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Abstract– For the purpose of fault diagnosis, communication sys-
tems are frequently modeled in a layered fashion imitating the
layered architecture of the modeled system. The layered model
represents relationships between services, protocols, and func-
tions offered between neighboring protocol layers. In a given
layer, an end-to-end service between two hosts may be provided
using multiple hop-to-hop services offered in this layer between
two hosts on the end-to-end path. When an end-to-end service
fails or experiences performance problems it is critical to effi-
ciently find the responsible hop-to-hop services. Dependencies be-
tween end-to-end and hop-to-hop services form a bipartite graph
whose structure depends on the network topology in the corre-
sponding protocol layer. To represent the uncertainty in the de-
pendency graph, probabilities are assigned to its nodes and links.
Finding the most probable explanation (MPE) of the observed
symptoms in the probabilistic dependency graph is NP-hard. We
transform the bipartite dependency graph to a belief network and
investigate several algorithms for computing MPE such as bucket
tree elimination and two approximations based on Pearl’s itera-
tive algorithms. We also introduce a novel algorithm using an it-
erative hypothesis update. These algorithms are implemented in
Java and their performance and accuracy are evaluated through
extensive simulation study.

1 INTRODUCTION

Fault diagnosis is a central aspect of network fault manage-
ment. Since faults are unavoidable in communication systems,
their quick detection and isolation is essential for system ro-
bustness, reliability and accessibility. Traditionally, fault di-
agnosis has been performed manually by an expert or a group
of experts experienced in managing communication networks.
However, as systems grew larger and more complex, auto-
mated fault diagnosis techniques became critical.

Fault localization (also event correlation or root cause diag-
nosis) [28, 34, 61], an important stage of the fault diagnosis
process, isolates the most probable set of faults based on their
external manifestations called symptoms or alarms. The most
probable set of faults proposed in the fault localization stage
constitutes a symptom explanation hypothesis, which is later
tested to pinpoint the actual faults. Fault localization aims at
locating root causes of the observed symptoms, i.e., faults that
may not be further explained.

In the past, fault diagnosis efforts concentrated mostly on de-
tecting, isolating, and correcting faults related to network con-
nectivity [17, 34, 59, 61]. The diagnosis focused on lower lay-
ers of the protocol stack (typically physical and data-link lay-
ers) [47, 61], and its major goal was to isolate faults related
to the availability of network resources, such as broken cable,
inactive interface, etc. Since these types of problems are rel-
atively rare, most event correlation techniques existing today
assume that only one fault may exist in the system at any time.

Also, many existing techniques [34, 61] rely on time-windows
to collect a set of symptoms to explain. The time windows are
typically in order of several minutes. Usage of time-windows
postpones the initialization of the fault localization process. It
also lacks in flexibility since time-window lengths may be dif-
ferent for different systems and different types of faults and
symptoms. We believe that, when symptom latencies are not
easy to predict, fault localization is better realized in an itera-
tive and incremental fashion, i.e., the solution is updated after
every symptom observation. Iterative fault localization also
allows the actual alarm correlation to be interleaved with ad-
ditional testing procedures, thereby improving the overall per-
formance and accuracy.

The demands of the modern enterprise services such as e-
commerce, telecommuting, virtual private networks [55], and
application service provision [10] change the requirements im-
posed on the fault localization process. E-business customers
increasingly demand support for quality of service (QoS) guar-
antees. QoS parameters are negotiated between a customer and
e-business as part of Service Level Agreements [25] (SLAs),
which also specify pricing rules for the offered services and
a penalty schema to be used if the quality of the offered ser-
vice violates the agreed upon SLA contract. Various tech-
niques have been investigated to supervise execution of the
SLA contract [2, 23], and to notify the management applica-
tion about any QoS violations. In addition to dealing with re-
source availability problems, fault diagnosis has to isolate the
causes of these performance/QoS related notifications. In such
an e-commerce environment, diagnosis may no longer be con-
strained to the lowest layers of the protocol stack. On the con-
trary, fault diagnosis has to reach through the transport and ap-
plication layers into the service layer. Since upper layers heav-
ily depend on lower layers, the fault management system has to
integrate fault diagnosis across multiple protocol layers. Per-
formance related problems are more frequent than availability
related ones. In large systems, it is likely for two or more un-
related performance problems to occur simultaneously. There-
fore, fault diagnosis has to be able to isolate multiple unrelated
root causes.

Network connectivity is frequently achieved through a se-
quence of intermediate nodes invisible to the layers above. For
example, in the data-link layer, end-to-end connectivity is pro-
vided by a network of bridges; in the network layer, end-to-
end connectivity is realized by a network of routers. Similar
scenarios exist in the application layer. We say that the end-
to-end service provided by a given layer is realized by a set
of hop-to-hop services in that layer. When an end-to-end ser-
vice fails, one needs to locate hop-to-hop services responsible
for the end-to-end service failure. Diagnosing end-to-end ser-
vice failures, both availability and performance related ones, is
a difficult problem in complex network topologies. This pa-
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per considers end-to-end service failure diagnosis to be a cru-
cial step towards multi-layer fault localization in an enterprise
environment. We present probabilistic iterative fault localiza-
tion techniques capable of isolating multiple-simultaneous root
problems responsible for end-to-end service failures in a given
layer. The proposed solutions allow the management system to
perform fault localization iteratively in real-time.

In Section 2, we describe the layered dependency graph model
for multi-layer fault diagnosis refined to expose the end-to-
end service model and to allow non-deterministic reasoning
about both availability and performance related problems. In
Section 3, we describe some graph and belief networks con-
cepts used in this paper. Section 4 introduces the mapping of
the layered dependency graph into a belief network, which for
end-to-end service failure diagnosis forms a bipartite graph.
In Section 5, we describe five algorithms for finding the best
symptoms’ explanation using a bipartite belief network, which
include bucket tree elimination [14] and two approximations
based on Pearl’s iterative algorithms [49]. We also introduce a
novel algorithm using an iterative hypothesis update. These al-
gorithms were implemented in Java and their performance and
accuracy were evaluated through extensive simulation study
described in Section 6. A comparison of our solutions with
other event correlation techniques is presented in Section 7.

2 LAYERED MODEL FORALARM CORRELATION

For the purpose of fault diagnosis, communication systems are
frequently modeled in a layered fashion imitating the layered
architecture of the modeled system [21, 43, 61]. This approach
provides a natural abstraction of the modeled system’s enti-
ties, reusability of the model’s modules, and ability to divide
the fault management task into separate, simpler subtasks. The
main purpose of the model is to represent information about
events, i.e., state changes of a communication system’s enti-
ties, and their impact on the state of other entities. The ability
of a fault in one entity to change the state of other entities, re-
ferred to as fault propagation, is an inherent feature of commu-
nicating systems. Because of fault propagation, the effects of
abnormal operation of functions or services provided by lower
layers may be observed in higher layers. While propagating up
the protocol stack, the failures change their semantics thereby
losing information important for their localization. For exam-
ple, a failure at the data link layer to successfully transmit a
packet across a link may be observed in a higher layer as an
inability to ping the IP host to which packets are transmitted
using the failed link. Similarly, a router failure in the network
layer may be observable in the transport layer as an inability
to establish the TCP connection with a TCP host to which IP
datagrams are routed using the failed router. In order to find
explanations of higher-layer problems, it is useful to create a
fault propagation model. Fault management systems model
fault propagation by representing either causal relationships
between events [9, 22, 61] or dependencies between commu-
nication system entities [21, 32, 34, 54].

2.1 Layered model template

In the layered fault model, the definition of entity dependen-
cies is based on real-life relationships between layers on a sin-
gle host and between network nodes communicating within
a single protocol layer. The fault model components may be
generally divided intoservices, protocols, andfunctions[21].
A service offered by protocol layerL between nodesa and

b (ServiceL(a,b)) is implemented in terms of layerL func-
tions on hostsa andb (Network FunctionsL(a) andNetwork
FunctionsL(b)), and the layerL protocols through which hosts
a andb communicate. The layerL protocols running between
hostsa andb use layerL − 1 functions on hostsa andb, and
services that layerL − 1 offers between hostsa andb. Layer
L functions on nodea depend on layerL − 1 functions on
nodea. The recursive dependencies between services, proto-
cols and functions constitute a dependency graph as described
in [21]. In this paper, we find it useful to eliminate the proto-
col nodes. This model simplification is justified, since it may
be assumed that the protocols are implemented correctly; un-
der this assumption, protocols cannot contribute explanations
to service failures. Figure 1 shows the resultant general de-
pendency graph for a layered network, in whichServiceL(a,c)
directly depends onServiceL−1(a,c).

