

def
= fe 2 E : output(e) = oi;jg

Ti
def
=

ci[
j=1

Ti;j Ui
def
=

ci[
j=1

Ui;j

There may be several outputs in set Oi that force input ai;j to be bu�ered at
Ii. For simplicity, let oi;j denote any output forcing ai;j at Ii. Based on the
above de�nitions, transitions triggered by the inputs from the semicontrollable
interface Ii are divided into ci classes, each corresponding to a distinct input
that �res any transition within the class. No transition can belong to more than
one Ti;j . Similarly, each transition can belong to only one Ui;j . In general, Ti;j
and Ui;j may or may not be disjoint.

Example : Consider the IUT of Figure 3 which is interacting with FSM1 and
FSM2 through the semicontrollable interfaces I1 and I2, respectively. The IUT's
FSM is described in Table 1. Transition e1, triggered by input x1 from the LT,
generates output o1;1 to FSM1. In response, FSM1 sends back input a1;1 which
triggers transition e3. (In general, ai;j is the expected response to oi;j .) e3, when

Edge name Input from Output to Edge name Input from Output to

e1 LT ?x1 FSM1!o1;1 e8 LT ?x8 FSM1!o1;2
e2 FSM1?a1;2 FSM1!o1;2 e9 FSM2?a2;1 LT !y9
e3 FSM1?a1;1 FSM2!o2;1 e10 LT ?x10 LT !y10
e4 FSM2?a2;1 LT !y4 e11 FSM1?a1;2 LT !y11
e5 LT ?x5 LT !y5 e12 LT ?x12 FSM2!o2;1
e6 LT ?x6 LT !y6 e13 LT ?x13 LT !y13
e7 LT ?x7 FSM1!o1;2 e14 LT ?x14 LT !y14

Table 1 Inputs and outputs for the edges of Figure 3. A?x denotes receiving input x
from A. B!y denotes sending output y to B.

traversed, outputs o2;1 to FSM2, which responds with input a2;1 triggering e4 or e9.
o2;1 is also output to FSM2 by e12, which is �red by the LT's input x12. Transitions
e7 and e8, after being triggered by the LT's inputs x7 and x8, respectively, generate
output o1;2 to FSM1. FSM1 sends back input a1;2, which triggers either e2 or e11.
e2 outputs o1;2 to FSM1. Again, FSM1 responds with input a1;2. On the other
hand, transitions e5, e6, e10, e13, and e14, can be triggered directly by the LT and
do not generate outputs to the semicontrollable interfaces. For this example, we have:

� jV j = 3 i.e., A, B, and C; F = 2 i.e., I1 and I2; c1 = 2, c2 = 1
� T1;1 = fe3g, T1;2 = fe2; e11g, T2;1 = fe4; e9g, T1 = T1;1 [T1;2 = fe2; e3; e11g,
T2 = T2;1 = fe4; e9g

� U1;1 = fe1g, U1;2 = fe2; e7; e8g, U2;1 = fe3; e12g, U1 = U1;1 [U1;2 =
fe1; e2; e7; e8g, U2 = U2;1 = fe3; e12g

� A1 = fa1;1; a1;2g, A2 = fa2;1g; O1 = fo1;1; o1;2g, O2 = fo2;1g

4.1 Bu�er sizes at semicontrollable interfaces

For now, let us assume that there exists a separate FIFO bu�er in the semicon-
trollable interface between the IUT and each interacting FSM. During testing,
a bu�er may be empty or store an arbitrary sequence of inputs to the IUT gen-
erated indirectly through the i-th semicontrollable interface. Then the entire
system can be modeled by G (which represents the IUT's FSM) and the vari-
ables !1; !2; : : : ; !F . A variable !i has a distinct value for each permutation of
inputs that the i-th bu�er can hold.

If the bu�er sizes at the F semicontrollable interfaces are in�nite, each vari-
able !i can assume an in�nite number of values. In this case, even the reach-
ability analysis (deciding whether a given state is reachable from the initial
state), which is an easier problem than �nding a minimum-cost traversal of G,
is undecidable [Davis et al., 1998]. Even if the bu�er sizes are �nite, in which
case !1; !2; : : : ; !F have �nite domains, the reachability analysis is PSPACE-
complete for the most general case [Hopcroft and Ullman, 1979].

