(Technical Report 2001-02)

Multi-layer Fault Localization Using Probabilistic Inference in Bipartite Dependency Graphs

Matgorzata Steinder, Adarshpal S. Sethi
Computer and Information Sciences Department
University of Delaware, Newark, DE

Abstract- For the purpose of fault diagnosis, communication sys- Also, many existing technigues [34, 61] rely on time-windows
tems are frequently modeled in a layered fashion imitating the to collect a set of symptoms to explain. The time windows are
layered architecture of the modeled system. The layered model typically in order of several minutes. Usage of time-windows
represents relationships between services, protocols, and func- postpones the initialization of the fault localization process. It
tions offered between neighboring protocol layers. In a given also lacks in flexibility since time-window lengths may be dif-
layer, an end-to-end service between two hosts may be provided ferent for different systems and different types of faults and
using multiple hop-to-hop services offered in this layer between symptoms. We believe that, when symptom latencies are not
two hosts on the end-to-end path. When an end-to-end service easy to predict, fault localization is better realized in an itera-

fails or experiences performance problems it is critical to effi-

tive and incremental fashion, i.e., the solution is updated after

ciently find the responsible hop-to-hop services. Dependencies be- every symptom observation. Iterative fault localization also

tween end-to-end and hop-to-hop services form a bipartite graph
whose structure depends on the network topology in the corre-
sponding protocol layer. To represent the uncertainty in the de-

pendency graph, probabilities are assigned to its nodes and links.

Finding the most probable explanation (MPE) of the observed
symptoms in the probabilistic dependency graph is NP-hard. We
transform the bipartite dependency graph to a belief network and
investigate several algorithms for computing MPE such as bucket
tree elimination and two approximations based on Pearl’s itera-
tive algorithms. We also introduce a novel algorithm using an it-
erative hypothesis update. These algorithms are implemented in
Java and their performance and accuracy are evaluated through
extensive simulation study.

allows the actual alarm correlation to be interleaved with ad-
ditional testing procedures, thereby improving the overall per-
formance and accuracy.

The demands of the modern enterprise services such as e-
commerce, telecommuting, virtual private networks [55], and
application service provision [10] change the requirements im-
posed on the fault localization process. E-business customers
increasingly demand support for quality of service (QoS) guar-
antees. QoS parameters are negotiated between a customer and
e-business as part of Service Level Agreements [25] (SLAS),
which also specify pricing rules for the offered services and

a penalty schema to be used if the quality of the offered ser-

vice violates the agreed upon SLA contract. Various tech-
11 nigues have been investigated to supervise execution of the
NTRODUCTION SLA contract [2, 23], and to notify the management applica-

Fault diagnosis is a central aspect of network fault manag8on about any QoS violations. In addition to dealing with re-
ment. Since faults are unavoidable in communication systen9urce availability problems, fault diagnosis has to isolate the
their quick detection and isolation is essential for system r&:2uses of these performance/Qos related notifications. In such
bustness, reliability and accessibility. Traditionally, fault di-2n €-commerce environment, diagnosis may no longer be con-
of experts experienced in managing communication networkgary, fault diagnosis has to reach through the transport and ap-
However, as systems grew larger and more complex, autk ication layers into the service layer. Since upper layers heav-

mated fault diagnosis techniques became critical. ily depend on lower layers, the fault management system has to
integrate fault diagnosis across multiple protocol layers. Per-

Fault localization (also event correlation or root cause diagermance related problems are more frequent than availability
nosis) [28, 34, 61], an important stage of the fault diagnosi®lated ones. In large systems, it is likely for two or more un-
process, isolates the most probable set of faults based on theiiated performance problems to occur simultaneously. There-
external manifestations called symptoms or alarms. The mdstre, fault diagnosis has to be able to isolate multiple unrelated
probable set of faults proposed in the fault localization stageot causes.

constitutes a symptom explanation hypothesis, which is later o .

tested to pinpoint the actual faults. Fault localization aims ayefwork connectivity is frequently achieved through a se-

may not be further explained. example, in the data-link layer, end-to-end connectivity is pro-

vided by a network of bridges; in the network layer, end-to-
In the past, fault diagnosis efforts concentrated mostly on dend connectivity is realized by a network of routers. Similar
tecting, isolating, and correcting faults related to network corscenarios exist in the application layer. We say that the end-
nectivity [17, 34, 59, 61]. The diagnosis focused on lower layto-end service provided by a given layer is realized by a set
ers of the protocol stack (typically physical and data-link layef hop-to-hop services in that layer. When an end-to-end ser-
ers) [47, 61], and its major goal was to isolate faults relatedice fails, one needs to locate hop-to-hop services responsible
to the availability of network resources, such as broken cablfar the end-to-end service failure. Diagnosing end-to-end ser-
inactive interface, etc. Since these types of problems are re&ice failures, both availability and performance related ones, is
atively rare, most event correlation techniques existing today difficult problem in complex network topologies. This pa-
assume that only one fault may exist in the system at any time.
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per considers end-to-end service failure diagnosis to be a ctu-(Servicg (a,b)) is implemented in terms of layek func-
cial step towards multi-layer fault localization in an enterpris¢ions on hosta andb (Network Functiong(a) and Network
environment. We present probabilistic iterative fault localizaFunctions, (b)), and the layel. protocols through which hosts
tion techniques capable of isolating multiple-simultaneous roetandb communicate. The laydt protocols running between
problems responsible for end-to-end service failures in a givérostsa andb use layer, — 1 functions on hosta andb, and
layer. The proposed solutions allow the management systemdervices that layef. — 1 offers between hosandb. Layer
perform fault localization iteratively in real-time. L functions on nodea depend on layel, — 1 functions on

. . nodea. The recursive dependencies between services, proto-
In Section 2, we describe the layered dependency graph modls and functions constitute a dependency graph as described
for multi-layer fault diagnosis refined to expose the end-ty, 21]. In this paper, we find it useful to eliminate the proto-
end service model and to allow non-deterministic reasoningy' nodes. This model simplification is justified, since it may
about both availability and performance related problems. I, 3ssumed that the protocols are implemented correctly; un-

Section 3'd"."e ﬁ?scribe sosme graah_ and dbelief Retworks Coa‘éf-r this assumption, protocols cannot contribute explanations
cepts used in this paper. Section 4 introduces the mapping @i seryice failures. Figure 1 shows the resultant general de-

the layered dependency graph into a belief network, which fofanjency graph for a layered network, in whtrvice (a,c)
end-to-end service failure diagnosis forms a bipartite grap irectly depends oervice,_;(a,c). ' '

In Section 5, we describe five algorithms for finding the bes
symptoms’ explanation using a bipartite belief network, which

include bucket tree elimination [14] and two approximations _S_er_ V'_C€L+_1(§’E)_
based on Pearl’s iterative algorithms [49]. We also introduce a _--" ! DT
novel algorithm using an iterative hypothesis update. These al 4~ : e
gorithms were implemented in Java and their performance an Layer L | o L
accuracy were evaluated through extensive simulation study ™" ”:‘Ct"’”sh*l(a) Servic '(a 0 Networ ””CI“O”SL*I(C)
described in Section 6. A comparison of our solutions with I - &as_ - i
other event correlation techniques is presented in Section 7. It - : R -
Lay'er L : Layer' L
2 LAYERED MODEL FORALARM CORRELATION Network Functions, () v Network Functions, ()
. . o i Service ,(a,c) 1

For the purpose of fault diagnosis, communication systems are ! Pl =~ I
frequently modeled in a layered fashion imitating the layered : ¥ X :
architecture of the modeled system [21, 43, 61]. This approach 1 Service ,(a,b) Service _,(b,c)
provides a natural abstraction of the modeled system’s enti- | T TN 77 TN I
ties, reusability of the model’s modules, and ability to divide v ‘s » ‘v
the fault management task into separate, simpler subtasks. The  Layer L-1 Layer L-1 Layer L-1

main purpose of the model is to represent information aboutNetwork Functions,_;(a)| |Network Functions_,(b)} |Network Functions_,(c)
events, i.e., state changes of a communication system’s enti-
ties, and their impact on the state of other entities. The ability ; .

of a fault in one entity to change the state of other entities, re- Figure 1: Layered network dependency model

ferred to as fault propagation, is an inherent feature of commdthe general dependency graph template obtained from ser-
nicating systems. Because of fault propagation, the effects Wices, protocols and functions in different layers provides a
abnormal operation of functions or services provided by lowdghacro-view of the relationships that exist in the system. It
layers may be observed in higher layers. While propagating upay be argued that _fault localization ShOU|_d be performed start-
the protocol stack, the failures change their semantics therethi@ from a macro-view to select a potential spot of the prob-
losing information important for their localization. For exam-l€m, and then it should focus on the micro-view of the cho-
ple, a failure at the data link layer to successfully transmit &&n spot [48]. To incorporate the micro-view of the relation-
packet across a link may be observed in a higher layer as 8hips within particular model components, the layered model
inability to ping the IP host to which packets are transmitteghould be further refined to include possibly complex rela-
using the failed link. Similarly, a router failure in the networktionships within services, protocols and functions in the same
layer may be observable in the transport layer as an inabilitgtyer. ThusNetwork Functiong(a) should be represented as
to establish the TCP connection with a TCP host to which IR graph of multiple layer L functions on nogeimplement-
datagrams are routed using the failed router. In order to fifg Network Functions(a). Similarly, Servicg,(a,b) could
explanations of higher-layer problems, it is useful to create ¢ extended into a subgraph containing multiple lalyesub-

fault propagation model.” Fault management systems modgrvices used to providgervice (a,b). In particular, an end-
fault propagation by representing either causal relationshi@-end service offered by laydr between hosta andc is im-
between events [9, 22, 61] or dependencies between comnflemented in terms of multiple hop-to-hop services offered by

nication system entities [21, 32, 34, 54]. layer L between subsequent hops on the path of the ldyer
packet from noda to nodec (such asServiceg,_1(a,c)in Fig-
2.1 Layered model template ure 1). The ability to reason about failures observed in an end-