Layer L-1
Network FunctionsL-1(a)

ServiceL-1(a,b) ServiceL-1(b,c)

ServiceL-1(a,c)

ServiceL(a,c)

ServiceL+1(a,c)

Layer L-1
Network FunctionsL-1(b)

Layer L-1
Network FunctionsL-1(c)

Layer L
Network FunctionsL(a)

Layer L
Network FunctionsL(c)

Layer L+1
Network FunctionsL+1(a)

Layer L+1
Network FunctionsL+1(c)

Figure 1: Layered network dependency model

The general dependency graph template obtained from ser-
vices, protocols and functions in different layers provides a
macro-view of the relationships that exist in the system. It
may be argued that fault localization should be performed start-
ing from a macro-view to select a potential spot of the prob-
lem, and then it should focus on the micro-view of the cho-
sen spot [48]. To incorporate the micro-view of the relation-
ships within particular model components, the layered model
should be further refined to include possibly complex rela-
tionships within services, protocols and functions in the same
layer. Thus,Network FunctionsL(a) should be represented as
a graph of multiple layer L functions on nodea implement-
ing Network FunctionsL(a). Similarly, ServiceL(a,b) could
be extended into a subgraph containing multiple layerL sub-
services used to provideServiceL(a,b). In particular, an end-
to-end service offered by layerL between hostsa andc is im-
plemented in terms of multiple hop-to-hop services offered by
layer L between subsequent hops on the path of the layerL
packet from nodea to nodec (such asServiceL−1(a,c) in Fig-
ure 1). The ability to reason about failures observed in an end-
to-end service, i.e., symptoms, and trace them down to partic-
ular host-to-host service failures, i.e., faults, is critical in order
to perform fault diagnosis in complex network topologies and
is the primary focus of the presented research.

In this paper, besides the elimination of the protocol nodes,
the model presented in [21] is refined as follows. With
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every dependency graph node we associate multiple failure
modesF1, . . . , Fk, which represent availability and perfor-
mance problems pertaining to the service or function repre-
sented by the dependency graph node. In real-life systems, the
following conditions are typically monitored for and consid-
ered a service/function failure:

• F1 – service/function ceases to exist (e.g., the cable con-
nection is broken),

• F2 – service/function introduces unacceptable delay (e.g.,
one of the hop-to-hop links in network layer is congested),

• F3 – service/function produces erroneous output (e.g., bit
errors are introduced in a serial link between routers),

• F4 – service/function occasionally does not produce out-
put (e.g., packets are lost due to buffer overflow).

The knowledge of communication protocols makes it possible
to predict which of these conditions will occur in a higher-level
service/function if any of these conditions occur in one or more
lower-layer services/functions.

2.2 Non-determinism and its representation in the layered
model

The fault management application monitors the communi-
cation system to detect abnormal service and function state
changes. The fault localization component uses the fault model
and the observations (symptoms) to determine the cause of the
observed abnormal behavior. The analysis is complicated by
the fact that most observations may have multiple explanations
and the same fault may cause multiple symptoms. Various
techniques have been proposed to make the process of fault lo-
calization accurate and efficient [22, 33, 47, 61]. The common
feature of these approaches is that their fault model is deter-
ministic, i.e., the dependency link froma to b implies that ifa
fails, thenb also fails. The deterministic model is typically suf-
ficient to represent faults in lower layers of the protocol stack
related to the availability of services offered by these layers.
However, these fault localization techniques are rather difficult
to apply when faults are Byzantine [50], e.g., related to service
performance. In the transport and application layers, frequent
reconfigurations of service dependencies make it impossible to
keep such a deterministic model up-to-date. The following are
some possible scenarios, in which the deterministic model is
inadequate:

• ServiceL−1(a,b) in Figure 1 fails by rejecting some data
it is supposed to process (conditionF4). Luckily, none
of these data are related toServiceL−1(a,c); therefore,
ServiceL−1(a,c) is not affected.

• ServiceL−1(a,b) fails by rejecting some data related to
ServiceL−1(a,c) it is supposed to process. However, the
data loss is not sufficient to cause the observable degrada-
tion of ServiceL−1(a,c).

• ServiceL−1(a,b) fails by delaying processing of data
related to ServiceL−1(a,c) (condition F2). However,
ServiceL−1(b,c)processes data fast and makes up for the
delay so that no degradation ofServiceL−1(a,c) is ob-
served.

• ServiceL−1(a,c) fails (conditionsF1, F2, F3, or F4) but
the dependentServiceL(a,c) is not currently in use; there-
fore, no failure ofServiceL(a,c)will be observed.

• ServiceL−1(a,b) fails (conditionsF2, F3, or F4) and af-
fectsServiceL(a,c), however, the failure detection mech-
anism is not sensitive enough to detect the failure of

ServiceL(a,c), therefore no symptom related to the failure
of ServiceL(a,c) is generated.

Uncertainty about dependencies between communication sys-
tem entities is represented by assigning probabilities to the
links in the dependency or causality graph [34, 36]. Some com-
monly accepted assumptions in this context are that (1) given
fault a, the occurrences of faultsb andc that may be caused
by a are independent, (2) given the occurrences of faultsa and
b that may cause eventc, whethera actually causesc is inde-
pendent of whetherb causesc (OR relationship between alter-
native causes of the same event), and (3) faults (root causes)
are independent of one another. We take advantage of these
approximating assumptions throughout the paper.

Contrary to other publications on this subject [34], in this pa-
per, the dependency graph nodes have multiple failure modes.
Therefore, instead of a single probability value, we assign
probability matrices to the dependency links. LetFX denote
a set of failure modes related to service or functionX, and
FY denote a set of failure modes related to the dependent ser-
vice or functionY . The label assigned to dependency link
Y → X is a two-dimensional matrix|FY | × |FX |, P, such
thatP(Fj , Fi) = P{service/functionY is in failure modeFj |
service/functionX is in failure modeFi}, whereFj ∈ FY and
Fi ∈ FX .

2.3 Obtaining the dependency graph

The dependency graph described in Section 2.1 records two
types of dependencies between services and functions in neigh-
boring protocol layers:static anddynamicdependencies. As
opposed to static dependencies, dynamic dependencies may
change during the system runtime. Static dependencies re-
sult from, e.g., standardized definition of functions provided
by different layers of the protocol stack, or from static net-
work topologies. While static dependencies are considered an
easier case, building them manually in large systems is fre-
quently impossible. Therefore, automated techniques of ob-
taining static dependencies have been investigated. The net-
work topology may be obtained automatically through vari-
ous network topology detection mechanisms [46, 51], which
are built into some commercially available network manage-
ment systems [58]. Automated detection of static dependen-
cies within software components on a single machine was in-
vestigated in [31].

Dynamic dependencies result from, e.g., run-time addition and
deletion of services (such as establishment and termination of
TCP sessions). To determine the existence of such dynamic
services, some popular software utilities may be used, e.g.,
all active TCP connections may be retrieved using thenet-
stat application [56]. Other techniques have been proposed
in [6, 19, 51]. Another source of dynamic dependencies is the
usage of routing protocols (such as the Spanning Tree Proto-
col [50] in the data-link layer or any dynamic routing protocol
in the network layer), or dynamic configuration changes. Be-
cause of the dynamic routing protocols, an end-to-end service
may depend on different sets of host-to-host services at differ-
ent times. In order to reason about the causes of the end-to-end
service failures, we need to determine the currently used set
of host-to-host services. Network management protocols such
as SNMP [7] provide the means to determine dependencies
established using configuration or real-time algorithms. The
following list presents several examples and specifies how the
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link–A→→B link–B→→Alink–B→→C link–C→→Blink–B→→D link–D→→B

path–A→B path–B→Apath–B→C path–C→Bpath–B→D path–D→B

path–A→C

path–A→D

path–C→A

path–D→Apath–D→C

path–C→D

(a) (b)

Bridge A Bridge B

Bridge CBridge D

H1

H2

Figure 2: (a) Example bridge topology with the current spanning tree marked in bold; (b) Dependency graph built based on the
spanning tree in (a)

dependencies may be obtained using the well-known network
management mechanisms.

1 In many networks the IP datagram forwarding service in
the network layer is provided through a data link layer for-
warding service between bridges or switches. When, for
reliability concerns, multiple paths are provided between
two bridges, the Spanning Tree Protocol [50] ensures that
only one path at a time is possible between any two net-
work nodes. In the data link layer, the links that belong
to the spanning tree are the ones currently used to pro-
vide the network layer service. The management system
may obtain the spanning tree from SNMP agents on the
bridges/switches using the data contained indot1dBase
Group ofBridge MIB [16]. Updates of the spanning tree
may be triggered bynewRoot andtopologyChange
traps [16].