Given the di�culty of analyzing G and F variables, let us explore the pos-
sibility of modeling the system as an FSM, represented by G

0

(V
0

; E
0

). Each

vertex in V
0

is a tuple consisting of the original vertex in V and the set of
values of variables !1; !2; : : : ; !F . The maximum number of nodes jV

0

jmax is

jV
0

jmax = jV j �
QF

i=1B(i), where B(i) is the maximum possible number of
states of the i-th bu�er de�ned as follows:

B(i) =

�
(1� c1+bii)=(1� ci) if ci > 1
1 + bi if ci = 1

(1)

In general, if each ci = c > 1 and each bi = b, then jV
0

jmax = jV j � O(cbF),

which indicates that the maximum number of nodes in G
0

grows exponentially
with the number of semicontrollable interfaces F and the bu�er size b. Clearly,
the conversion from G to G

0

is not feasible for the general case. However, for
the constrained environment, G

0

can be constructed e�ciently (Section 7).

5 PRACTICAL CONSIDERATIONS FOR TEST SYSTEM

5.1 Bu�ering inputs at semicontrollable interfaces during testing

Although the model presented in Section 4 assumes that a semicontrollable
interface consists of FIFO-type bu�ers, in practice this assumption may not
hold true for all implementations. Typically, the interface is not part of a
protocol speci�cation. Vendors have the freedom of developing interfaces in
di�erent ways: in addition to (or instead of) FIFO-type bu�ers, they may have
interrupt-driven mechanisms and any interface may have multiple bu�ers.

Therefore, test sequences generated for an IUT with only FIFO-type bu�ers
become non-deterministic for other IUTs using di�erent types of interfaces.

Example (cont'd): Consider a test sequence for the IUT of Figure 3:

e14; e1; e8; e3; e4; e11; e13; e12; e5; e9; e7; e2; e13; e11; e13; e6; e10; e6 (2)

The underlined portion of the above test sequence traverses e1, which results in input

a1;1 being bu�ered at I1 (Table 1). Subsequently, when e8 is executed with output o1;2
to I1, the bu�er at I1 should contain [a1;1; a1;2]. The IUT is expected to be in state

C with e3 to be tested next. This sequence is only realizable under the assumption

that inputs a1;1 and a1;2 are stored at I1 in the FIFO order, i.e., [a1;1; a1;2]. In

practice, however, this may not be the case for all implementations. It is possible

that, after traversing e1 and e8, the bu�er will contain inputs in a di�erent order,

such as [a1;2; a1;1]. Then, after e8 is traversed, e11 will be triggered by a1;2 instead of

e3 being triggered by a1;1. e3 will cause the IUT to fail even if implemented correctly.

Clearly, the test sequence (2) is not realizable without FIFO-type bu�ers.

To eliminate this type of non-determinism in test sequences, the IUT model
should have a bu�er size bi = 1. Then, the maximum number of nodes in

G
0

becomes jV
0

jmax = jV j �
QF

i=1(1 + ci). In a real testing environment, F,
the number of semicontrollable interfaces, is expected to be small. For most
cases, the (N)-layer IUT interacts only with an (N+1)-layer implementation
and several semicontrollable timers. Typically, for each timer, the only output
is the timeout, which de�nes ci as 1. Therefore, for small F and ci, the size of
G

0

is only a small multiplicant of G.
Let us now consider the number of inputs that can be bu�ered simultaneously

at all of an IUT's semicontrollable interfaces. When we allow inputs being
bu�ered simultaneously at several semicontrollable interfaces, even a bu�er
size equal to 1 may not prevent non-deterministic behavior during testing.

Example (cont'd): Consider a potential test sequence for Figure 3 generated
for bu�er sizes of 1 at I1 and I2:

e14; e13; e12; e7; e9; e11; e1; e10; e3; e4; e12; e5; e9; e7; e2; e13; e11; e13; e6

Although this sequence avoids the non-determinism due to bu�er sizes shown previ-

ously in (2), it may still be non-deterministic due to the IUT interacting with multiple

interfaces simultaneously. Consider the underlined portion of the above sequence. Af-

ter e12 is traversed, input a2;1 is bu�ered at I2. Traversing e7 results in a1;2 being

bu�ered at I1. Since a2;1 was generated earlier than a1;2, transition e9 is expected

to be triggered instead of e2. In reality, due to the unknown response time of the

interfaces, a2;1 can be applied to the IUT earlier than, later than, or simultaneously

with a1;2. In this case, the behavior of the IUT will be non-deterministic, thereby

making the test sequence invalid.