— . to-end service, i.e., symptoms, and trace them down to partic-
In the layered fault model, the definition of entity dependeny 5 host-to-host service failures, i.e., faults, is critical in order

cies is based on real-life relationships between layers on a sfiy-nerform fault diagnosis in complex network topologies and
gle host and between network nodes communicating withig the primary focus of the presented research.

a single protocol layer. The fault model components may be
generally divided inteservices protocols andfunctions[21].  In this paper, besides the elimination of the protocol nodes,
A service offered by protocol layet between nodea and the model presented in [21] is refined as follows. With
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every dependency graph node we associate multiple failure Servicg (a,c), therefore no symptom related to the failure
modes F, . .., Fy, which represent availability and perfor- of Servicg, (a,c)is generated.
mance problems pertaining to the service or function repre-

sented by the dependency graph node. In real-life systems, {hgcertainty about dependencies between communication sys-
following conditions are typically monitored for and consid-tem entities is represented by assigning probabilities to the
ered a service/function failure: links in the dependency or causality graph [34, 36]. Some com-

e I, — service/function ceases to exist (e.g., the cable coﬁlonly accepted assumptions in this context are that (1) given
nection is broken), ault a, the occurrences of faults andc that may be caused

e F, —service/function introduces unacceptable delay (e%y aare independent, (2) given the occurrences of fauésd

one of the hop-to-hop links in network layer is congested)) that may cause evenf whethera actually causes is inde-
e F —service/function produces erroneous output (e.g., ndent of whethds causex (OR relationship between alter-

errors are introduced in a serial link between routers), native causes of the same event), and (3) faults (root causes)

e F, — service/function occasionally does not produce ou'® independent of one another. We take advantage of these

put (e.g., packets are lost due to buffer overflow). approximating assumptions throughout the paper.

The knowledge of communication protocols makes it possibfgontrary to other publications on this subject [34], in this pa-
to predict which of these conditions will occur in a higher-leveP€r: the dependency graph nodes have multiple failure modes.

service/function if any of these conditions occur in one or mor&herefore, instead of a single probability value, we assign
lower-layer servicesffunctions. probability matrices to the dependency links. &t denote

a set of failure modes related to service or functi®n and
2.2 Non-determinism and its representation in the layeredy denote a set of failure modes related to the dependent ser-
model vice or functionY. The label assigned to dependency link
o ) Y — X is a two-dimensional matrikFy| x |Fx/|, P, such
The fault management application monitors the communihatP(F;, F;) = P{service/functiort’ is in failure modeF|

cation system to detect abnormal service and function 5t§§rvice/function¥ is in failure modeF; }, whereF; € Fy and
changes. The fault localization component uses the fault modg] - Fx. v I

and the observations (symptoms) to determine the cause of the

observed abnormal behavior. The analysis is complicated B3 Obtaining the dependency graph

the fact that most observations may have multiple explanations . . )

and the same fault may cause multiple symptoms. Variodd'e¢ dependency graph described in Section 2.1 records two
techniques have been proposed to make the process of faultjres of dependencies between services and functions in neigh-
calization accurate and efficient [22, 33, 47, 61]. The commad@@ring protocol layersstatic anddynamicdependencies. As
feature of these approaches is that their fault model is detétPposed to static dependencies, dynamic dependencies may
ministic, i.e., the dependency link froatto b implies thatifa ~ change during the system runtime. Static dependencies re-
fails, thenb also fails. The deterministic model is typically suf-sult from, e.g., standardized definition of functions provided
ficient to represent faults in lower layers of the protocol stacRY different layers of the protocol stack, or from static net-
related to the availability of services offered by these layer&/ork topologies. While static dependencies are considered an
However, these fault localization techniques are rather difficu@sier case, building them manually in large systems is fre-
to apply when faults are Byzantine [50], e.g., related to servicglently impossible. Therefore, automated techniques of ob-
performance. In the transport and application layers, frequet@ining static dependencies have been investigated. The net-
reconfigurations of service dependencies make it impossible ¥9rk topology may be obtained automatically through vari-
keep such a deterministic model up-to-date. The following af@Us hetwork topology detection mechanisms [46, 51], which

some possible scenarios, in which the deterministic model @€ built into some commercially available network manage-
inadequate: ment systems [58]. Automated detection of static dependen-

cies within software components on a single machine was in-

e Servicg_;(a,b)in Figure 1 fails by rejecting some datavestlgated in[31].

it is supposed to process (conditidf)). Luckily, none Dynamic dependencies result from, e.g., run-time addition and
of these data are related ®ervicg _;(a,c), therefore, deletion of services (such as establishment and termination of
Service,_1(a,c)is not affected. TCP sessions). To determine the existence of such dynamic
e Servicg_(a,b) fails by rejecting some data related toservices, some popular software utilities may be used, e.g.,
Servicg,_1(a,c) it is supposed to process. However, theall active TCP connections may be retrieved using rie¢
data loss is not sufficient to cause the observable degraddat application [56]. Other techniques have been proposed
tion of Serviceg,_1(a,c). in [6, 19, 51]. Another source of dynamic dependencies is the
e Servicg,_(a,b) fails by delaying processing of datausage of routing protocols (such as the Spanning Tree Proto-
related to Service _;(a,c) (condition Fy). However, col [50]in the data-link layer or any dynamic routing protocol
Servicg,_1(b,c) processes data fast and makes up for thim the network layer), or dynamic configuration changes. Be-
delay so that no degradation &ervice _;(a,c) is ob- cause of the dynamic routing protocols, an end-to-end service
served. may depend on different sets of host-to-host services at differ-
e Servicg_(a,c)fails (conditionsFy, Iy, F3, or Fy) but  enttimes. In order to reason about the causes of the end-to-end
the dependerervicg,(a,c)is not currently in use; there- service failures, we need to determine the currently used set
fore, no failure ofServicg (a,c)will be observed. of host-to-host services. Network management protocols such
e Servicg,_(a,b) fails (conditionsF,, F3, or Fy) and af- as SNMP [7] provide the means to determine dependencies
fectsServicg (a,c), however, the failure detection mech-established using configuration or real-time algorithms. The
anism is not sensitive enough to detect the failure dbllowing list presents several examples and specifies how the
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(a) (b) ath—-A B (Eath—s R c) (Eath—B - D) (Eath—c - B) (Eath—B ﬂA) (Eath—D - B)
Hl

Bridge A Bridge B
Bridge D Bridge C
H2

Figure 2: (a) Example bridge topology with the current spanning tree marked in bold; (b) Dependency graph built based on the
spanning tree in (a)

dependencies may be obtained using the well-known netwohk Figure 2 we present a dependency graph for data link layer
management mechanisms. services in the simple network topology composed of four
learning bridges [50]. The current spanning tree obtained as
1 In many networks the IP datagram forwarding service ilescribed above is marked in bold lines. In the dependency
the network layer is provided through a data link layer forgraph, we distinguish betwedinks, which provide bridge-to-
warding service between bridges or switches. When, fdifidge delivery service, angaths which provide packet de-
reliability concerns, multiple paths are provided betweehvery service from the first to the last bridge on the packet
two bridges, the Spanning Tree Protocol [50] ensures thggute from the source node to the destination node. The de-
only one path at a time is possible between any two nelvery service provided by paths is built of delivery services
work nodes. In the data link layer, the links that be|on£growded by links. We find it reasonable to consider unidirec-
to the spanning tree are the ones currently used to prional communication between two hosts a service, although in
vide the network layer service. The management systefany circumstances this would not be necessary. However, it
may obtain the spanning tree from SNMP agents on tH& sometimes possible for a communication between two hosts
bridges/switches using the data containeddtidBase to fail only in one direction, while in the opposite direction it
Group ofBridge MIB[16]. Updates of the spanning tree remains intact. By distinguishing between opposite directions,
may be triggered byewRoot andtopologyChange it becomes possible to detect these situations.
traps [16]. The de - ) .
. . pendency graph presented in Figure 2-(b) constitutes
2 o o Token Rng [57) neworke Wi SO par o a bigger layered faut model AL the gher level
layer used for communication between two end-statio the model contains IP-source-to-IP-destination delivery ser-

; ce implemented in terms of IP-source-to-bridge, bridge-to-
may be obtained from the management agent g -destination packet delivery services and the service pro-

the source end-station using data stored by its age, Hed b ; ;
: : : y the inter-bridge path between IP-source and IP-
mlgc[)étlg]SrRouteTable of Station Source Routing destination. For example, the delivery service between hosts
SN ; : H; and H,, is provided using packet delivery services between
3 The list of IP hop-to-hop links used to provide the end-to olstHl and Beidge A Bridg%%and Bridge % andBridge D
end communication in the network layer may be obtaine d hostH,. When the service between ho%[s and H, ex-
g&%éhﬁ] imsgﬁgﬂiﬂ)ﬁ eagentgf ?C:Sllgow%fllusﬂg d riences one of the failures,, F», F3, or Iy presented in
While ipRgutinngble provides only the ide[ntif]iér Section 2, the failure may be blamed on one or more services
; e H,—H> service depends on. When, either through testing
of the next-hop host to the particular address, the f”ﬁ]r an additional symptom analysis, it is determined that the
route may be computed by following the next-hop idently ,hem was caused by the failure of thath—A—D service,

fiers from the routing table on the source host towards t o ; ; ;
destination host. The alternative method of acquiring t@ﬁj@‘é‘t localization function has to determine the faulty link

route is by using the progratraceroute[56].
4 Some protocols may offer proprietary methods of obtainin the non-deterministic fault-model, locating a faulty link ser-
ing routing information. This is particularly straightfor- vice when the path service fails may be rather complex. In
ward for source routing protocols because the routing inarge networks, testing all link services is time consuming even
formation is included in every transmitted packet. Twdf it is technically possible. Therefore, before any tests are
examples of real-life source routing protocols that woul&cheduled, the link services that are the most likely to have
enable this type of route retrieval are Source-Directed Reaused the path problem should be determined based on the
lay of the military protocol MIL-STD 188-220 [18] and analysis of the observed symptoms, i.e., path service failures.