2 In IEEE 802.5 Token Ring [57] networks with source
routing bridges, the lost of links in the data link
layer used for communication between two end-stations
may be obtained from the management agent on
the source end-station using data stored by its agent
in dot5SrRouteTable of Station Source Routing
MIB [40].

3 The list of IP hop-to-hop links used to provide the end-to-
end communication in the network layer may be obtained
from the management agents on IP routers using data
stored in ipRoutingTable of TCP/IP MIB-II [41].
While ipRoutingTable provides only the identifier
of the next-hop host to the particular address, the full
route may be computed by following the next-hop identi-
fiers from the routing table on the source host towards the
destination host. The alternative method of acquiring the
route is by using the programtraceroute[56].

4 Some protocols may offer proprietary methods of obtain-
ing routing information. This is particularly straightfor-
ward for source routing protocols because the routing in-
formation is included in every transmitted packet. Two
examples of real-life source routing protocols that would
enable this type of route retrieval are Source-Directed Re-
lay of the military protocol MIL-STD 188-220 [18] and
Dynamic Source Routing [29] proposed for wireless mo-
bile networks.

In Figure 2 we present a dependency graph for data link layer
services in the simple network topology composed of four
learning bridges [50]. The current spanning tree obtained as
described above is marked in bold lines. In the dependency
graph, we distinguish betweenlinks, which provide bridge-to-
bridge delivery service, andpaths, which provide packet de-
livery service from the first to the last bridge on the packet
route from the source node to the destination node. The de-
livery service provided by paths is built of delivery services
provided by links. We find it reasonable to consider unidirec-
tional communication between two hosts a service, although in
many circumstances this would not be necessary. However, it
is sometimes possible for a communication between two hosts
to fail only in one direction, while in the opposite direction it
remains intact. By distinguishing between opposite directions,
it becomes possible to detect these situations.

The dependency graph presented in Figure 2-(b) constitutes
a part of a bigger layered fault model. At the higher level,
the model contains IP-source-to-IP-destination delivery ser-
vice implemented in terms of IP-source-to-bridge, bridge-to-
IP-destination packet delivery services and the service pro-
vided by the inter-bridge path between IP-source and IP-
destination. For example, the delivery service between hosts
H1 andH2 is provided using packet delivery services between
hostH1 andBridge A, Bridge AandBridge D, andBridge D
and hostH2. When the service between hostsH1 andH2 ex-
periences one of the failuresF1, F2, F3, or F4 presented in
Section 2, the failure may be blamed on one or more services
theH1–H2 service depends on. When, either through testing
or an additional symptom analysis, it is determined that the
problem was caused by the failure of thepath–A→D service,
the fault localization function has to determine the faulty link
service.

In the non-deterministic fault-model, locating a faulty link ser-
vice when the path service fails may be rather complex. In
large networks, testing all link services is time consuming even
if it is technically possible. Therefore, before any tests are
scheduled, the link services that are the most likely to have
caused the path problem should be determined based on the
analysis of the observed symptoms, i.e., path service failures.
To build such a fault hypothesis, in the following sections, we
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present the application of several algorithms for computing the
most probable explanation inbelief networks[49] as well as a
combinatorial algorithm suggested in [34]. We also introduce
a novel algorithm using an iterative hypothesis update.

3 GRAPH CONCEPTS

We now present the basic concepts of graph and belief network
theory used in the next sections of this paper.

A directed graphis a pairG = (V,E), whereV is a set of
nodes andE = {(Vi, Vj) | Vi, Vj ∈ V } is a set of edges.
We will denote byN the number of nodes in graphG, i.e.,
N = |V |. If edge(Vi, Vj) belongs to graphG, we say thatVi

is aparentof Vj , andVj is achild of Vi. If both (Vi, Vj) and
(Vj , Vi) belong toE we say thatG contains an undirected edge
betweenVi andVj ; we also say thatVi andVj areneighbors.
A directed acyclic graph(DAG) is a directed graph with no
directed cycles. Anundirected graphis a graph that contains
only undirected edges.

An ordered graphis a pair(G, o), whereG is an undirected
graph ando = V1, V2, . . . , VN is an ordering of the nodes. In
the ordered graph, the number of neighbors of nodeVi that
precede it in the ordering is called thewidth of nodeVi. A
modified ordered graph(GM , o) of an ordered graph(G, o) is
created as follows: (1) the nodes of graphG are processed ac-
cording to orderingo from last to first; (2) while processing
nodeVi, all its neighbors that precede it in the order are con-
nected to one another using undirected links. Thewidth of an
ordered graph(G, o), w ∗ (o), is the maximum node width in
the modified ordered graph(GM , o). Theinduced width of the
directed graphG, w∗, is the minimum width of(G, o) com-
puted over all orderingso [14].

Themoral graphof a directed graphG is obtained by introduc-
ing additional undirected edges between any two nodes with a
common child and then converting all directed edges into undi-
rected ones [12]. Consider a directed graph obtained from the
dependency graph in Figure 2-(b) by reversing all its edges,
which will be used in the following sections to represent causal
relationships between the end-to-end service failures and hop-
to-hop service failures. The inverted graph is moralized by
introducing undirected edges betweenlink–A→B and link–
B→C, link–A→B and link–B→D, link–B→C and link–D→B,
link–B→D andlink–C→B, link–C→B andlink–B→A, as well
as link–B→A and link–D→B. Then, the arrows are removed.
The moralization of the inverted graph in Figure 2-(b) leads to
the creation of cliques, e.g., a subgraph containing nodeslink–
C→B, link–B→A, andpath–C→A. Each of the cliques con-
tains onepathnode and multiplelink nodes. One can observe
that processing nodes as described in the previous paragraph
according to the ordering in which alllink nodes are given the
priority, i.e., they are processed last, would result in the cre-
ation of cliques identical to the cliques in the moralized graph.
The width of the inverted graph in Figure 2-(b) ordered as de-
scribed above is thus equal to the maximum clique size in the
moralized graph minus one. One can show that this ordering
induces the minimum width of the ordered graph. The maxi-
mum clique size in the moralized graph is bound by the maxi-
mum path length in the original network graph (i.e., spanning
tree in Figure 2-(a)). Thus, for ann-bridge/router network the
maximum clique of the moralized inverted dependency graph
containsn nodes. This lets us conclude that the induced width
of the inverted directed graphs of the shape presented in Fig-

ure 2-(b) created forn-node networks has an upper bound of
n− 1.

A belief network[14, 49] is a directed acyclic graph [14]
(DAG), in which each node represents a random variable over
a multivalued domain. We will use terms “node” and “ran-
dom variable” interchangeably, and denote them byVi. The
set of all nodes is denoted byV . The domain of random
variableVi will be denoted by symbolDi. The set of di-
rected edgesE denotes an existence of causal relationships
between the variables and the strengths of these influences
are specified by conditional probabilities. Formally, a be-
lief network is a pair(G, P ), where G is a DAG, P =
{Pi}, andPi is the conditional probability matrix associated
with a random variableVi. Let Par(Vi) = {Vi1 , . . . , Vin}
be the set of all parents ofVi. Pi is a (|Par(Vi)|+1)-
dimensional matrix of size|Di|×|Di1 |×. . .×|Din |, where
Pi(vi, vi1 , . . . , vin)=P (Vi=vi|Vi1=vi1 , . . . , Vin=vin). We
will denote byA={V1=v1,. . . ,Vn=vn} an assignment of val-
ues to variables in setV where eachvj ∈ Dj . We will use
vAj to denote the value of variableVj ∈ V in alignmentA.
Given a subset of random variablesUk={Vk1 , . . . , Vkm} ⊆ V ,
we will denote byUA

k ={Vk1=vAk1
, . . . , Vkm

=vAkm
} an assign-

ment of values to variables in setUk that is consistent with
assignmentA. An evidence sete is an assignmentUA

o , where
Uo ⊆ V is a set of variables whose values are known, and for
eachVoj

∈ Uo, vAoj
is its observed value.

Belief networks are used to make four basic queries given
evidence sete: belief assessment, most probable explana-
tion, maximum a posteriori hypothesis, and maximum ex-
pected utility [14]. The first two queries are of particular in-
terest in the presented research. Thebelief assessmenttask
is to computebel(Vi=vi)=P (Vi=vi|e) for one or more vari-
ablesVi. Themost probable explanation(MPE) task is to find
an assignmentAmax that best explains the observed evidence
e, i.e., P (Amax)=maxA Πn

i=1P (Vi=vAi |Par(Vi)A) [14]. It
is known that these tasks are NP-hard in general belief net-
works [11]. A belief updating algorithm, polynomial with re-
spect to|V |, is available forpolytrees, i.e., directed graphs
without undirected cycles [49]. However, in unconstrained
polytrees, the propagation algorithm still has an exponential
bound with respect to the number of node’s neighbors.