To avoid this type of non-determinism during testing, the model presented in
Section 4 will be used to generate tests with the restriction that, at any time, a
single input may be bu�ered in only one of the IUT's semicontrollable interfaces.

In such case, the maximum number of nodes is jV
0

jmax = jV j � (1 +
PF

i=1 ci).
It is important to point out that, the minimum-length test sequences gener-

ated for a restricted model will likely be longer than the minimum-length test
sequences for the general model. However, restricted model tests can be used
for testing implementations regardless of their interface structure. The intro-
duced restrictions on the bu�er size and on the number of bu�ered inputs help
avoid non-deterministic behavior of the SUT during testing. Although the test
sequence length is increased by these restrictions, the tests become applicable
to many di�erent SUT interface types, as further discussed in Section 7.

5.2 Diagnostic issues during testing

As presented in Section 2, during testing, an IUT typically interacts with several
semicontrollable interfaces. Testing is performed under the assumption that
all FSM implementations other than the IUT conform to their speci�cations.
Otherwise, it is di�cult to tell whether failure occurs in the IUT, or in the
external FSM implementation, or at the semicontrollable interfaces.

Example (cont'd): Consider e14; e1; e8; e3; :::, which is the beginning part of

the test sequence given in (2). When this sequence is applied to the IUT, traversal of

e1 should cause FSM1 to send back input a1;1. The IUT will move to state A with

a1;1 bu�ered at I1. Suppose that a faulty implementation incorrectly contains input

a1;2 instead of a1;1 at I1. Then in state A transition e2 will be triggered by a1;2,

and the IUT will move to state B instead of remaining in state A after e1's traversal.

This will happen even when e1 and e2 are implemented correctly. The tester cannot

distinguish whether e1's or e2's implementation is faulty, or FSM1 is not conformant

to its speci�cation, or I1 malfunctioned.

This practical concern of making diagnostics easier suggests the following
guideline: \Test as many transitions as possible without interactions at semi-
controllable interfaces." Transitions preferably should be tested when there are
no inputs bu�ered at the semicontrollable interfaces. As a result of this ap-
proach, a minimum-cost test generation can be formulated as a Rural Chinese
Postman Problem [Lenstra and Kan, 1976], as discussed in Section 7.

IUT
x
y

Class 1:

FSM

IUT

q

oq,l

Class 2:

FSM

IUT

p

y

ap,k

Class 3:

Class 4b:

IUT

FSM FSMp q

a oq,lp,k

Class 4a:

IUT

FSMp

a op,lp,k

I0

I0

Iq Ip

Ip IqIp

x I0
y

y

y

Figure 4 Classes of edges in G
0

(dashed-lined outputs are optional).

6 GRAPH CONVERSION FOR SEMICONTROLLABLE INTERFACES

Recall from Section 4 that an SUT, represented by variables !1; � � � ; !F , and
graph G for an IUT, can be modeled as an FSM, represented by G

0

(V
0

; E
0

).

In this section, an algorithm sketch for converting G and !1; � � � ; !F to G
0

is
presented and brie
y analyzed. (A detailed description of the algorithm along
with its pseudocode is available in [Fecko et al., 1998]). Since the number of

vertices in G
0

is exponential with respect to the bu�er size bi, the algorithm is
most applicable for small bu�ers (1 � bi � 3).