Dynamic Source Routing [29] proposed for wireless moTo build such a fault hypothesis, in the following sections, we
bile networks.
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present the application of several algorithms for computing there 2-(b) created fon-node networks has an upper bound of
most probable explanation belief networkg49] as wellasa n — 1.

combinatorial algorithm suggested in [34]. We also introducg . . . .
ithm usi : ; ; belief network[14, 49] is a directed acyclic graph [14]
anovel algorithm using an iterative hypothesis update. (DAG), in which each node represents a random variable over

a multivalued domain. We will use terms “node” and “ran-
dom variable” interchangeably, and denote themiby The
We now present the basic concepts of graph and belief netwotRt, Of all nodes is denoted bly. The domain of random
theory uged in the next sections %f thisgpager. variable V; will be denoted by symboD;. The set of di-
rected edged” denotes an existence of causal relationships
A directed graphis a pairG = (V, E), whereV is a set of between the variables and the strengths of these influences
nodes and® = {(V;,V;) | V;,V; € V}is a set of edges. are specified by conditional probabilities. Formally, a be-
We will denote byN the number of nodes in graph, i.e., lief network is a pair(G, P), where G is a DAG, P =
N = |V|. If edge(V;, V;) belongs to grapld7, we say thal;  {P;}, and P, is the conditional probability matrix associated
is aparentof V;, andV; is achild of V;. If both (V;,V;) and  with a random variabld;. Let Par(V;) = {Vi,,..., Vi }
(V;, V;) belong toE we say that? contains an undirected edgebe the set of all parents of;. P, is a (|Par(V;)|+1)-
betweenV; andV;; we also say thaV; andV; areneighbors  dimensional matrix of sizgD;[x|D;,[x...x|D;,|, where
A directed acyclic grapHDAG) is a directed graph with no Fi(vi, viy, - - ., v, )=P(Vi=v;|Vi,=vyy, ..., Vi, =0y, ). We
directed cycles. Amndirected graphis a graph that contains Will denote by A={V,=vy,...,V,,=v, } an assignment of val-
only undirected edges. ues to variables in sét’ where eachy; € D;. We will use

A . . . .
An ordered graphis a pair(G, o), whereG is an undirected Y% to denote the value of va_rlabli@ie V' in alignmentA.
graph anc = Vi, Va, . .., Vi is an ordering of the nodes. In Given a subset of raEdom Va”ib[éﬁf{vkma ViV,
the ordered graph, the number of neighbors of nbg¢hat We will denote byUi*={Vj,=vi}, ..., Vi, =vi. } an assign-
precede it in the ordering is called thadth of nodeV;. A  ment of values to variables in s&t, that is consistent with
modified ordered graphG;, o) of an ordered graphG, o) is ~ assignmentd. An evidence set is an assignmerit;*, where
created as follows: (1) the nodes of gra@tare processed ac- U, C V is a set of variables whose values are known, and for
cording to ordering from last to first; (2) while processing eachV,, € U, v;. is its observed value.
nodeV;, all its neighbors that precede it in the order are con- ‘ ) . )
nected to one another using undirected links. Whdth of an  Belief networks are used to make four basic queries given
ordered graph(G, o), w * (o), is the maximum node width in evidence set: belief assessment, most probable explana-
the modified ordered grafid’ ), o). Theinduced width of the tion, maximum a posteriori hypothesis, and maximum ex-

directed graphG, w=, is the minimum width of(G, o) com- pected utility [14]. The first two queries are of particular in-
puted over all orderings [14]. ' terest in the presented research. Tedief assessmeriask

is to computebel (V;=v;)=P(V;=v;|e) for one or more vari-
Themoral graphof a directed grapli is obtained by introduc- ablesV;. Themost probable explanatiofMPE) task is to find
ing additional undirected edges between any two nodes withad assignment,,,.. that best explains the observed evidence
common child and then converting all directed edges into undi- j e, P( Ay, )=max4 I, P(V;i=vA| Par(V;)4) [14]. It
rected ones [12]. Consider a directed graph obtained from the known that these tasks are NP-hard in general belief net-
dependency graph in Figure 2-(b) by reversing all its edgegorks [11]. A belief updating algorithm, polynomial with re-
which will be used in the following sections to represent causahect to|V|, is available forpolytrees i.e., directed graphs
relationships between the end-to-end service failures and hqpithout undirected cycles [49]. However, in unconstrained
to-hop service failures. The inverted graph is moralized byolytrees, the propagation algorithm still has an exponential
introducing undirected edges betwekmk—A—B and link— hound with respect to the number of node’s neighbors.
B—C, link—A—B andlink—B—D, link—B—C andlink—D—B,
link—-B—D andlink—C—B, link—-C—B andlink—-B—A, as well Since exact inference in belief networks is NP-hard, various
aslink-B—A andlink—-D—B. Then, the arrows are removed.approximation techniques have been investigated [15, 49, 52].
The moralization of the inverted graph in Figure 2-(b) leads tdo the best of our knowledge, no approximation has been pro-
the creation of cliques, e.g., a subgraph containing ntidles  posed that works well for all types of networks. Moreover,
C—B, link-B—A, andpath—-G—A. Each of the cliques con- Some approximation schemas have been proven to be NP-
tains onepathnode and multipldéink nodes. One can observe hard [13].

that processing nodes as described in the previous paragrqﬁqhis paper, we focus on a class of belief networks repre-
according to the ordering in which dlhk nades are given the enting a simplified model of conditional probabilities called
priority, i.e., they are processed last, would result in the cr Joisy-OR gate$49] (or QMR networks [12]). The simplified
ation of cliques identical to the cliques in the moralized grap y

: : g del contains binary-valued random variables. The noisy-
The width of the inverted graph in Figure 2-(b) ordered as den2 " S .
scribed above is thus equ%l tl?) the m%ximun(1 ():quue size in t R model associates an inhibitory factor with every cause of

: ; ; . a-single effect. The effect is absent only if all inhibitors cor-
nucos the mmimum width of the ordered graph. The max|£SPonding o the present causes are activated. The model as-
mum clique size in the moralized graph is bound by the max sumes that all inhibitory mechanisms are independent [24, 49].
mum path length in the original network graph (i.e., spannin he usage of this model is justified by assumptions we made

P g : Section 2. This simplification helps avoid exponential time
tree in Figure 2-(a)). Thus, for anbridge/router network the ; L
maximum clique of the moralized inverted dependency gra d memory otherwise needed to process and store conditional

: : . ; obability matrices associated with random variables in the
containsn nodes. This lets us conclude that the induced widtfy : :
of the inverted directed graphs of the shape presented in F elief network. Furthermore, belief assessment in polytrees
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with the noisy-OR model has polynomial complexity, whichTo complete the mapping of the fault localization problem into

makes it attractive to use with our problem as an approxim#éiie problem of computing queries in belief networks, we need

tion schema. to define the interpretation of faults and symptoms in the do-
main of belief networks. A symptom is defined as an obser-
vation that a dependency graph node X, which typically cor-

4 MAPPING LAYERED MODEL INTO BELIEF NETWORK  regponds to a higher-level service, is in condition(negative

Wi il lief network n the laver ndendymptom), or is NOT in conditiod’; (positivesymptom). We

gr:p%udgs?:r?beede in gec?ionga:se ?olcl)ows.e ayered depende i&fll_denote byS the set of all possible symptoms. Iff is the

elief network node corresponding to the dependency graph

e For every node of the layered dependency graph and fopde X and its failure modé;, then the negative symptom is
every failure mode associated with this node, we createiaterpreted as an instantiation &f with valuetrue, and the
random variable, whose domain {grue, false}. LetV; positive symptom is interpreted as an instantiatiorVpfvith
be a belief network node created for failure mddeof valuefalse Thus, as a result of this mapping, the set of all ob-
the dependency graph node represenfingvice (a,b)or  served symptoms, which will be denoted8y C S, becomes
Network Functiof(a). AssignmentV; =true indicates the evidence set The dependency graph node X, which cor-
that Service,(a,b) or Network Function(a) is in condi- responds to a lower-level service or function, is at fault if it is
tion F;. Assignment/; =falsethatService (a,b)or Net-  in any of the conditiond", ... ., F, say condition/;. The set
work Function,(a) is NOT in conditionF};. of all possible faults is denoted b¥§. The fact that the ser-

e For every dependency graph edge-X and for every vice or function corresponding to X is in failure mod¢ is
failure mode of node Y[F;, determineF;, the failure represented by valugue in the domain of the random vari-
mode of node X that results from cond]itidf) in node ableV;. The problem of finding the set of fault, C F that
Y. This determination may be performed based on thkest explains the set of observed symptdnss equivalent to
knowledge of communication protocols. For examplegomputing the MPE query based on the evidence set
knowing that layerl. protocol implements an error de-
tection mechanism, one can predict that erroneous out- 5 ALGORITHMS
ggw :ggg (i:resdek;\)/‘?gév(lg%)_ (%g,ntzj)igicoonngit)l?rwﬁ)e;]eis;ytesrin In this section, five algorithms are presented to find the
does not implement an error detection mechanism, coR€St Symptom explanation with causal dependencies between
dition F in Service _,(a,b) results in conditionF; in events represented by graphs described in Section 4. We start
Service (a,b). Let V; be the belief network node corre- 'om acombinatorial algorithm{5] used as an optimal algo-
sponding to dependency graph node Y and failure mod&hm in [34]. Then, three algorithms based on belief networks
Fi. Let V; be the belief network node corresponding tg?'€ Presentecbucket-tree eliminatiofil4] and adaptations of
dependency graph node X and failure made Add a two algorithms for polytrees [49]terative belief propagation
belief network edge pointing fror; to ;. in polytrees anditerative MPE in polytrees Finally, we in-

e Let P be the probability matrix associated with depeniroduce a novel algorithm based derative hypothesis up-
dency link X—Y. The probability matrix?; associated date We will usen to denote the number of nodes (bridges,
with nodeV; represents the following conditional proba-SWitches, or routers) in the managed system.

bility distribution. . . .
P(V;=false| Vi=false) = 1 5.1 Combinatorial algorithm

P(V,=false| V;=true) = 1 — P(F;, Fj) The combinatorial algorithm presented in this section assumes
P(V,=true | V;=false) = 0 a naive approach by evaluating all possible combinations of
P(V;=true | V;=true) = P(F;, F};) faults for their ability to explain the observed symptoms. For a

] i ] given combination of fault§; and a set of observed symptoms
The belief network resulting from the mapping of the depens,,, the measure of goodnegtF;, S,) is computed as follows.
dency graph presented in Figure 1 consists of one or mo

re ,
possibly overlapping, belief networks of the shape presentéd%i S.) = P{all faults in 7; occurreg -
in Figure 3. P{each symptom i§, is caused by at least

one fault inF; }

ST T (- T (Pl 0))

fEF; SES, fEF;

While correlating real-life symptoms, it is frequently assumed
that the number of faults that occurred is small. This suggests
that in the combinatorial algorithm we should start evaluating
fault combinations from those that contain the fewest faults and
terminate the search as soon as an explanation of all symptoms
is known. This leads to the following combinatorial algorithm.