Since exact inference in belief networks is NP-hard, various
approximation techniques have been investigated [15, 49, 52].
To the best of our knowledge, no approximation has been pro-
posed that works well for all types of networks. Moreover,
some approximation schemas have been proven to be NP-
hard [13].

In this paper, we focus on a class of belief networks repre-
senting a simplified model of conditional probabilities called
noisy-OR gates[49] (or QMR networks [12]). The simplified
model contains binary-valued random variables. The noisy-
OR model associates an inhibitory factor with every cause of
a single effect. The effect is absent only if all inhibitors cor-
responding to the present causes are activated. The model as-
sumes that all inhibitory mechanisms are independent [24, 49].
The usage of this model is justified by assumptions we made
in Section 2. This simplification helps avoid exponential time
and memory otherwise needed to process and store conditional
probability matrices associated with random variables in the
belief network. Furthermore, belief assessment in polytrees
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with the noisy-OR model has polynomial complexity, which
makes it attractive to use with our problem as an approxima-
tion schema.

4 MAPPING LAYERED MODEL INTO BELIEF NETWORK

We build a belief network based on the layered dependency
graph described in Section 2 as follows.

• For every node of the layered dependency graph and for
every failure mode associated with this node, we create a
random variable, whose domain is{true, false}. Let Vi
be a belief network node created for failure modeFj of
the dependency graph node representingServiceL(a,b)or
Network FunctionL(a). AssignmentVi =true indicates
that ServiceL(a,b) or Network FunctionL(a) is in condi-
tion Fj . AssignmentVi =falsethatServiceL(a,b)or Net-
work FunctionL(a) is NOT in conditionFj .

• For every dependency graph edge X→Y and for every
failure mode of node Y,Fi, determineFj , the failure
mode of node X that results from conditionFi in node
Y. This determination may be performed based on the
knowledge of communication protocols. For example,
knowing that layerL protocol implements an error de-
tection mechanism, one can predict that erroneous out-
put produced byServiceL−1(a,b)(conditionF3) results in
data loss inServiceL(a,b) (conditionF4). When layerL
does not implement an error detection mechanism, con-
dition F3 in ServiceL−1(a,b) results in conditionF3 in
ServiceL(a,b). Let Vi be the belief network node corre-
sponding to dependency graph node Y and failure mode
Fi. Let Vj be the belief network node corresponding to
dependency graph node X and failure modeFj . Add a
belief network edge pointing fromVi to Vj .

• Let P be the probability matrix associated with depen-
dency link X→Y. The probability matrixPj associated
with nodeVj represents the following conditional proba-
bility distribution.

P (Vj=false| Vi=false) = 1
P (Vj=false| Vi=true) = 1− P(Fi, Fj)
P (Vj=true | Vi=false) = 0
P (Vj=true | Vi=true) = P(Fi, Fj)

The belief network resulting from the mapping of the depen-
dency graph presented in Figure 1 consists of one or more,
possibly overlapping, belief networks of the shape presented
in Figure 3.

 

Fi: FunctionsL-1(a) Fi: FunctionsL-1(b) Fi: FunctionsL-1(c)

Fn: FunctionsL(c)

Fo: FunctionsL+1(c)Fo: FunctionsL+1(a)

Fn: FunctionsL(a)

Fj: ServiceL-1(a,b) Fj: ServiceL-1(b,c)

Fk: ServiceL-1(a,c)

Fl: ServiceL(a,c)

Fm: ServiceL+1(a,c)

Figure 3: Belief network built for the dependency graph in Fig-
ure 1;Fi, Fj , Fk, Fl, Fm, Fn, Fo ∈ {F1, F2, F3, F4}.

To complete the mapping of the fault localization problem into
the problem of computing queries in belief networks, we need
to define the interpretation of faults and symptoms in the do-
main of belief networks. A symptom is defined as an obser-
vation that a dependency graph node X, which typically cor-
responds to a higher-level service, is in conditionFj (negative
symptom), or is NOT in conditionFj (positivesymptom). We
will denote byS the set of all possible symptoms. IfVi is the
belief network node corresponding to the dependency graph
node X and its failure modeFi, then the negative symptom is
interpreted as an instantiation ofVi with value true, and the
positive symptom is interpreted as an instantiation ofVi with
valuefalse. Thus, as a result of this mapping, the set of all ob-
served symptoms, which will be denoted bySo ⊆ S, becomes
the evidence sete. The dependency graph node X, which cor-
responds to a lower-level service or function, is at fault if it is
in any of the conditionsF1, . . . , F4, say conditionFi. The set
of all possible faults is denoted byF . The fact that the ser-
vice or function corresponding to X is in failure modeFi is
represented by valuetrue in the domain of the random vari-
ableVi. The problem of finding the set of faults,Fc ⊆ F that
best explains the set of observed symptomsSo is equivalent to
computing the MPE query based on the evidence sete.

5 ALGORITHMS

In this section, five algorithms are presented to find the
best symptom explanation with causal dependencies between
events represented by graphs described in Section 4. We start
from a combinatorial algorithm[5] used as an optimal algo-
rithm in [34]. Then, three algorithms based on belief networks
are presented:bucket-tree elimination[14] and adaptations of
two algorithms for polytrees [49]:iterative belief propagation
in polytrees, and iterative MPE in polytrees. Finally, we in-
troduce a novel algorithm based oniterative hypothesis up-
date. We will usen to denote the number of nodes (bridges,
switches, or routers) in the managed system.

5.1 Combinatorial algorithm

The combinatorial algorithm presented in this section assumes
a naive approach by evaluating all possible combinations of
faults for their ability to explain the observed symptoms. For a
given combination of faultsFi and a set of observed symptoms
So, the measure of goodnessg(Fi,So) is computed as follows.

g(Fi,So) = P{all faults inFi occurred} ·
P{each symptom inSo is caused by at least

one fault inFi}

=
∏

f∈Fi

P (f) ·
∏

s∈So

(
1−

∏
f∈Fi

(
1− P (s | f)

))
While correlating real-life symptoms, it is frequently assumed
that the number of faults that occurred is small. This suggests
that in the combinatorial algorithm we should start evaluating
fault combinations from those that contain the fewest faults and
terminate the search as soon as an explanation of all symptoms
is known. This leads to the following combinatorial algorithm.

Algorithm 1 (Combinatorial Algorithm)

for i = 1 until i < |F| do
for all i-fault combinations fromF , Fi

computeg(Fi,So)
if at least oneFi is found such thatg(Fi,So) > 0
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returnFi such thatg(Fi,So) is maximum

It may be easily calculated that Algorithm 1 performs∑|F|
i=1

(|F|
i

)
· i · |So| = O(2n) operations. However, when

multiple concurrent faults are unlikely the algorithm’s practi-
cal complexity may be polynomial. In our simulation study we
will determine if the exponential bound is a significant factor
in practical applications and if implementation of other, more
complicated algorithms is justified.

5.2 Most probable explanation through bucket elimination

Bucket elimination[14] (Algorithm 2) is one of the most pop-
ular algorithmic frameworks for computing queries listed in
Section 3 in belief networks. In this section we present com-
putation of the most probable explanation (MPE) query.