As discussed in Section 6, the test sequence obtained from G
0

constructed
by the algorithm does not contain any race conditions. Recall from Section 3
that a race condition occurs when an IUT consumes previously bu�ered input
instead of an input de�ned by a test sequence. Therefore, a test sequence
without race conditions will never bring the IUT into a state where there is
a bu�ered input consumable in this state and a di�erent input applied by the
LT. Such a test sequence will test the IUT's transitions in a speci�c order such
that these race conditions will not occur. However, a test sequence of G

0

may
still have non-determinism (Section 5). A re�nement of the graph conversion
algorithm to eliminate non-determinism during testing is also presented. The
graph G

0

(V
0

; E
0

) is built by the algorithm whose sketch is in Figure 5. Let
Bi denote a sequence of inputs bu�ered at the i-th semicontrollable interface.
Each state v

0

2 V
0

has two components: the original state v 2 V , and the
current con�guration of F bu�ers, i.e., v

0

= (v; B̂1; : : : ; B̂F). The algorithm
constructs all possible bu�er con�gurations with up to bi inputs bu�ered at
Ii. Given an original edge e = (vstart; vend) 2 E, and the current vertex v

0

=

(vstart; B̂1; : : : ; B̂F), a new vertex v
0

new is created based on a new con�guration

B1; : : : ; BF , i.e., v
0

new = (vend; B1; : : : ; BF). The edge e = (vstart; vend) 2 E is

G
0

(V
0

; E
0

) = BUILD-EXPANDED-GRAPH (G(V;E); r)

1. initialize r
0

, root of G
0

, as (r; ;; � � � ; ;) (root of G and
con�guration of empty bu�ers)

2. initialize E
0

as empty set, and V
0

as fr
0

g

3. initialize Q, queue of vertices, as V
0

4. repeat until Q is empty

(a) extract v
0

= (vstart; B̂1; : : : ; B̂F) as �rst element from
Q, where (B̂1; : : : ; B̂F) is current con�guration

(b) for each outgoing edge e = (vstart; vend) 2 E do
i. determine k, index of e's class
ii. given (B̂1; : : : ; B̂F) and Class k de�nition, construct:
� new con�guration (B1; : : : ; BF)

� new vertex v
0

new = (vend; B1; : : : ; BF) 2 V
0

� new edge e
0

new = (v
0

; v
0

new) 2 E
0

(c) include new edges in E
0

i� inputs in (B̂1; : : : ; B̂F) can-
not trigger other edges outgoing from vstart

(d) append to Q end vertices v
0

new 2 V
0

of new edges in-

cluded in E
0

5. remove from V
0

all vertices from which r
0

cannot be reached

6. remove from E
0

all edges incident to such vertices

Figure 5 Algorithm sketch for converting graph G into G
0

.

included in E
0

as e
0

new = (v
0

; v
0

new). The edge e 2 E belongs to one of the four
classes depicted in Figure 4:

Class 1: e is triggered by an input from and generates output(s) to an LT. In this

case, e's traversal does not modify the con�guration (B̂1; : : : ; B̂F) of e's start

state. e is included in E
0

unconditionally.

Class 2: e is triggered by an input from an LT and generates an output oq;l at Iq. e

is included in E
0

new only when the number of inputs already bu�ered in Bq in

the corresponding con�guration of state (vstart; B̂1; : : : ; B̂F) is smaller than the
maximum allowable bq. The new con�guration (B1; : : : ; BF) is obtained from

(B̂1; : : : ; B̂F) by appending aq;l to B̂q.

Class 3: e is triggered by ap;k from Ip and generates output(s) to an LT. e is included

in E
0

new only when ap;k is the �rst element bu�ered in Bp in the corresponding

con�guration of state (vstart; B̂1; : : : ; B̂F). The new con�guration (B1; : : : ; BF)

is obtained from (B̂1; : : : ; B̂F) by deleting ap;k from B̂p.

Class 4: e is triggered by an input ap;k from Ip and generates an output oq;l at Iq.
If e interacts with only one semicontrollable interface, i.e., p = q (Class 4a),

then it is included in E
0

new only when e's input ap;k is the �rst element bu�ered

in Bp in the corresponding con�guration of state (vstart; B̂1; : : : ; B̂F). Since
ap;k is �rst deleted from Bp, there is always room in Bp for ap;l. If Ip and

Iq are di�erent, i.e., p 6= q (Class 4b), then e is included in E
0

new only when
it satis�es the inclusion conditions for both Classes 3 and 2 edges, as de�ned
above. The new con�guration (B1; : : : ; BF) is obtained from (B̂1; : : : ; B̂F) by
applying rules for Classes 3 and 2 (in this order).