F.: Functions ,,(a

Algorithm 1 (Combinatorial Algorithm)

fori =1 until: < |F| do
for all ¢-fault combinations fronde, F;
: . : . computey(7;, S,)
Figure 3: Belief network built for the dependency graph in Fig- if at least oneF; is found such thay(F;, S,) > 0
ure1;Fi7Fj7FkaFl7FM7F7L7FOE{F17F27F37F4}' 6



return F; such thaty(F;, S,) is maximum In the second phase, the algorithm proceeds from the lowest
numbered variable to the highest numbered one and collects

It may be easily calculated that Algorithm 1 performsthevalues of their most probable assignments. Initially, the as-

FLFN - . . signment contains only the optimal value figr. In thei-th
iy (7)) <@+ |S,| = O(2") operations. However, when gio the partial assignmedf”’, =(v1, ..., v;_,) is extended
multiple concurrent faults are unlikely the algorithm's practi i, the optimal value for variabl&; computed in the back-
cal complexity may be polynomial. In our simulation study we ,

. : t
will determine if the exponential bound is a significant factoiVard phase for partial assignmesf”; .

in practical applications and if implementation of other, MOr&he following notation is used in the formal presentation of

complicated algorithms is justified. the algorithm. (1) If2; belongs to buckeB,,, var(h;) denotes

5.2 Most probable explanation through bucket elimination the set of all variables mentioned in excludingV,,. (2) A,
o . . is an assignment of values to variableslip, whereU, =

Bucket eliminatiorj14] (Algorithm 2) is one of the most pop- {Vi,....V,}. (3) ForV; € U, v is a value of variabld’; in

ular algorithmic frameworks for computing queries listed inygsignmen4,,. !

Section 3 in belief networks. In this section we present com- P

putation of the most probable explanation (MPE) query. The bucket eliminatioralgorithm for computing MPE is ex-
. S act and always outputs a solution. We consider it the opti-
Algorithm 2 (Bucket elimination MPE) mal algorithm for computing the explanation of the observed
symptoms. The computational complexity of the algorithm is
initialize bucketsBy, .. ., B}y for variablesVy, ..., Viy, determined by the number of variables in every bucket and is
Backward phase bound byO(|V|exzp(w*(0))), wherew*(o) is the width of the
for p = |V| downtol do graph induced by ordering, defined in Section 3. For bi-
if (V, = v,) € ethen partite graphs such as the one in Figure 2, the complexity is
for eachh;(V;,,...,V;, ) € B, do O(n*exp(n)) assuming that (1) the optimal ordering is applied
let j. be an index oV, in the parameter list of; as described in Section 3 and (2) the belief network contains
leth (Vi Vie s Viggrs oo Vi) = all possiblepathnodes (there ar€(n?) such nodes possible).
hj-(le, Vi uvp{ijw Vi) Sections 5.3, 5.4, and 5.5 present three algorithms of polyno-
put 7/, in the bucket of variabl&}, € var(h;) mial complexity.
that has|;h? highest number in ordering 5.3 lterative inference in Bayesian polytrees
elselgattgpbe gjﬁTﬁdqg(ré}iL/Z)i,nh{hi gaprameter listof,  Recall from Section 3 that in singly-connected networks (poly-
for all A, compute b ' trees) representing the noisy-OR-gate model of conditional
P |B,| A, A, probability distribution, Bayesian inference (belief updating)
hp(Ap) = maxy, [[;Z7 ha(v;,", .- v;,” v may be computed in polynomial time using the algorithm pre-
”iil’ o) sented in [49]. The graph in Figure 2-(b) is not a polytree be-

opt _ cause it contains an undirected loppth—A—D — link—-A—B
Forward ohac (Ap) = argmax;, hy(A) = path—A—C — link—-B—C — path-D—~C — link-D—B
phas e omt o — path-D—A — link-B—A — path-G—~A — link-C—B —

for p = 1 upto[V| do APP" = AT U {vpP" (A7)} path—G—D — link—-B—D — path—A—D.

Networks with loops violate certain independence assumptions
based on which the local computation equations were derived

Algorithm d2 works bb)I/ c_reatri1ng baI'S(?t of bucl:(kets,G.one fOkor polytrees. As suggested in [49], the iterative algorithm
every random variable in the belief network. Given oryn'|50py networks may or may not converge. Nevertheless,
dering o, the random variables are numbered consecutivel

o : ; ¥uccessful applications of the iterative algorithm have been re-
Initially, the bucket for variableV;, B;, contains all func- ,oeq  The most famous of them are Turbo-Codes [4] that
tions f;(Vj,, ..., Vs, )=Pj, such that none of the variables oger near Shannon limit correcting coding and decoding. The
Vi, ..., Vj, is higher in orderingo than V;; P, is anm-  Tyrho Codes decoding algorithm was shown to be an instance
dimensional conditional probability matrix associated Withy¢iiarative belief propagation in polytrees applied to loopy net-
nodeV;, and random variableg;,, ..., V; , are all parents of 1 [42]. Other compound codes were also formulated as a
random variabld’;, . The buckets are then eliminated startin

. . - = Droblem of belief propagation in graphical models [37]. Pre-
from the last according to ordering Eliminating a bucket ;q5 applications of a deterministic decoding schema to fault

removes its corresponding variable from all functions in thig,ajization in deterministic fault models [61] inspire the ap-
bucket. If the bucket's corresponding variable has been oljication of probabilistic decoding to fault localization in non-
served, then the elimination of the bucket is performed by agterministic fault models.

signing the observed value in eaechparameter function in the

bucket and placing thus created— 1-parameter function in The effectiveness of iterative propagation in loopy networks
the bucket corresponding to its highest numbered variable. @d its near-optimal accuracy came as a surprise to the research
bucket corresponding to an unobserved variable is eliminatedmmunity [53]. While there is no theoretical explanation to
by converting all its functions into one function using maxthese results, some empirical research has been performed to
imization as the elimination operator. The elimination perdetermine which properties of graphs make it more likely to
formed in bucketB; computes, for all possible value assign-achieve high accuracy while applying iterative propagation,
ments to variables mentioned By excludingV;, the value of and when no convergence can be achieved. In [45] the per-
variableV; that maximizes the product of all functionsi).
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formance of iterative propagation in various types of graphs sages received from its parents and children, néammputes
investigated including bipartite graphs like the one in Figure 2\(z), 7(z), andbel(x) as follows [49]:
(b). Itis concluded that, while iterative propagation may offer "
close-to-optimal accuracy for many types of networks, therg
are properties of conditional probability distributions that mak (z) = H v, (x)
their corresponding Bayesian networks prone to oscillations =1 i
when the iterative algorithm is applied. Low prior probabili- . . _ o2 (1 —ev;xmjx) ifz=1
ties (i.e., values in probability matrices of parent-less nodes)™’ ~ | «(l — H;.":l(l —cy;xmix)) fx=0
and small conditional probabilities associated with the causgl;(z) = a\(z)r(z)
links seem to be contributing factors affecting the lack of the ] .
iterative algorithm’s convergence [45]. In the above equationsy;jx = mx(v;) forv; = 1, ais a

) ) o ) .. normalizing constant, and is any constant. In a noisy-OR
The impact of the low prior probabilities on the applicabilitypolytree, let us denote byx, the probability of activating
of iterative propagation to loopy networks is discouraging behe’inhibitor controlling linkX — U;. Every random variable
cause prior probabllltles in the fault localization task, Wth"hssumes values frOI{fﬂ), ]_}' where 1 denotes occurrence of the
correspond to independent fault occurrence probabilities, aggrresponding event and 0 means that the event did not occur.
very small. In spite of that, our research investigates the iterghe probability thaf/; occurs givenX occurs iscxy, = 1 —

tive propagation technique in bipartite fault graphs. The reas u,. The messagesy (v;) andry, () are computed using
for this is that we are not interested in the precise value of thfie following equations [49]:

belief metric; as long as the relative values are preserved we

can still hope to achieve a good solution. In Section 6 we show,, (,,.) — 3( \(1) — ¢% - (\(1) — A0 1—
the encouraging results of this investigation. x(vy) ﬁ( ) quX( ) ( ))I};[j( CV’“XWX))

Recall from Section 4 that the problem of fault IocalizationﬂUv(x) :aH v, ()7 ()
may be translated into the most probable explanation (MPE) vy

qguery in belief networks. The iterative algorithms for polytrees
proposed in [49] include the algorithm for calculating MPE.n the initialization phase, for all observed nod&s \(z) is
Nevertheless, we start presenting iterative algorithms from thset to 1 ifx is the observed value of. For other values of
description of belief updating, which is conceptually simplerz, A(z) is set to 0. For all unobserved node&r) is set to 1
We also present an adaptation of belief updating to estimatirigr all values ofz. Parentless nodes have theitr) set to the
the MPE. prior probabilities. The belief propagation algorithm in poly-

frees starts from the evidence node and propagates the changed

Iterative belief propagation utilizes a message passing sche%ief alon ;
: ! ’ g the graph edges by computing(x), Ax (v;)’s
in which the belief network nodes exchangandr messages andy (u;)'s in every visited node. In loopy graphs, several