Algorithm 2 (Bucket elimination MPE)

initialize bucketsB1, . . ., B|V | for variablesV1, . . ., V|V |
Backward phase:

for p = |V | downto1 do
if (Vp = vp) ∈ e then

for eachhj(Vj1 , . . . , Vjm
) ∈ Bp do

let jk be an index ofVp in the parameter list ofhj

let h′j(Vj1 , . . . , Vjk−1 , Vjk+1 , . . . , Vjm) =
hj(Vj1 , . . . , Vjk−1 , vp, Vjk+1 , . . . , Vjm)

puth′j in the bucket of variableVjl
∈ var(hj)

that has the highest number in orderingo

else letUp =
⋃|Bp|

i=1 var(hi), hi ∈ Bp
let ik be an index ofVp in the parameter list ofhi
for all Ap compute

hp(Ap) = maxvp

∏|Bp|
i=1 hi(v

Ap

i1
, . . . , v

Ap

ik−1
, vp,

v
Ap

ik+1
, . . . , v

Ap

im
)

vopt
p (Ap) = argmaxVp

hp(Ap)
Forward phase:

for p = 1 upto|V | doAopt
p = Aopt

p−1 ∪ {vopt
p (Aopt

p−1)}

Algorithm 2 works by creating a set of buckets, one for
every random variable in the belief network. Given or-
dering o, the random variables are numbered consecutively.
Initially, the bucket for variableVi, Bi, contains all func-
tions hj(Vj1 , . . . , Vjm)=Pj1 such that none of the variables
Vj1 , . . . , Vjm is higher in orderingo than Vi; Pj1 is an m-
dimensional conditional probability matrix associated with
nodeVj1 and random variablesVj2 , . . . , Vjm are all parents of
random variableVj1 . The buckets are then eliminated starting
from the last according to orderingo. Eliminating a bucket
removes its corresponding variable from all functions in this
bucket. If the bucket’s corresponding variable has been ob-
served, then the elimination of the bucket is performed by as-
signing the observed value in eachm-parameter function in the
bucket and placing thus createdm − 1-parameter function in
the bucket corresponding to its highest numbered variable. A
bucket corresponding to an unobserved variable is eliminated
by converting all its functions into one function using max-
imization as the elimination operator. The elimination per-
formed in bucketBi computes, for all possible value assign-
ments to variables mentioned inBi excludingVi, the value of
variableVi that maximizes the product of all functions inBi.

In the second phase, the algorithm proceeds from the lowest
numbered variable to the highest numbered one and collects
the values of their most probable assignments. Initially, the as-
signment contains only the optimal value forV1. In the i-th
step, the partial assignmentAopt

i−1=(v1, . . . , vi−1) is extended
with the optimal value for variableVi computed in the back-
ward phase for partial assignmentAopt

i−1.

The following notation is used in the formal presentation of
the algorithm. (1) Ifhi belongs to bucketBp, var(hi) denotes
the set of all variables mentioned inhi excludingVp. (2)Ap
is an assignment of values to variables inUp, whereUp =
{V1, . . . , Vp}. (3) ForVi ∈ Up, v

Ap

i is a value of variableVi in
assignmentAp.

The bucket eliminationalgorithm for computing MPE is ex-
act and always outputs a solution. We consider it the opti-
mal algorithm for computing the explanation of the observed
symptoms. The computational complexity of the algorithm is
determined by the number of variables in every bucket and is
bound byO(|V |exp(w∗(o))), wherew∗(o) is the width of the
graph induced by orderingo, defined in Section 3. For bi-
partite graphs such as the one in Figure 2, the complexity is
O(n2exp(n)) assuming that (1) the optimal ordering is applied
as described in Section 3 and (2) the belief network contains
all possiblepathnodes (there areO(n2) such nodes possible).
Sections 5.3, 5.4, and 5.5 present three algorithms of polyno-
mial complexity.

5.3 Iterative inference in Bayesian polytrees

Recall from Section 3 that in singly-connected networks (poly-
trees) representing the noisy-OR-gate model of conditional
probability distribution, Bayesian inference (belief updating)
may be computed in polynomial time using the algorithm pre-
sented in [49]. The graph in Figure 2-(b) is not a polytree be-
cause it contains an undirected loop,path–A→D — link–A→B
— path–A→C — link–B→C — path–D→C — link–D→B
— path–D→A — link–B→A — path–C→A — link–C→B —
path–C→D — link–B→D — path–A→D.

Networks with loops violate certain independence assumptions
based on which the local computation equations were derived
for polytrees. As suggested in [49], the iterative algorithm
in loopy networks may or may not converge. Nevertheless,
successful applications of the iterative algorithm have been re-
ported. The most famous of them are Turbo-Codes [4] that
offer near Shannon limit correcting coding and decoding. The
Turbo-Codes decoding algorithm was shown to be an instance
of iterative belief propagation in polytrees applied to loopy net-
works [42]. Other compound codes were also formulated as a
problem of belief propagation in graphical models [37]. Pre-
vious applications of a deterministic decoding schema to fault
localization in deterministic fault models [61] inspire the ap-
plication of probabilistic decoding to fault localization in non-
deterministic fault models.

The effectiveness of iterative propagation in loopy networks
and its near-optimal accuracy came as a surprise to the research
community [53]. While there is no theoretical explanation to
these results, some empirical research has been performed to
determine which properties of graphs make it more likely to
achieve high accuracy while applying iterative propagation,
and when no convergence can be achieved. In [45] the per-
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formance of iterative propagation in various types of graphs is
investigated including bipartite graphs like the one in Figure 2-
(b). It is concluded that, while iterative propagation may offer
close-to-optimal accuracy for many types of networks, there
are properties of conditional probability distributions that make
their corresponding Bayesian networks prone to oscillations
when the iterative algorithm is applied. Low prior probabili-
ties (i.e., values in probability matrices of parent-less nodes)
and small conditional probabilities associated with the causal
links seem to be contributing factors affecting the lack of the
iterative algorithm’s convergence [45].

The impact of the low prior probabilities on the applicability
of iterative propagation to loopy networks is discouraging be-
cause prior probabilities in the fault localization task, which
correspond to independent fault occurrence probabilities, are
very small. In spite of that, our research investigates the itera-
tive propagation technique in bipartite fault graphs. The reason
for this is that we are not interested in the precise value of the
belief metric; as long as the relative values are preserved we
can still hope to achieve a good solution. In Section 6 we show
the encouraging results of this investigation.

Recall from Section 4 that the problem of fault localization
may be translated into the most probable explanation (MPE)
query in belief networks. The iterative algorithms for polytrees
proposed in [49] include the algorithm for calculating MPE.
Nevertheless, we start presenting iterative algorithms from the
description of belief updating, which is conceptually simpler.
We also present an adaptation of belief updating to estimating
the MPE.

Iterative belief propagation utilizes a message passing schema
in which the belief network nodes exchangeλ andπ messages
(Figure 4). MessageλX(vj) that nodeX sends to its parent
Vj for every validVj ’s valuevj , denotes a posterior probabil-
ity of the entire body of evidence in the sub-graph obtained by
removing linkVj → X that containsX, given thatVj = vj .
MessageπUi

(x) that nodeX sends to its childUi for every
valid value ofX, x, denotes a probability thatX = x given
the entire body of evidence in the subgraph containingUi cre-
ated by removing edgeX →Ui. In this section, we present a
summary of the iterative algorithm for polytrees and its appli-
cation to the fault localization problem. The complete descrip-
tion of the iterative algorithm for polytrees along with some
illustrative examples may be found in [49]. Based on the mes-

X

UnUiU1

V1 Vj Vm

λU1
(x)

λUi
(x)

λUn
(x)

λX(v1) λX(vj) λX(vm)

πX(v1)

πX(vj)

πX(vm)

πU1
(x) πUi

(x) πUn
(x)

λ(x) ?, π(x) ?
bel(x) ?

Figure 4: Message passing in Pearl’s belief propagation

sages received from its parents and children, nodeX computes
λ(x), π(x), andbel(x) as follows [49]:

λ(x) =
n∏

i=1

λUi(x)

π(x) =
{

α
∏m

j=1(1− cVjXπjX) if x = 1
α(1−

∏m
j=1(1− cVjXπjX)) if x = 0

bel(x) = αλ(x)π(x)

In the above equations,πjX = πX(vj) for vj = 1, α is a
normalizing constant, andβ is any constant. In a noisy-OR
polytree, let us denote byqXUi

the probability of activating
the inhibitor controlling linkX →Ui. Every random variable
assumes values from{0, 1}, where 1 denotes occurrence of the
corresponding event and 0 means that the event did not occur.
The probability thatUi occurs givenX occurs iscXUi

= 1 −
qXUi

. The messagesλX(vj) andπUi
(x) are computed using

the following equations [49]:

λX(vj) =β
(
λ(1)− q

vj

VjX(λ(1)− λ(0))
∏
k 6=j

(1−cVkXπkX)
)

πUi(x) =α
∏
k 6=i

λUk
(x)π(x)

In the initialization phase, for all observed nodesX, λ(x) is
set to 1 ifx is the observed value ofX. For other values of
x, λ(x) is set to 0. For all unobserved nodesλ(x) is set to 1
for all values ofx. Parentless nodes have theirπ(x) set to the
prior probabilities. The belief propagation algorithm in poly-
trees starts from the evidence node and propagates the changed
belief along the graph edges by computingbel(x), λX(vi)’s
andπX(ui)’s in every visited node. In loopy graphs, several
iterations are performed in which the entire graph is searched
according to some pre-defined ordering.