More complicated cases can be modeled as a combination of these four
classes. For example, the case where an input x applied at I0 goes through
IUT, FSMp, IUT, FSMq, and IUT, to produce an output y at I0, can be a
combination of Classes 2 and 3. The cases where FSMp and FSMq directly
communicate with each other are beyond the scope of this paper.

It can be shown that G
0

(V
0

; E
0

) built by the algorithm of Figure 5 is
a minimal valid representation of the system de�ned by G and variables
!1; � � � ; !F [Fecko et al., 1998, Uyar et al., 1998]. The running time RT of
the algorithm is shown [Fecko et al., 1998] to be:

RT =

(
O(cbF) �

PjV j
i=1 dout(v)) = O(cbF � jEj) if c > 1

O((1 + b)F) �
PjV j

i=1 dout(v)) = O((1 + b)F � jEj) if c = 1

Based on the practical considerations discussed in Section 5, the algorithm can
be re�ned so that at any given point in time there could be a single input
bu�ered in only one of the bu�ers Bi, which yields a linear running time of
RTref = O(c � F � jEj).

7 TEST GENERATION FOR PRACTICAL TESTING ENVIRONMENT

Given graphs G(V;E) and G
0

(V
0

; E
0

), our goal is to �nd a minimum-cost tour

of G
0

such that each original edge from G is covered at least once. Recall from
Section 5 that G

0

will likely contain multiple appearances of certain edges from
the original graph G. Let E

0

c � E
0

be the subset of edges in G
0

such that

each original edge in E is represented by at least one copy in E
0

c. To build

a minimum-cost tour of G
0

covering each original edge in E is equivalent to
�nding a minimum-cost tour of G

0

that includes each transition in E
0

c (the set

of mandatory edges) at least once, and each transition in (E
0

� E
0

c) (the set
of optional edges) zero or more times. This problem is known as the Rural
Chinese Postman Problem [Lenstra and Kan, 1976].

The issue that arises in the case of multiple appearances of certain edges in
G

0

is which copies should be included in E
0

c. Practical concerns discussed in
Section 5 require that copies incident to nodes corresponding to con�gurations
with empty bu�ers should be marked as mandatory. Note that when the bu�er
size in each semicontrollable interface is 1, each edge e that belongs to some Ui;j

or Ti;j will appear in G
0

only once, and therefore will be marked as mandatory.

All other edges with a copy incident to the states in V
0

whose second component
is the con�guration of empty bu�ers will be marked as mandatory in this copy.
If no such copy exists, the edge will be marked as mandatory in all its copies
with the presence of a bu�ered input. Therefore, each edge in E

0

will be marked
as mandatory in one or more appearances.

[Aho et al., 1991] present a solution to the problem of �nding a minimum-cost

tour of G
0

(V
0

; E
0

) covering subset of edges E
0

c � E
0

. The su�cient condition

e3.1e4.3

A

B

C

e7.0 B

C

e1.0

B

A C
e(5-6).0

e13.2

no inputs buffered

a buffered2,1 a buffered1,2

a buffered1,1

C

A
e2.2

e10.1

e10.0

e11.2

e12.0

e13.0e14.0

B
e14.1 e13.1

e8.0

A e(5-6).3

e9.3

Figure 6 Graph transformation applied to the graph of Figure 3. Mandatory and optional

edges appear in solid and dashed lines, respectively.

for the existence of a polynomial-time solution is that E
0

c induce a weakly-

connected spanning subgraph of G
0

. It can be easily shown that E
0

c obtained

in the manner described above is a weakly-connected subset of E
0

.
Example (cont'd): Consider the graph of Figure 3. After conversion to G

0

(Figure 6), each state is replaced with at most four copies { each corresponding to
the bu�er con�guration at a semicontrollable interface. Each edge e is annotated as
e:x, where x = 0; 1; 2; 3, depending on the input bu�ered in the e:x's start state, as

shown in Figure 6. Given graphs G and G
0

, the sets E and E
0

are as follows:

E = fe1; e2; e3; e4; e5; e6; e7; e8; e9; e10; e11; e12; e13; e14g

E
0

= fe1:0; e2:2; e3:1; e4:3; e5:0; e5:3; e6:0; e6:3; e7:0; e8:0; e9:3;

e10:0; e10:1; e12:0; e13:0; e13:1; e13:2; e14:0; e14:1g

To build the set of mandatory edges to be included in a test sequence, we adopt the

approach discussed in Sections 5 and 7. InG
0

, several edges appear multiple times: e5,
e6, e10, e13, and e14. The edges in Figure 6 shown in solid are the mandatory edges
that are incident to nodes that correspond to the case where both bu�ers are empty,
i.e., e5:0; e6:0; e10:0; e13:0, and e14:0. The copies that can be traversed only when
either bu�er contains an input are shown in dashed line: e5:3; e6:3; e10:1; e13:1; e13:2,
and e14:1. These are the optional edges, which will be included in the test sequence
only when necessary. In this example we have:

E
0

c = fe1:0; e2:2; e3:1; e4:3; e5:0; e6:0; e7:0; e8:0; e9:3; e10:0; e11:2; e12:0; e13:0; e14:0g

Given the above sets E
0

and E
0

c, the Aho et al. technique gives the minimum-length

test sequence for G
0

shown in Table 2. Steps with (!) indicate that an edge is tested

in this step. Note that, for simplicity, the UIO sequences [Sabnani and Dahbura,

1988] are not included in this sequence.

Step Edge name Input from Output to

! 1 e14 LT ?x14 LT !y14
! 2 e13 LT ?x13 LT !y13
! 3 e5 LT ?x5 LT !y5
! 4 e8 LT ?x8 FSM1!o1;2
! 5 e11 FSM1?a1;2 LT !y11
! 6 e1 LT ?x1 FSM1!o1;1
! 7 e10 LT ?x10 LT !y10
! 8 e3 FSM1?a1;1 FSM2!o2;1
! 9 e4 FSM2?a2;1 LT !y4
! 10 e12 LT ?x12 FSM2!o2;1

11 e5 LT ?x5 LT !y5
! 12 e9 FSM2?a2;1 LT !y9
! 13 e7 LT ?x7 FSM1!o1;2
! 14 e2 FSM1?a1;2 FSM1!o1;2

15 e13 LT ?x13 LT !y13
16 e11 FSM1?a1;2 LT !y11
17 e13 LT ?x13 LT !y13

! 18 e6 LT ?x6 LT !y6

Table 2 Minimum-length test sequence for the IUT of Figure 3.

8 CONCLUSION

In this paper, a testing environment is considered where the IUT communicates
with multiple entities with di�erent degrees of controllability on generating in-
puts. The inputs that these entities apply to the IUT may be directly con-
trollable, semicontrollable, or uncontrollable. This paper introduces a graph
conversion algorithm that takes full advantage of the semicontrollable inputs
while avoiding race conditions. In a test sequence of such a modi�ed graph,
semicontrollable inputs become controllable (where possible). Although, in gen-
eral, the graph conversion results in an exponentially large number of nodes,
practical considerations can make the converted graph size feasible.

Currently, this methodology is being applied to generate tests for MIL-STD
188-220B.Without utilizing the semicontrollable inputs, the number of testable
transitions for MIL-STD 188-220B Class the Class A { Type 1 Service Datalink
module is approximately 200. With the presented methodology, initial results
show that the number of testable transitions increases to over 700, a coverage
of more than 95% of the transitions de�ned in the speci�cation.

References

[188-220B, 1998] 188-220B (1998). Military Standard - Interoperability Standard for Digital
Message Device Subsystems (MIL-STD 188-220B).

[Aho et al., 1991] Aho, A. V., Dahbura, A. T., Lee, D., and Uyar, M. U. (1991). An opti-
mization technique for protocol conformance test generation based on UIO sequences and
rural Chinese postman tours. IEEE Trans. on Communications, 39(11):1604{1615.

[Brinksma, 1988] Brinksma, E. (1988). A theory for the derivation of tests. In Proc. IFIP
Protocol Speci�cation, Testing, and Veri�cation, VIII. North-Holland, Amsterdam.

[Cavalli et al., 1996] Cavalli, A. R., Favreau, J. P., and Phallippou, M. (1996). Standard-
ization of formal methods in conformance testing of communication protocols. Computer
Networks and ISDN Systems, 29(1):3{14.