%/Fi?ure 4). Mel.SC?SQQX(IUQ thaé nodteX sendf o its p%rek?'lt iterations are performed in which the entire graph is searched
; for every validV's valueu;, denotes a posterior probabil- o cording 10 some pre-defined ordering.

ity of the entire body of evidence in the sub-graph obtained by
removing linkV; — X that containsX, given thatV; = v;.  This paper adapts the iterative belief propagation algorithm to
Messagery, (=) that nodeX sends to its childJ; for every the problem of fault localization with fault models represented

valid value of X, x, denotes a probability that = z given by bipartite graphs as in Figure 2-(b). In this application, we

the entire body of evidence in the subgraph contaiingre- perform one traversal of the entire graph for every observed
ated by removing edg& — U;. In this section, we present a symptom. For every symptom we define a different ordering

summary of the iterative algorithm for polytrees and its applithat is equivalent to the breadth-first order started in the node
cation to the fault localization problem. The complete descriprepresenting the observed symptom.

tion of the iterative algorithm for polytrees along with some . . . . .
illustrative examples may be found in [49]. Based on the me&Ygorithm 3 (MPE through iterative belief updating)

Inference iteration starting from node Y;:
let o be the breadth-first order starting froir}
for all nodesX along orderingo do
if X is not an unobserved path node then
computer x (v;) for all X's parents,V;,
and for allv; € {0,1}
- -5 computery, (z) for all X’s children, U,
AC) 2 ) and for allz € {0,1}
Symptom analysis phase
for every sympton§; € Sp do
run inference iteration starting frors;
computebel (v;) for every nodé/;, v; € {0,1}
Fault selection phase
while 3 link nodeV; for whichbel(1)>0.5 andSp # 0 do
takeV; with the greateskel(1)
markV; as observed to have value of 1
remove all symptoms explained Byfrom Sp
run inference iteration starting frorir;

bel(x) ?

Figure 4: Message passing in Pearl’s belief propagation
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computebel(v;) for every nodé/;, v; € {0,1} sages\ (v;) andny; (), and belief metridel* (x) are com-
puted using the following equations [49]:

It may be noticed that in the unobservedth nodes, because yx (., .y — * *
their \(z) = 1 for any value ofz, Ax (v;) = 1 regardless of the Ax(v5) L{ﬁa;éxuj}<n>\[]i (@) Plafvs, .. ’vm)kl_[_ 7rX(vk))
values of other messages in the expression. Siatienodes ! 7
have no children, there is no need to computenessages. 7, (m)zHA{,k (z) max (P(x|v1, . ,vm)Hw}(vk))
This allows us to avoid the calculations in the unobsepeeth it {ve} h
nodes and thereby significantly improve performance. bel* () = 3 H Al () max (P(a“lm " )H”* (vk)>

2 —_ U 2 gy m X
The computations described above allow us to obtain the X * {ve} x
marginal posterior distribution resulting from the observatio%h lculat - p . .
of the evidence (symptoms). Based on this distribution wen€ calcu ation ofimaxy,,  ( _(_1‘|U1*> S a*Um) 1L, X (vk)) is
need to choose faults that explain the evidence. We chooe primary difficulty in obtaining\"s, 7*s, andbel”s. Using
a link node with the highest posterior probability, place théotation from Section 5.3, the maximization may be expressed
corresponding fault in the MPE hypothesis, mark the node & follows:
observed with value 1, and perform one iteration of the belief .
propagation starting from the choslétk node. This step is re- I{Tzl)aﬁf (P(17|U17 CeyUm) H Wx(vk)) =
peated until (1) the posterior distribution contalimk nodes " k
whose probability is greater than 0.5, and (2) unexplained max(,, }( ([ _ravix) I, ﬂ}(vk)) ifr=0
symptoms remain. . Vi|vi=1 =¥k

Local computations irpath nodes requirg)(k) operations, maxy, ) (1 Hth)k:l avix) [T WX(W)) e =1
wherek is the number of links that constitute the path. Sincynile for »=0 the expression may be simplified to
in an n-node network, a path may be composed of at moz*I-tLC max(qy, x 7 (ve=1), 7% (vs=0)), the exact computation

n links, local computations ipath nodes requiré)(n) oper-  of the maximization for: = 1 requires enumerating all pos-
ations. Thus, in a smgle iteration processpagh nodes re-  gjpje combinations of value assignments to the parents,of
quiresO(n(|S|) € O(n”) operations. Local computations in and choosing a combination that maximizes the value of the

link nodes requir€ (k) steps, wheré is a number of node’s expression. Clearly, listing all combinations is computation-
children. Thus, processing diihk nodes isO(>_ k). Observe gajly infeasible.

thatd " k& = the number of all causal links in the bipartite graph, ~ S
i.e.,n> because there are at me€tpathnodes and every path In this paper, we propose an approximation that allows to com-
may be composed of at mastinks. Therefore, processing all Pute the maximization expression in polynomial time. Let

link nodes require®(n?) operations. We may conclude that a(v1: - - -+ vm)= P(z=1[v1,. .., vm) [T 7% (vy). First, note
single iteration of the algorithm i©(n?), and the complexity that P(z=1|v1, ... ,vm):(l — ij:1 quX>. A combina-
of the entire algorithm i©)(|S,|n®) € O(n?). tion that maximizes the value of expressidi{v:, ..., v,,)

5.4 Iterative most probable explanation in Bayesian polyMmust contain at least one assignméft = 1. Otherwise,
trees E(vi,...,v,) would be equal to zero. The approximation

presented in this paper is based on the fact that the observa-
In this section, we present the application of the iterative MPEon X = 1 is more likely to have been caused by an activation
algorithm for polytrees [49] to networks with undirected loopsof a single parent ofX, than by simultaneous activations of
The iterative belief updating algorithm presented in Section 5180 or more parents oK. The calculation presented below
computes the marginal posterior probability of the Bayesiaaims at finding the set of all parents &f, 71, that should be
network variable values given the observed evidence. In Aissigned to one in the combination that best explains the ob-
gorithm 3, we used this distribution to select the most protservationX = 1. The best choices fo¥,’s € 7, are those
able explanation. The MPE algorithm in every iteration proparents ofX for which 7% (V;=0)=0, because all combina-
duces the most probable value assignment to the belief netwq¥ns in which suchv;=0 result in E(vy, . .., v,,)=0. If no
nodes. This allows us to eliminate tfeult selectiorphase in v, ; K1 _ i _
Algorithm 3, which contributes to the complexity and is an advjS exist such thatr (V 0) 0, then we pick one;

ditional source of the inaccuracy. for which cy, x 7% (1) /7% (0) is maximum. In this expression,

cy,xmx (1) andw% (0) represent an estimate &f’s contribu-
Similarly to belief updating, the MPE computation algorithmion to E(vi,...,v,) With v; = 1 andv; = 0, respectively.

proceeds from the evidence nodes by passing mes3&ge®l  Expressioney. v 7% (1) /7% (0) approximates
7* along the belief network edges. Message(v;) sent by P vixmx(1)/m(0) app

nodeX to its parentl’; represents the conditional probability E(vy,...,v;-1,1,0j41,...,0m)
of the most probable prognosis for the values of nodes Iocatqg'(v v 0.0 V)
in the subgraph containing resulting from the removal of the Lo B=1 T Batly e s Tm
link V; — X, given the propositiolV; = v;. Messager;; (z) i.e., the benefit resulting from changing’s value from 0 to
sent by nodeX to its childU; represents the probability of the 1 in the parameter list of(v1, . .., v,,). V;'s for which nei-
most probable values of the nodes located in the subgraph C@Rerrs, (V;=0)=0 norcy, x % (1)/7% (0) is maximum are as-
taining X resulting from the removal of link — U;, which signed to one if theimi(vj:()) < % (v;=1). This con-
include the proposition¥’ = . The belief metricbel"(x)  gition ensures that’; has bigger contribution to the value of

stands for the probability of the most probable explanation . . s
evidencee that is consistent with the propositioh = z. Mes- (v1,...,vm) When it is assigned to 1 rather than 0, which is
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proven by the following inequation: ng) _ H (1) H 7% (0) H max(r% (1), 7% (0))

E(vl,...,vj,h1,vj+1,...,vm) _ Vi#Aje€m  Vi#j€mo Vi#j¢moUm
E(vi, .5 05-1,0,0541, ., U) The boundary conditions for the childless and parentless nodes
1—gqv,x Hvﬁvﬂvkﬂ Wix Th(v;=1) are as follows. (1) A childless unobserved node is assumed
1 C = _— >1 to receive messagg;, = {1,1}. (2) A childless node ob-
- Hvk;évj|v,€:1 v x T (v; = 0) o

served as 1 or O receivey;, = {0,1} or Ay, = {1,0}, re-
V;s that do not meet any of the conditions described above aspectively. (3) For a parentless nogde=0, Tx=P(X=1),
assigned value 0. and[, ., max(qv, xmx (1), % (0))=P(X=0).