This paper adapts the iterative belief propagation algorithm to
the problem of fault localization with fault models represented
by bipartite graphs as in Figure 2-(b). In this application, we
perform one traversal of the entire graph for every observed
symptom. For every symptom we define a different ordering
that is equivalent to the breadth-first order started in the node
representing the observed symptom.

Algorithm 3 (MPE through iterative belief updating)

Inference iteration starting from node Yi:
let o be the breadth-first order starting fromYi
for all nodesX along orderingo do

if X is not an unobserved path node then
computeλX(vj) for all X ’s parents,Vj ,

and for allvj ∈ {0, 1}
computeπUi(x) for all X ’s children,Ui,

and for allx ∈ {0, 1}
Symptom analysis phase:

for every symptomSi ∈ SO do
run inference iteration starting fromSi

computebel(vi) for every nodeVi, vi ∈ {0, 1}
Fault selection phase:

while∃ link nodeVj for whichbel(1)>0.5 andSO 6= ∅ do
takeVj with the greatestbel(1)
markVj as observed to have value of 1
remove all symptoms explained byVj fromSO
run inference iteration starting fromVj
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computebel(vi) for every nodeVi, vi ∈ {0, 1}

It may be noticed that in the unobservedpath nodes, because
theirλ(x) = 1 for any value ofx, λX(vj) = 1 regardless of the
values of other messages in the expression. Sincepathnodes
have no children, there is no need to computeπ messages.
This allows us to avoid the calculations in the unobservedpath
nodes and thereby significantly improve performance.

The computations described above allow us to obtain the
marginal posterior distribution resulting from the observation
of the evidence (symptoms). Based on this distribution we
need to choose faults that explain the evidence. We choose
a link node with the highest posterior probability, place the
corresponding fault in the MPE hypothesis, mark the node as
observed with value 1, and perform one iteration of the belief
propagation starting from the chosenlink node. This step is re-
peated until (1) the posterior distribution containslink nodes
whose probability is greater than 0.5, and (2) unexplained
symptoms remain.

Local computations inpath nodes requireO(k) operations,
wherek is the number of links that constitute the path. Since
in an n-node network, a path may be composed of at most
n links, local computations inpath nodes requireO(n) oper-
ations. Thus, in a single iteration processingpath nodes re-
quiresO(n(|S|) ⊆ O(n3) operations. Local computations in
link nodes requireO(k) steps, wherek is a number of node’s
children. Thus, processing alllink nodes isO(

∑
k). Observe

that
∑

k = the number of all causal links in the bipartite graph,
i.e.,n3 because there are at mostn2 pathnodes and every path
may be composed of at mostn links. Therefore, processing all
link nodes requiresO(n3) operations. We may conclude that a
single iteration of the algorithm isO(n3), and the complexity
of the entire algorithm isO(|So|n3) ⊆ O(n5).

5.4 Iterative most probable explanation in Bayesian poly-
trees

In this section, we present the application of the iterative MPE
algorithm for polytrees [49] to networks with undirected loops.
The iterative belief updating algorithm presented in Section 5.3
computes the marginal posterior probability of the Bayesian
network variable values given the observed evidence. In Al-
gorithm 3, we used this distribution to select the most prob-
able explanation. The MPE algorithm in every iteration pro-
duces the most probable value assignment to the belief network
nodes. This allows us to eliminate thefault selectionphase in
Algorithm 3, which contributes to the complexity and is an ad-
ditional source of the inaccuracy.

Similarly to belief updating, the MPE computation algorithm
proceeds from the evidence nodes by passing messagesλ∗ and
π∗ along the belief network edges. Messageλ∗X(vj) sent by
nodeX to its parentVj represents the conditional probability
of the most probable prognosis for the values of nodes located
in the subgraph containingX resulting from the removal of the
link Vi →X, given the propositionVi = vj . Messageπ∗Ui

(x)
sent by nodeX to its childUi represents the probability of the
most probable values of the nodes located in the subgraph con-
tainingX resulting from the removal of linkX → Ui, which
include the propositionX = x. The belief metricbel∗(x)
stands for the probability of the most probable explanation of
evidencee that is consistent with the propositionX = x. Mes-

sagesλ∗X(vj) andπ∗Ui
(x), and belief metricbel∗(x) are com-

puted using the following equations [49]:

λ∗X(vj) = max
x,{vk 6=vj}

( ∏
i

λ∗Ui
(x)P (x|v1, . . . , vm)

∏
k 6=j

π∗X(vk)
)

π∗Ui
(x) =

∏
k 6=i

λ∗Uk
(x) max

{vk}

(
P (x|v1, . . . , vm)

∏
k

π∗X(vk)
)

bel∗(x) =β
∏
k

λ∗Uk
(x) max

{vk}

(
P (x|v1, . . . , vm)

∏
k

π∗X(vk)
)

The calculation ofmax{vk}(P (x|v1, . . . , vm)
∏

k π∗X(vk)) is
the primary difficulty in obtainingλ∗s, π∗s, andbel∗s. Using
notation from Section 5.3, the maximization may be expressed
as follows:

max
{vk}

(
P (x|v1, . . . , vm)

∏
k

π∗X(vk)
)

=max{vk}

(
(
∏

Vk|vk=1 qVkX)
∏

k π∗X(vk)
)

if x = 0

max{vk}

(
(1−

∏
Vk|vk=1 qVkX)

∏
k π∗X(vk)

)
if x = 1

While for x=0 the expression may be simplified to∏
k max(qVkXπ∗X(vk=1), π∗X(vk=0)), the exact computation

of the maximization forx = 1 requires enumerating all pos-
sible combinations of value assignments to the parents ofX,
and choosing a combination that maximizes the value of the
expression. Clearly, listing all combinations is computation-
ally infeasible.

In this paper, we propose an approximation that allows to com-
pute the maximization expression in polynomial time. Let
E(v1, . . . , vm)= P (x=1|v1, . . . , vm)

∏
k π∗X(vk). First, note

that P (x=1|v1, . . . , vm)=
(
1 −

∏
Vj=1 qVjX

)
. A combina-

tion that maximizes the value of expressionE(v1, . . . , vm)
must contain at least one assignmentVj = 1. Otherwise,
E(v1, . . . , vm) would be equal to zero. The approximation
presented in this paper is based on the fact that the observa-
tion X = 1 is more likely to have been caused by an activation
of a single parent ofX, than by simultaneous activations of
two or more parents ofX. The calculation presented below
aims at finding the set of all parents ofX, π1, that should be
assigned to one in the combination that best explains the ob-
servationX = 1. The best choices forVj ’s ∈ π1 are those
parents ofX for which π∗X(Vj=0)=0, because all combina-
tions in which suchVj=0 result inE(v1, . . . , vm)=0. If no
Vjs exist such thatπ∗X(Vj = 0) = 0, then we pick oneVj

for which cVjXπ∗X(1)/π∗X(0) is maximum. In this expression,
cVjXπ∗X(1) andπ∗X(0) represent an estimate ofVj ’s contribu-
tion to E(v1, . . . , vm) with vj = 1 andvj = 0, respectively.
ExpressioncVjXπ∗X(1)/π∗X(0) approximates

E(v1, . . . , vj−1, 1, vj+1, . . . , vm)
E(v1, . . . , vj−1, 0, vj+1, . . . , vm)

,

i.e., the benefit resulting from changingVj ’s value from 0 to
1 in the parameter list ofE(v1, . . . , vm). Vj ’s for which nei-
therπ∗X(Vj=0)=0 norcVjXπ∗X(1)/π∗X(0) is maximum are as-
signed to one if theirπ∗X(vj=0) ≤ π∗X(vj=1). This con-
dition ensures thatVj has bigger contribution to the value of
E(v1, . . . , vm) when it is assigned to 1 rather than 0, which is
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proven by the following inequation:

E(v1, . . . , vj−1, 1, vj+1, . . . , vm)
E(v1, . . . , vj−1, 0, vj+1, . . . , vm)

=

1− qVjX

∏
Vk 6=Vj |vk=1 qVkX

1−
∏

Vk 6=Vj |vk=1 qVkX
· π∗X(vj = 1)
π∗X(vj = 0)

≥ 1

Vjs that do not meet any of the conditions described above are
assigned value 0.