[Chan and Vuong, 1989] Chan, W. Y. and Vuong, S. T. (1989). An improved protocol test
generation procedure based on UIOs. In Proc. ACM SIGCOMM.

[Davis et al., 1998] Davis, M. D., Sigal, R., and Weyuker, E. J. (1998). Computability, Com-
plexity, and Languages : Fundamentals of Theoretical Computer Science. Academic Press.

[Fecko et al., 1997] Fecko, M. A., Amer, P. D., Sethi, A. S., Uyar, M. U., Dzik, T., Menell,
R., and McMahon, M. (1997). Formal design and testing of MIL-STD 188-220A based on
Estelle. In Proc. MILCOM'97, Monterey, California.

[Fecko et al., 1998] Fecko, M. A., Uyar, M. U., Sethi, A. S., and Amer, P. D. (1998). Em-
bedded testing in systems with semicontrollable interfaces. Technical Report TR-98-18,
CIS Dept., University of Delaware, Newark, DE.

[Fujiwara and v Bochmann, 1992] Fujiwara, S. and v Bochmann, G. (1992). Testing non-
deterministic �nite state machines. In Proc. IFIP 4th Int'l Workshop on Protocol Test
Systems. North-Holland, Amsterdam.

[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley.

[IS9646, 1991] IS9646 (1991). ISO International Standard 9646: Conformance Testing
Methodology and Framework. ISO, Information Technology - OSI, Geneva, Switzerland.

[ISO8802-2, 1994] ISO8802-2 (1994). International Standard ISO/IEC 8802-2, ANSI/IEEE
Std. 802.2. ISO/IEC, 2nd edition.

[Lenstra and Kan, 1976] Lenstra, J. K. and Kan, A. H. G. R. (1976). On general routing
problems. Networks, 6:273{280.

[Linn and Uyar, 1994] Linn, R. J. and Uyar, M. U. (1994). Conformance Testing Method-
ologies and Architectures for OSI Protocols. IEEE Comp. Soc. Press, Los Alamitos, CA.

[Miller and Paul, 1994] Miller, R. E. and Paul, S. (1994). Structural analysis of proto-
col speci�cations and generation of maximal fault coverage conformance test sequences.
IEEE/ACM Trans. on Networking, 2(5):457{470.

[Phalippou, 1992] Phalippou, M. (1992). The limited power of testing. In Proc. IFIP 5th
Int'l Workshop on Protocol Test Systems. North-Holland, Amsterdam.

[Ra�q and Castanet, 1990] Ra�q, O. and Castanet, R. (1990). From conformance testing
to interoperability testing. In Proc. IFIP 3rd Int'l Workshop on Protocol Test Systems,
pages 371{385, Washington, DC.

[Rayner, 1987] Rayner, D. (1987). OSI conformance testing. Computer Networks and ISDN
Systems, 14(1):79{98.

[Sabnani and Dahbura, 1988] Sabnani, K. K. and Dahbura, A. T. (1988). A protocol test
generation procedure. Computer Networks and ISDN Systems, 15:285{297.

[Sarikaya et al., 1987] Sarikaya, B., von Bochmann, G., and Cerny, E. (1987). A test design
methodology for protocol testing. IEEE Trans. Software Engineering, 13(5):518{531.

[Timohovich, 1993] Timohovich, E. (1993). An approach to protocol entity model develop-
ment for embedded testing. Automatic Control and Computer Sciences, 27(3):34{41.

[Tretmans, 1996] Tretmans, J. (1996). Conformance testing with labelled transitions sys-
tems: Implementation relations and test generation. Computer Networks and ISDN Sys-
tems, 29(1):49{79.

[Ural, 1992] Ural, H. (1992). Formal methods for test sequence generation. Computer Com-
munications, 15(5):311{325.

[Uyar et al., 1998] Uyar, M. U., Fecko, M. A., Sethi, A. S., and Amer, P. D. (1998). Minimum-
cost solutions for testing protocols with timers. In Proc. IEEE Int'l Performance, Com-
puting, and Communications Conf., pages 346{354, Phoenix, AZ.

[Zeng et al., 1989] Zeng, H. X., Chanson, S. T., and Smith, B. R. (1989). On ferry clip
approaches in protocol testing. Computer Networks and ISDN Systems, 17(2):77{88.