Letm,={Vj|r% (v;=0)=0} if at least one SUCP? eXiStf' Oth- e algorithm for computing MPE calculaté$ and 7#* for
erwise,m={Vp} whereVp=argmay, (CV_J‘X”X(U /.WX(O))' every network node traversing the graph starting from the ob-
Let mo={Vj|r% (v;=1)=0}. The following equations sum- served symptom in the breadth-first order. A single traversal is

marize our approximation technique of the maximization fOFepeated for every observed symptom. At the éntl values

z=1 are computed for all network nodes. The MPE containkrl
- k Algorithm 4 (Iterative MPE)
ax = H av; x H av; x ) . )
Viem Vj|m3 (0=0) <% (v;=1) Inference iteration starting from node Y;:
. . . . let o be the breadth-first ordering starting frol)
x= H mx (1) H mx (0) H max(m (1), 7 (0)) for all nodesX along orderingo do
Viem Viemo  VigmoUm compute\’ (v;) for all X’s parents,V;,
Thus, the complete expression for the maximization is as fol- and for allv; € {0,1}
lows: computery; () for all X’s children, U;,
and for allz € {0,1}
max (P(a:|v1, ey Um) H w}(vk)) ~ Symptom analysis phase
{vx} . for every symptony; € Sp do
(1—qx)mx ifo—=1 run inference iteration starting frors;
{ [y, max(qv, x7% (1), 7% (0)) ifz=0 computebel (v;) for every nodé/;, v; € {0,1}

c . , Fault selection phase
The above expression is then substituted instead of the maxi- -ho0se all link nodes Witbél*(X 1) bél*(X o)
mization in the computation @kl (x) andr;. (), to compute

their approximationi;él*(:c) and 7y, (), respectively. The

approximation for\% (v;) follows the same reasoning with Local computations impath nodes requiré)(n?) operations,

two modifications: (xl) the maximization does not include \évheren Iz t?g(ﬁ;aXImrl]Jm path Iengfth.' T_ffl_ls bound c?uld_ be
; ; ; j j td(n) at the expense of significant complication

which we address by replacing: andrx with ¢’ and={’ gcreased td : . . :

presented below, respectively; (2) for = 1, V; EX7T1, whi)éh of algorithm implementation and introducing a big constant

: aking the performance gain difficult to observe in reason-
makes the search for othef members unnecessary, thereforé;]bly sized networks. Thus, in a single iteration, processing

we useq) presented below instead gf’. We approximate pathnodes require® (n?(|S|) € O(n*) operations. Similarly

A% (v;) as follows: to belief updating, local computations in &tk nodes require
e B O(n?) operations. We may conclude that a single iteration of
X (vg) = the algorithm isO(n*), and the complexity of the entire algo-
max (Hi AL, (0) [Tg 2 max(qv, x 7 (1), 7% (0)), rithm is O(|S,|n*) € O(nf).
[L A, (1) (1 - qg))wg)) ifv; =0 5.5 lterative hypothesis update
max(qvjx [T A%, (0) I 11z max(q x 7 (1), 7% (0)), In this section, we introduce a novel event correlation al-
. ) () ) gorithm for calculating the best explanation of the observed
[T A5, (1) (1 = qvxaxi)mx ) ifv; =1 symptoms. Contrary to the algorithms presented in Sec-

~ _ _ , tions 5.1- 5.4, the technique we describe in this section cre-
In the expression fok, (v;), ¢, ¢}, and={?’ are defined ates a number of alternative fault hypotheses ranked using a

using the following expressions: belief metric. The algorithm proceeds iteratively and after ev-
) ery symptom observation it is able to output the set of the
¢ = IT avix [ ax most probable hypotheses. The iteration triggered byitthe

symptom,S;, creates the set of hypothes@s,, based on the

) set of hypotheses resulting from the previous iteratidn, |,

9x1 = H Qv x and the information about causal relationships between faults
Vie#j |5 (0p=0) <% (v =1) and symptoms stored in the belief network. Every hypothesis

h; € H; is a subset ofF, and is able to explain all symptoms

in {S1,...,5;}. We defineHg, as set{F}, € F} such that
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(b)  SiHg={F,F,F;}
- H={{F} {F} {F}}
Sy Hg={ F, F, Ry}
- H={{F}. {F}. {F; F}}
S Hs,={ F, F3}
- H={{F, R}, {F}. {F3 F}}

Figure 5: Example of iterative hypothesis updating: (a) Example belief network; (b) Sets of hypotheses created after observing
symptomsSy, Ss, andsSs.

Fy, may causeS;, i.e., the belief network contains a directed for all F; € h; suchthatF; € Hg, do

path fromF}, to S;. The set of hypothesés; is created from w(F) = min(u(F), |hyl)

‘H;—1 by incorporating the explanatiorf{s,, of the last ob- addh; to H; and calculateb; (h;)

served symptomg;. Every hypothesig; € H; is minimal, forall h; € H;—1 —H; do

i.e., if any faultF; € h; is removed fromn;, hypothesis; is for all F; € F N Hg, such thatu(F};) > |h;| do
no longer able to explain all the observed symptoms. addh; U{F} to H; and computé; (h,; U{F}})

With every hypothesi#; € H; we associate belief metrig, chooseh; € Hjs,| such thabs,| () is maximum

which similarly to the measure of goodnegs in Algorithm 1 ) ) ) )

(Section 5.1) represents the probability that all faults belongin‘ge illustrate the algorithm with the following example. The
to h; have occurred and that every observed sympgme ault model in Figure 5-(a) presents causal relationships be-
{S1,...,5;} is explained by at least one of the faultstin. ~tween faultsy, F5, F, andF, and symptoms, S, and.S.

od (B . Suppose the symptoms are observed in oflerS; and Ss.
Formally, we definé; (h;) as follows: Figure 5-(b) presents the iterative creation of the hypothesis

. sets after every symptom observation. Initially, the only avail-
bi(h;) = HP(FI) ' H (1 - HP(l - P(Skm))) able hypothesis i, which indicates that given no symptom
Fi€h;  Spe{Si,...S:} Fi€h; observations we conclude that no faults occurred. Then, symp-

tom S; arrives, whose explanation s, = {Fy, F», F3}. We

create extensions of the only available hypothegjsyhich

does not explairb;, for every fault inHg,. As a result, we

obtainH; = {{F1}, {F2}, {F5}}. The explanation for symp-
om S5 is Hg, = {F1,Fs, F4}. Since,F; and F» belong to
ypotheseq F; } and {F,} respectively,{F;} and {F»} are

placed inHy and bothu(F;) and p(F:) are set to 1. Hy-

pothesis{ F3} does not explairbs, therefore it has to be ex-

Unfortunately, this would result it the very fast gronth g~ tended with faults inf/s,. However, we cannot usg, and

and, in consequence, make the computational complexity GF ?m}? the||rut(H)s < tl{tFB}'l: Theﬁonly ext(tansmﬂ pogsmle

the algorithm unacceptable. Instead, we adopt the following 1£3: é}' nthe nﬁx "3ra lon, a Eer S%mpc?dﬁh ?S It%en

heuristics. FaulF, € Hs, may be added th; € H,_, only ~OPServed, we are aflowed to exteqd; } by a \ding faufts

if the size ofh;, |h;|, is smaller than the size of any hypoth-;'rgcﬁgsiﬁzngd‘ ‘ggy’éﬁg“@; }QbWhéﬁdEEFlgalul?FLbbeL::ta\L,nge

esis inH;_, that containsF; and explains symptors;. The (F) = {F}| =1 1y by 9 2

usage of this heuristics is derived from the fact that the prolﬁé 2= =

ability of multiple simultaneous faults is small. Therefore, ofThe last problem to solve is the efficient computatioh; ¢k, ).

any two hypotheses containirg the hypothesis that contains we observe that;(7.;) may be calculated iteratively based on

the fewest faults is more likely to constitute the optimal sympg, (1, ) as follows:

tom explanation. Thus, since it is not efficient to keep all pos-"~" "’ '

sible hypotheses, we remove the hypotheses that are biggedinf i; € H; andh; explainsS;

size. In the following Algorithm 5u(F;) denotes the mini-

mum size of a hypothesis that contains fagltalculated over b, (h;) = bi(hj)(1 — H (1— P(Si+1|Fl))

all hypotheses in the current hypotheses set. Fieh,NHs

To incorporate the explanation of symptdspinto the set of
fault hypotheses, in theth iteration of the algorithm, we an-
alyze every hypothesis; € H;_;. If h; is able to explain
symptoms;, we put it intoH;. The hypotheses ifi{;_; that
do not explainS; have to be extended by adding to each o
them a fault fromHs,. One possible way to do that is to creat
a new hypothesis for every fauly € Hg, and every hypoth-
esish; € H,;_; that does not explaid;, by addingF; to h;.

it+1

Algorithm 5 (lterative Hypothesis Update) 2. Otherwise, ifF, explainsS,

let Hy = {0} andb(0) =1 bip1(h;U{F}) = bi(h;)P(F) P(Sis1|F)

for every observed symptaosh:
letH; =0 To calculate the upper bound for the worst case computa-
forall F; € Fletu(F;) = |F| tional complexity we observe that the calculationbgfh;) is
forall h; € H;—; do O(Jh; N Hg,|) € O(|Hg,|) € O(n), since in an n-node net-
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Table 1: Comparison of Algorithms 1- 5

Theoretical Detection False positive ~Max. network size with Lost and spurious Is algorithm ~ Prediction

Algorithm bound rate rate localization time<10s symptoms iterative?  capabilities
E\Eg/.elgzombinatorial exp(n) 96-99% 1-4% 20 yes no no
*(3A“|;'_"“;)E”mi”a“°” exp(n)  97-100% 0-3% 10 yes no yes
G%ﬁlzt\iﬁgB(eA“g 3 n® 94-98% 2-12% 50 yes yes yes
I(t/-(\elr;tz/)e MPE nd 96-100% 0-8% 25 yes yes no

work a path may be composed of at madinks. The calcu- connections, link failure probabilities, and conditional prob-
lation of b;(h,; U{F;}) is O(1). The algorithm performsS,|  abilities on causal links betwedink andpathnodes. The link
iterations. In every iteration we execute tfeo loops. The first failure probabilities were uniformly distributed random values
loop updates belief metric of all hypothesis that explain sympof the order ofl0~%, and the conditional probabilities on causal
tom S;. For every hypothesisy;, it first recalculatesu(.)'s  links were uniformly distributed random values in the range
of all faults in the hypothesis that could have caused symptof0.5,1). For every graph size, one hundred different graphs
Si (O(|Hg,|) operations), and computégh;) (O(|Hs,|) op-  were generated.

erations). Thus, the first loop requiréX (max;(|H;|)|Hs.

steps. 12he second loop rquimqmaﬁ‘%m‘g& ml) %IL)' For each randomly generated graph, we performed 200 exper-
erations. Therefore the complexity of the entire algorithm i§NeNts. In every experiment, we randomly generated the set of
O(|S,| max; (|H:|)n). To get the precise bound we need to deMalfunctioning links, 7., based on their failure probabilities.
termine the bound fanax; ([H;|). It turns out that in rare cases Then, based on the conditional probabilities on causal links be-
the size of the hypothesis set may grow exponentially. To avof’€€nlink andpathnodes, the set of observed symptoiis,

this problem we set a limit on the number of hypotheses th&¢Sulting from the faults i was generated. The observed
may be created in each iteration; the least likely hypotheses &¥¢mPtoms were then randomly ordered.

rejected when the limit is exceeded. The price we pay for thighe ordered se$, was supplied as an input to the algorithms
modification is that the best hypothesis is no longer guaranteggesented in Section 5. Their output, the set of detected faults,
to be m|n|mal. If the ||m|t set on the Size Of the hypOtheSIS Sej:d, was Compared W|tﬁ'—c We used the fo”owing two metrics

is O(n), Operations involved in Controlling the size IMZ do to represent the accuracy of the a|gorithms_
not increase the theoretical bound on the complexity of the en-

tire algorithm. In the simulation study described in Section 6detection rate |Fa N Fel
we used the limit oRn. Thus, the complexity i€(|S,|n?), | Fe|
i.e.,0(|S,|n?), and in the worst case it 8 (n?).