Let π1={Vj |π∗X(vj=0)=0} if at least one suchVj exists. Oth-
erwise,π1={VB}whereVB=argmaxVj

(cVjXπ∗X(1) /π∗X(0)).
Let π0={Vj |π∗X(vj=1)=0}. The following equations sum-
marize our approximation technique of the maximization for
x = 1.

max
{vk}

(
P (x|v1, . . . , vm)

∏
k

π∗X(vk)
)
' (1− qX)πX

qX =
∏

Vj∈π1

qVjX

∏
Vj |π∗X(vj=0)≤π∗

X
(vj=1)

qVjX

πX =
∏

Vj∈π1

π∗X(1)
∏

Vj∈π0

π∗X(0)
∏

Vj /∈π0∪π1

max(π∗X(1), π∗X(0))

Thus, the complete expression for the maximization is as fol-
lows:

max
{vk}

(
P (x|v1, . . . , vm)

∏
k

π∗X(vk)
)
'{

(1− qX)πX if x = 1∏
Vk

max(qVkXπ∗X(1), π∗X(0)) if x = 0

The above expression is then substituted instead of the maxi-
mization in the computation ofbel∗(x) andπ∗Ui

(x), to compute

their approximationsb̃el
∗
(x) and π̃∗Ui

(x), respectively. The
approximation forλ∗X(vj) follows the same reasoning with
two modifications: (1) the maximization does not includeVj ,

which we address by replacingqX andπX with q
(j)
X andπ

(j)
X

presented below, respectively; (2) forvj = 1, Vj ∈ π1, which
makes the search for otherπ1 members unnecessary; therefore
we useq(j)

X1 presented below instead ofq
(j)
X . We approximate

λ∗X(vj) as follows:

λ̃∗X(vj) =

max
( ∏

i λ∗Ui
(0)

∏
k 6=j max(qVkXπ∗X(1), π∗X(0)),∏

i λ∗Ui
(1) (1− q

(j)
X )π(j)

X

)
if vj = 0

max
(
qVjX

∏
i λ∗Ui

(0)
∏

k 6=j max(qVkXπ∗X(1), π∗X(0)),∏
i λ∗Ui

(1) (1− qVjXq
(j)
X1)π

(j)
X

)
if vj = 1

In the expression for̃λ∗X(vj), q
(j)
X , q

(j)
X1, andπ

(j)
X are defined

using the following expressions:

q
(j)
X =

∏
Vk 6=j∈π1

qVkX

∏
Vk 6=j|π∗

X
(vk=0)≤π∗

X
(vk=1)

qVkX

q
(j)
X1 =

∏
Vk 6=j|π∗

X
(vk=0)≤π∗

X
(vk=1)

qVkX

π
(j)
X =

∏
Vk 6=j∈π1

π∗X(1)
∏

Vk 6=j∈π0

π∗X(0)
∏

Vk 6=j /∈π0∪π1

max(π∗X(1), π∗X(0))

The boundary conditions for the childless and parentless nodes
are as follows. (1) A childless unobserved node is assumed
to receive messageλ∗U0

= {1, 1}. (2) A childless node ob-
served as 1 or 0 receivesλ∗U0

= {0, 1} or λ∗U0
= {1, 0}, re-

spectively. (3) For a parentless nodeqX=0, πX=P (X=1),
and

∏
k 6=j max(qVkXπ∗X(1), π∗X(0))=P (X=0).

The algorithm for computing MPE calculatesλ̃∗ and π̃∗ for
every network node traversing the graph starting from the ob-
served symptom in the breadth-first order. A single traversal is
repeated for every observed symptom. At the end,b̃el

∗
values

are computed for all network nodes. The MPE contains alllink
nodes withb̃el

∗
(x = 1) > b̃el

∗
(x = 0).

Algorithm 4 (Iterative MPE)

Inference iteration starting from node Yi:
let o be the breadth-first ordering starting fromYi
for all nodesX along orderingo do

computẽλ∗X(vj) for all X ’s parents,Vj ,
and for allvj ∈ {0, 1}

computẽπ∗Ui
(x) for all X ’s children,Ui,

and for allx ∈ {0, 1}
Symptom analysis phase:

for every symptomSi ∈ SO do
run inference iteration starting fromSi

computeb̃el
∗
(vi) for every nodeVi, vi ∈ {0, 1}

Fault selection phase:
choose all link nodes with̃bel

∗
(X = 1) > b̃el

∗
(X = 0)

Local computations inpath nodes requireO(n2) operations,
wheren is the maximum path length. This bound could be
decreased toO(n) at the expense of significant complication
of algorithm implementation and introducing a big constant
making the performance gain difficult to observe in reason-
ably sized networks. Thus, in a single iteration, processing
pathnodes requiresO(n2(|S|) ⊆ O(n4) operations. Similarly
to belief updating, local computations in alllink nodes require
O(n3) operations. We may conclude that a single iteration of
the algorithm isO(n4), and the complexity of the entire algo-
rithm isO(|So|n4) ⊆ O(n6).

5.5 Iterative hypothesis update

In this section, we introduce a novel event correlation al-
gorithm for calculating the best explanation of the observed
symptoms. Contrary to the algorithms presented in Sec-
tions 5.1- 5.4, the technique we describe in this section cre-
ates a number of alternative fault hypotheses ranked using a
belief metric. The algorithm proceeds iteratively and after ev-
ery symptom observation it is able to output the set of the
most probable hypotheses. The iteration triggered by theith
symptom,Si, creates the set of hypotheses,Hi, based on the
set of hypotheses resulting from the previous iteration,Hi−1,
and the information about causal relationships between faults
and symptoms stored in the belief network. Every hypothesis
hj ∈ Hi is a subset ofF , and is able to explain all symptoms
in {S1, . . . , Si}. We defineHSi as set{Fk ∈ F} such that
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S1 S3S2

F1 F2 F3 F4

S1: HS1
= { F1, F2, F3 } 

         →→ H1= {{F1}, {F2}, {F3}}

S3: HS3
= { F1, F2, F4 } 

         →→ H2= {{F1}, {F2}, {F3, F4}}

S2: HS2
= { F2, F3 }      

         →→ H3= {{F1, F3}, {F2}, {F3, F4}}

(a) (b)

Figure 5: Example of iterative hypothesis updating: (a) Example belief network; (b) Sets of hypotheses created after observing
symptomsS1, S3, andS2.

Fk may causeSi, i.e., the belief network contains a directed
path fromFk to Si. The set of hypothesesHi is created from
Hi−1 by incorporating the explanation,HSi , of the last ob-
served symptom,Si. Every hypothesishj ∈ Hi is minimal,
i.e., if any faultFl ∈ hj is removed fromhj , hypothesishj is
no longer able to explain all the observed symptoms.

With every hypothesishj ∈ Hi we associate belief metricbi,
which similarly to the measure of goodnessg() in Algorithm 1
(Section 5.1) represents the probability that all faults belonging
to hj have occurred and that every observed symptomSk ∈
{S1, . . . , Si} is explained by at least one of the faults inhj .
Formally, we definebi(hj) as follows:

bi(hj) =
∏

Fl∈hj

P (Fl) ·
∏

Sk∈{S1,...,Si}

(
1−

∏
Fl∈hj

P (1− P (Sk|Fl))
)

To incorporate the explanation of symptomSi into the set of
fault hypotheses, in thei-th iteration of the algorithm, we an-
alyze every hypothesishj ∈ Hi−1. If hj is able to explain
symptomSi, we put it intoHi. The hypotheses inHi−1 that
do not explainSi have to be extended by adding to each of
them a fault fromHSi . One possible way to do that is to create
a new hypothesis for every faultFl ∈ HSi and every hypoth-
esishj ∈ Hi−1 that does not explainSi, by addingFl to hj .
Unfortunately, this would result it the very fast growth ofHi
and, in consequence, make the computational complexity of
the algorithm unacceptable. Instead, we adopt the following
heuristics. FaultFl ∈ HSi may be added tohj ∈ Hi−1 only
if the size ofhj , |hj |, is smaller than the size of any hypoth-
esis inHi−1 that containsFl and explains symptomSi. The
usage of this heuristics is derived from the fact that the prob-
ability of multiple simultaneous faults is small. Therefore, of
any two hypotheses containingFl the hypothesis that contains
the fewest faults is more likely to constitute the optimal symp-
tom explanation. Thus, since it is not efficient to keep all pos-
sible hypotheses, we remove the hypotheses that are bigger in
size. In the following Algorithm 5,µ(Fl) denotes the mini-
mum size of a hypothesis that contains faultFl calculated over
all hypotheses in the current hypotheses set.