. |-7:d - -7:c|
false positive rate=- ————
6 SIMULATION STUDY AND COMPARISON OF | Fal

ALGORITHMS

In the above equationdgtection rateepresents the percentage
BF faults occurring in the network in a given experiment that
Sre detected by an algorithniralse positive rateepresents

The algorithms presented in Section 5 were implemented
Java. We used JavaBayes [1] package to obtain an implem

tation of Algorithm 2. The algorithms were evaluated throughy,e hercentage of faults proposed by an algorithm that were not
a set of comprehensive experiments. As a real-life applicatiQfcrring in the network in a considered experiment, i.e., they

domain, we chose the data link layer in a bridged network ifyere faise fault hypotheses. Table 1 shows detection rate and
which the path ambiguity is resolved using Spanning Tree Prey e positive rate intervals of the analyzed algorithms.
tocol [50]. As a result, the shape of the considered graphs is

reduced to trees, thus making random generation of dependdiiie results of the experiments were analyzed as a two-stage
cies resembling real-life scenarios easier. We tested the algwested design [44] with graph size as the first stage, and graph
rithms on randomly generated network topologies, whose sishape and probabilistic distribution as the second stage factors.
ranged from 5 to 100 nodes for the most efficient algorithnThe analysis using standafttest [44] allowed us to determine
Algorithm 5. The high computation time of other algorithmsthat both factors have an impact on the algorithms’ accuracy.
made it infeasible to perform sufficient number of experimenté/hile the dependency between the graph shape/probability
with large graphs, not allowing to draw any sound conclusiondistribution and accuracy is intuitive, that the graph size has
with regard to the algorithms’ accuracy and performance. \en impact on the accuracy may seem surprising. In the follow-
had to limit the scope of experiments to graphs of size0, <  ing paragraphs, we explain the reasons for this dependency.

< <50i i
rzgs'p_egt?\}e?; c(js—egqr;%fg ifase of Algorithms 2, 1, 4, and 3’Figure 6 presents the relationship between detection rate and

graph size. The mean for a particular graph size is an average
For every graph size, we randomly generated spanning treeer the mean detection rates for particular graphs of that size,
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Figure 6: Comparison of accuracies achievable with algorithms presented in Section 5 for different network sizes
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Figure 7: Comparison of false-positive metric values for algorithms presented in Section 5 using different network sizes

within statistically computed confidence intervals. We observine case of Algorithm 5. Another reason behind the decreasing
that Algorithms 2 and 4 slightly outperform other algorithmsaccuracy is the fact that in large networks the number of pos-
In the analyzed graph size range, the difference is of the ordgible symptom explanations is bigger; if a sufficient number of

of 1-2%. symptoms is not observed, the algorithms are likely to choose

A - very likel n rr lution.
The shape of the graphs in Figure 6 indicates a strong depean—e y likely, but not correct solutio

dency of the detection rate on the graph size. The analysis Bfie gradual drop of the detection rate observed in the case of
particular experiments shows, that for small (5-node) graph8]gorithm 5 suggests that this drop may be asymptotic. One
the number of symptoms observed is typically small (less thazan also conclude that all analyzed algorithms have the very
10), which in some cases is not sufficient to precisely pinpoirgatisfactory detection rate of at least®%for graphs larger

the actual fault. Since in small graphs the sizeffis also than 5 nodes).

small, any mistake in fault detection significantly reduces t

he. . . o
detection rate. When the graph gets bigger, the number of O%Lqure 7 presents the relationship between false positive rate
served symptoms increases, thereby increasing the ability $9d the graph size. The false positive rate for a particular graph
precisely detect the faults. On the other hand, as the grapif€ IS calculated as a mean of average false positive rates for

size grows, the multi-fault scenarios are getting more and mop&rticular graphs of that size. Similarly to the detection rate
frequent. In multi-fault experiment, it is rather difficult to de- Metric, the false positive rates for Algorithms 2 and 4 in the an-

tect all actual faults, which leads to partially correct solutionglyZ€d graph size range are almost identical and slightly lower
While the contribution of the partially correct solutions to thelP€tter) than the false positive rates for Algorithms 1, 3, and 5.
decrease of the detection rate is smaller in case of multi-fajRterestingly, the false positive rate for Algorithm 4 starts to
experiments, the frequency of such partially correct solutior&©W sharply when the graph size reaches 15. This observation,
seems to cause the decrease of the detection rate observeflfi9 With the shape of the detection rate curves for this algo-
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rithm presented in Figure 6, lets us conclude that Algorithm 4 16 : : : : :
tends to propose too broad solutions as the explanations of the

observed symptoms. This phenomenon, which occurs in large 14 + £ ﬁ:gor!tﬂm% ot A
i i i h orithm =
networks, is caused by the increased frequency of multi-fault ; Algorithm 5
scenarios. 12 - J Algorithm 4 - b
! Algorithm 5 +&—

The false positive rate calculated for Algorithm 5 exhibits the &
gradual increase with the growth of the graph size. Similarly g
to the detection rate, the shape of the curve indicates that th& g L / N
growth may be asymptotic. If this was the case we could con-2 i ’

10 - ! _

clude that the false positive rate for Algorithm 5 does not ex- g 6 ; / 4
ceed 4. The false positive rate for Algorithm 4 reachés B 8 ; F
the tested range. Unfortunately, temporal complexity does not 4 i .
allow us to perform meaningful experiments to calculate the fa
false positive rate values for Algorithm 4 in the wider graph 2+ o .
size range. v+ﬁ§;§/ s : . .
° 20 40 60 80 100
6 T T T T T Graph size
e
gorithm 2 +——
° x ! ﬁlgg[:i{}mi ol Figure 9: Comparison of correlation time for algorithms pre-
Algorithm 5 +a— sented in Section 5 vs. network size in the presence of two

network faults

; , involved in the design and implementation of Algorithms 3,
2r i i 71 4, and 5 is justified by their greater efficiency, unless the
2 multi-fault scenarios occur so rarely that their existence may
be neglected. When multi-fault scenarios are likely, the naive
combinatorial Algorithm 1 offers rather non-impressive perfor-

Correlation time [sec]
w
T
1

T mance.
0 I . 1

20 40 60 80 100  In the tested graph size range, Algorithm 2 exhibited the best

Graph size accuracy. However, the difference between the accuracy of Al-

gorithm 2 and that of other algorithms is too small to justify the
) ) ] o substantially worsened performance. Algorithm 5 proved to be
Figure 8: Comparison of single fault detection time for algothe most efficient while also preserving very good accuracy. In
rithms presented in Section 5 vs. network size Figure 12, its correlation time measured over the entire tested
graph size range is presented. The correlation time of the or-
of several seconds even for large networks and multi-fault

The next sequence of figures, Figures 8, 9, 10, and 11, presg&narios is very encouraging.

the dependency of the correlation time on the graph size in the
presence of 1, 2, 3, and 4 network faults, respectively. THeo make the evaluation of algorithms presented in Section 5
figures may be used to order Algorithms 2, 3, 4, and 5 with resomplete, one also needs to compare them with respect to other
spect to their performance. Regardless of the number of fauftsatures. We believe that the following factors should be taken
occurring in the system, Algorithm 5 appears to be the mostto account in this evaluation: (1) potential for dealing with
efficient, followed by Algorithm 3, Algorithm 4, and Algo- lost and spurious symptoms, (2) ability to work in the event-
rithm 2 as the most time consuming. Algorithm 5 is at least adriven environment and (3) usability for prediction and test
order of magnitude faster than any of the above algorithms. planning. Comparison of algorithms with respect to these fac-
tors is presented in Table 1. Although the solution for dealing
work. In this case, its correlation time is comparable to the coVyith lostand spurious symptoms is not described in this paper,
lation ¢ Algorthm 5 (Fi 8). H P read .thElII algorithms presented in Section 5 have a potential for work-
relation time of Algorithm 5 (Figure 8). However, already withn,  in'an environment in which lost and spurious symptoms oc-
two-fault scenarios (Figure 9) its temporal complexity Seémg, "Thjs additional form of uncertainty may be embedded in
to be closer to that of Algorithm 3 than Algorithm 5. Furtheny, oo onapility distribution and/or the graphical belief network

performance degradation is observed with three fault scenafisdel. Also, all presented algorithms, except Algorithms 1

ios (Figure 10) when the correlation time curve of Algorithm 1,45 "4 e terative and allow an event-driven building of fault
overlaps with the curve of Algorithm 4. With four-fault scenar-y, b eses. ~Prediction of network symptoms based on other

- { . h Ybserved symptoms is possible with algorithms based on be-
the same correlation time as Algorithm 2. For bigger graphg. network)é, i[.)e., AIgorPthms 2.3 and % In addition, Algo-

in thtﬁ ablseng]e of cotr rt(_alation time TeSUI]ES {IorlAlg%ithm 2, Alyithms 2 and 3 may be used to calculate the utility of tests that
gorithm 1 1S the most ime consuming of all algorithms. would check the existence of unobserved faults or symptoms,

Figures 8, 9, 10, and 11 prove that the additional complexitip allow optimizing the testing procedure.
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Figure 10: Comparison of correlation time for algorithms preFigure 11: Comparison of correlation time for algorithms pre-
sented in Section 5 vs. network size in the presence of threented in Section 5 vs. network size in the presence of four
network faults network faults

7 RELATED WORK dependency graph towards the failing object in an event-

driven fashion starting from the component that symptoms re-

In the past, various event correlation techniques were proposked to [27, 30, 32]. Fault propagation models [22, 34] provide

including rule-based systems [39, 60], model-based reasonihguristic symptom explanation algorithms aimed at satisfying
systems [28, 47], model traversing techniques [30, 32], casseme optimality criteria.

based systems [38], fault propagation models [22, 34], and t

code-book approach [61]. IEe\/ent correlation systems based on a formal representation of

network dependencies and structure represent an improvement
Rule-based systems are composed of rules (productions) of theer early rule-based systems by having the potential to solve
form if conditionthen action The condition part is a logical novel problems, and by being more expandable. However, the
combination of propositions about the current set of receivemdodels that they require are difficult to obtain and keep up-to-
alarms and the system state [39, 60]; the action determines tii@e. The computational complexity involved in model traver-
state of correlation process. The operation of the system ssls limits the scalability of the fault isolation process. The ap-
controlled by an inference engine, which in fault managemempiroach presented in [3] avoids maintaining an explicit network
applications typically uses a forward-chaining inference mechmodel by providing scenario templates organized on a hierar-
anism [39, 47]. Rule-based systems are believed to lack scatdrically based network structure, which are instantiated with
bility, to be difficult to maintain, and to have difficult to predict the data obtained from the arriving event attributes or from the
outcomes due to unforeseen rule interactions. The most freanfiguration database. In addition, the internal event publish-
guently mentioned difficulty in using rule-based systems steness need not be aware which components consume the events
from the necessity of rewriting many rules when system dehat they forward; therefore, a change to higher-level scenario
sign or implementation changes. Although approaches hadees not require changes to any of the lower level scenarios.
been proposed to automatically derive correlation rules baséme of the problems that the approach in [3] does not solve is
on the observation of statistical data [35], it is still necessary tdealing with complex network topologies. The solution shows
regenerate the large portion of correlation rules when the sylsew to propagate events between layers gradually increasing
tem configuration changes. The lack of structure in the systetieir level of abstraction. It does not, however, show how the
of rules typically makes it very difficult to allow reusability of reasoning should be performed within a layer if the network
rules that seems so intuitive in hierarchically built distributedopology in this layer is complex.

systems. The code-book technique [61] uses a network model to de-

Another group of approaches incorporate an explicit represerive a code — a set of possible symptom observations for every
tation of the structure and function of the system being diagroblem that may occur in the network. This process, called
nosed. The representation provides information about depesede-book generation, is performed in advance upon the in-
dencies between network components [27, 28, 30, 32, 34] stallations particular network topology. Code-book generation
about cause-effect relationships between network events [22iminates the runtime computational complexity involved in

47]. The fault isolation process explores the network modehodel traversals. Network alarms observed over a certain time
to verify correlation between events. Model-based reasomindow constitute a coded problem to be decoded using the
ing systems [28, 47] utilize inference engines controlled bgode-book based on the minimum Hamming distance metric.
a set of correlation rules, which contain model exploratioifhe code-book technique is very efficient and is resilient to the
predicates. Model-traversal technigues recursively search theise in the alarm data. However, it is difficult to apply to the
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8 : : : : : dency graph in which every dependency graph node (terminal
object) has only one mode of failure. The approach lacks a de-

7 f-one fault ~e—i l 4 scription presenting its possible application to real-life fault lo-

two faults +— calization tasks. The solution presented in this paper addresses

three faults +H=— ; . T .
6 ffour faults r<— /1 allthe above issues achieving comparable computational com-

it plexity.

5 ;S
% Kliger et al. [36] proposed a probabilistic model to be used
with the codebook approach. Unfortunately, they do not
¥ B oz present the non-deterministic decoding schema. We believe
3+ 7 4 thatthe approach of Algorithms 3 and 4 can be used for this
g ' purpose.

Correlation time [sec]
N
T
1

. The literature on event correlation contains reports of applying

| belief networks to fault diagnosis. However, the approaches
et are limited to rather narrow applications. In [17] a polynomial
. A time algorithm for updating belief in a restricted Bayesian net-

20 40 60 80 100  work used as a model for fault diagnosis in linear light-wave

Graph size networks was proposed. In [24] belief networks have been ap-

plied to troubleshoot printing services. Other reported appli-

] o ) ] cations of Bayesian network theory to fault diagnosis include
Figure 12: Fault localization time with Algorithm 5 proactive fauit detection [26]. The belief network used here
is tree-shaped based on the structure of SNMP [8] MIB [41].
Wang et al. [59] applied Bayesian theory to identifying faulty
inks in communication networks. The analysis is performed
p@ed on connectivity information obtained by the manage-
ent station through testing. The identification is done using

ximum a posteriorethod. Bipartite belief networks repre-

% B R
+
Rl

correlation of transport and application layer events since rel
tionship changes between managed objects, which are frequ
in higher-layers, require reconfiguration of the code-book.

may be argued that fault-symptom mapping dictionaries are n . - . - ;
suitable as a model for fault localization in a large, constantlycnting fault-symptom causal relationships were used in [9)] to

: - o : lop a hierarchical domain-oriented reasoning mechanism
changing enterprise network [54]. Additionally, multi-layer. eve .
event correlation using a single correlation window is inadd!! the delegated management architecture. The proposed tech-

guate as events on different layers may have substantially dﬁi_que Is able to pinpoint LAN segments suspected of having a

ferent temporal relationships. Also, we can not perform tes&‘elrtICUIar fault.
or access or access information about the already detected f&@tatistical data analysis methods were used for non-

ures during correlation. deterministic fault diagnosis in bipartite-graphs in [20]. The

) - ution was proposed to detect link failures in wireless and/or
Case-based systems [38] try to use experience gatheﬁ%{tlefiel d networks.

through past problem solving to find a solution for the ne
problem. The solution for the new problem is adapted form
the solution of the closest matching problem solved in the past.
Case-based systems are able to learn correlation patterns gnehis paper, we presented and evaluated several algorithms
are resilient to network configuration changes. They do naed perform fault localization using fault propagation models
have a problem with network model maintenance. Howeverepresented by bipartite graphs. We showed that exact algo-
they do not take advantage of the known knowledge regardinghms are not only theoretically unacceptable, because of their
entity behavior, nor do they allow fault isolation to be com-exponential complexity bound, but they are also not usable in
bined with fault detection. The need to build a substantial caggactice even for relatively small networks. Algorithms based
liorary before the system is able to isolate faults makes casen iterative message propagation (Algorithms 3 and 4) and
based systems difficult to apply to an evolving or frequentlyterative hypothesis updating (Algorithm 5) allow to find a so-
changing architecture, such as server farms, or in the transphtion efficiently in an event-driven fashion. In addition, Algo-
and application layers. rithm 5 builds the explanation incrementally, forming it after
ery symptom observation from the already existing explana-

The common feature of most of the above approaches is t@én. All iterative algorithms, as revealed through an exten-

their reasoning is deterministic. This paper focuses on no - - o .
deterministic event correlation which is unavoidable in fault di |\:;en§|nngglatlon study, have very promising accuracy and per

agnosis related to quality of service degradation particularly i
upper protocol layers. In nondeterministic fault model, alarnThere are a number of issues that need to be addressed in fu-
correlation aims at finding the most probable explanation of th@re work. So far, we have implicitly assumed that the set of
observed alarms. This is an NP-hard problem [5, 34]. In thebserved symptoms is accurate, i.e., every symptom indicates a
past, some research has been performed on finding appropri@fiture of the corresponding end-to-end service. In reality, spu-
heuristics to solve the problem in polynomial time. Katzela atious symptoms may occur, which do not indicate any abnor-
al. [34] proposed a)(n?) algorithm that finds the most prob- mal condition. Moreover, the reasoning was performed based
able explanation of a set of symptoms inranode dependency only on the negative information, i.e., observed end-to-end ser-
graph. The approach presented in [34] does not allow lost @ice failures. We did not take into account positive information
spurious symptoms and the correlation may not be performdidlat some end-to-end services did not fail. Confidence in the
in event-driven fashion. They base the approach on the depdailure of a particular hop-to-hop service should be decreased if
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many of its resultant end-to-end service failures did not occur12]
Reasoning with positive feedback needs to take into account
that some symptoms are not observed because of their Io?%]
rather than because there was no failure. It is rather straight-
forward to incorporate positive, lost, and spurious symptoms
in the iterative algorithms presented in this paper. The impac,{t”]
of this additional form of uncertainty on the accuracy of the
fault localization process remains to be investigated.

15
In our simulation study, we considered the case in which thé
conditional probability distribution represented by a belief net-
work is known accurately. In general, only estimates of proba
bility values may be known. We plan to investigate the impac
of inaccuracy within these estimates on the fault localizatiori17]
process.

16]

The algorithms presented in this paper were evaluated on ar ]
stricted class of network topologies. While we find no reaso

to believe that in arbitrary network topologies the performance19]
or accuracy of these algorithms would be substantially differ-
ent, we think that the algorithms should be evaluated also P
arbitrary topologies resembling real-life networks.

In this paper, we considered the situation in which the routingzy)
information necessary to build a dependency model for end-to-
end services is available. However, to obtain this informatiog22
may be time consuming and require substantial amount of re= ]
sources needed to install and run management agents on net-
work devices, which collect the management information, and
to regularly transmit the routing information over the network.[23]
Obtaining routing information may be particularly difficult if

the management information is transmitted over the managega)
network, because the managed network outages, i.e., situations
when there is a need for fault localization, may affect the abill#>
ity to transmit the routing information. In future research, weyg
would like to investigate diagnosing end-to-end service failures
without access to the accurate routing information. [27]
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