Algorithm 5 (Iterative Hypothesis Update)

letH0 = {∅} andb0(∅) = 1
for every observed symptomSi:

letHi = ∅
for all Fl ∈ F let µ(Fl) = |F|
for all hj ∈ Hi−1 do

for all Fl ∈ hj such thatFl ∈ HSi
do

µ(Fl) = min(µ(Fl), |hj |)
addhj toHi and calculatebi(hj)

for all hj ∈ Hi−1 −Hi do
for all Fl ∈ F ∩HSi

such thatµ(Fl) > |hj | do
addhj∪{Fl} toHi and computebi(hj∪{Fl})

choosehj ∈ H|So| such thatb|So|(hj) is maximum

We illustrate the algorithm with the following example. The
fault model in Figure 5-(a) presents causal relationships be-
tween faultsF1, F2, F3, andF4 and symptomsS1, S2, andS3.
Suppose the symptoms are observed in orderS1, S3 andS2.
Figure 5-(b) presents the iterative creation of the hypothesis
sets after every symptom observation. Initially, the only avail-
able hypothesis is∅, which indicates that given no symptom
observations we conclude that no faults occurred. Then, symp-
tomS1 arrives, whose explanation isHS1 = {F1, F2, F3}. We
create extensions of the only available hypothesis,∅, which
does not explainS1, for every fault inHS1 . As a result, we
obtainH1 = {{F1}, {F2}, {F3}}. The explanation for symp-
tom S3 is HS3 = {F1, F2, F4}. Since,F1 andF2 belong to
hypotheses{F1} and {F2} respectively,{F1} and {F2} are
placed inH2 and bothµ(F1) and µ(F2) are set to 1. Hy-
pothesis{F3} does not explainS3, therefore it has to be ex-
tended with faults inHS3 . However, we cannot useF1 and
F2 since theirµ(.)’s ≤ |{F3}|. The only extension possible
is {F3, F4}. In the next iteration, after symptomS2 has been
observed, we are allowed to extend{F1} by adding faultF3
sinceµ(F3) = |{F3, F4}| = 2 while |{F1}| = 1, but we
are not allowed to extend{F1} by adding faultF2, because
µ(F2) = |{F1}| = 1.

The last problem to solve is the efficient computation ofbi(hj).
We observe thatbi(hj) may be calculated iteratively based on
bi−1(hj) as follows:

1. If hj ∈ Hi andhj explainsSi+1

bi+1(hj) = bi(hj)
(
1−

∏
Fl∈hj∩HSi+1

(1− P (Si+1|Fl)
)

2. Otherwise, ifFl explainsSi+1

bi+1(hj∪{Fl}) = bi(hj)P (Fl)P (Si+1|Fl)

To calculate the upper bound for the worst case computa-
tional complexity we observe that the calculation ofbi(hj) is
O(|hj ∩ HSi |) ⊆ O(|HSi |) ⊆ O(n), since in an n-node net-
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Table 1: Comparison of Algorithms 1- 5

Algorithm
Theoretical

bound
Detection

rate
False positive

rate
Max. network size with
localization time<10s

Lost and spurious
symptoms

Is algorithm
iterative?

Prediction
capabilities

Naive Combinatorial
(Alg. 1)

exp(n) 96-99% 1-4% 20 yes no no

Bucket Elimination
(Alg. 2)

exp(n) 97-100% 0-3% 10 yes no yes

Iterative Belief
Updating (Alg. 3)

n5 94-98% 2-12% 50 yes yes yes

Iterative MPE
(Alg. 4)

n6 96-100% 0-8% 25 yes yes no

Iterative Hypothesis
Updating (Alg. 5)

n4 96-99% 1-3% 100 yes yes no

work a path may be composed of at mostn links. The calcu-
lation of bi(hj∪{Fl}) is O(1). The algorithm performs|So|
iterations. In every iteration we execute twofor loops. The first
loop updates belief metric of all hypothesis that explain symp-
tom Si. For every hypothesis,hj , it first recalculatesµ(.)’s
of all faults in the hypothesis that could have caused symptom
Si (O(|HSi |) operations), and computesbi(hj) (O(|HSi |) op-
erations). Thus, the first loop requiresO((maxi(|Hi|)|HSi

|)
steps. The second loop requiresO(maxi(|Hi|)|HSi

| · 1) op-
erations. Therefore the complexity of the entire algorithm is
O(|So|maxi(|Hi|)n). To get the precise bound we need to de-
termine the bound formaxi(|Hi|). It turns out that in rare cases
the size of the hypothesis set may grow exponentially. To avoid
this problem we set a limit on the number of hypotheses that
may be created in each iteration; the least likely hypotheses are
rejected when the limit is exceeded. The price we pay for this
modification is that the best hypothesis is no longer guaranteed
to be minimal. If the limit set on the size of the hypothesis set
is O(n), operations involved in controlling the size ofHi do
not increase the theoretical bound on the complexity of the en-
tire algorithm. In the simulation study described in Section 6,
we used the limit of2n. Thus, the complexity isO(|So|n2),
i.e.,O(|So|n2), and in the worst case it isO(n4).

6 SIMULATION STUDY AND COMPARISON OF
ALGORITHMS

The algorithms presented in Section 5 were implemented in
Java. We used JavaBayes [1] package to obtain an implemen-
tation of Algorithm 2. The algorithms were evaluated through
a set of comprehensive experiments. As a real-life application
domain, we chose the data link layer in a bridged network in
which the path ambiguity is resolved using Spanning Tree Pro-
tocol [50]. As a result, the shape of the considered graphs is
reduced to trees, thus making random generation of dependen-
cies resembling real-life scenarios easier. We tested the algo-
rithms on randomly generated network topologies, whose size
ranged from 5 to 100 nodes for the most efficient algorithm,
Algorithm 5. The high computation time of other algorithms
made it infeasible to perform sufficient number of experiments
with large graphs, not allowing to draw any sound conclusions
with regard to the algorithms’ accuracy and performance. We
had to limit the scope of experiments to graphs of size≤ 10,≤
20,≤ 25, and≤ 50 in the case of Algorithms 2, 1, 4, and 3,
respectively (see Table 1).

For every graph size, we randomly generated spanning tree

connections, link failure probabilities, and conditional prob-
abilities on causal links betweenlink andpathnodes. The link
failure probabilities were uniformly distributed random values
of the order of10−6, and the conditional probabilities on causal
links were uniformly distributed random values in the range
[0.5, 1). For every graph size, one hundred different graphs
were generated.

For each randomly generated graph, we performed 200 exper-
iments. In every experiment, we randomly generated the set of
malfunctioning links,Fc, based on their failure probabilities.
Then, based on the conditional probabilities on causal links be-
tweenlink andpathnodes, the set of observed symptoms,So,
resulting from the faults inFc was generated. The observed
symptoms were then randomly ordered.

The ordered setSo was supplied as an input to the algorithms
presented in Section 5. Their output, the set of detected faults,
Fd, was compared withFc. We used the following two metrics
to represent the accuracy of the algorithms.

detection rate=
|Fd ∩ Fc|
|Fc|

false positive rate=
|Fd −Fc|
|Fd|

In the above equations,detection raterepresents the percentage
of faults occurring in the network in a given experiment that
were detected by an algorithm.False positive raterepresents
the percentage of faults proposed by an algorithm that were not
occurring in the network in a considered experiment, i.e., they
were false fault hypotheses. Table 1 shows detection rate and
false positive rate intervals of the analyzed algorithms.

The results of the experiments were analyzed as a two-stage
nested design [44] with graph size as the first stage, and graph
shape and probabilistic distribution as the second stage factors.
The analysis using standardF test [44] allowed us to determine
that both factors have an impact on the algorithms’ accuracy.
While the dependency between the graph shape/probability
distribution and accuracy is intuitive, that the graph size has
an impact on the accuracy may seem surprising. In the follow-
ing paragraphs, we explain the reasons for this dependency.

Figure 6 presents the relationship between detection rate and
graph size. The mean for a particular graph size is an average
over the mean detection rates for particular graphs of that size,
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Figure 6: Comparison of accuracies achievable with algorithms presented in Section 5 for different network sizes
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Figure 7: Comparison of false-positive metric values for algorithms presented in Section 5 using different network sizes

within statistically computed confidence intervals. We observe
that Algorithms 2 and 4 slightly outperform other algorithms.
In the analyzed graph size range, the difference is of the order
of 1-2%.

The shape of the graphs in Figure 6 indicates a strong depen-
dency of the detection rate on the graph size. The analysis of
particular experiments shows, that for small (5-node) graphs,
the number of symptoms observed is typically small (less than
10), which in some cases is not sufficient to precisely pinpoint
the actual fault. Since in small graphs the size ofFc is also
small, any mistake in fault detection significantly reduces the
detection rate. When the graph gets bigger, the number of ob-
served symptoms increases, thereby increasing the ability to
precisely detect the faults. On the other hand, as the graph
size grows, the multi-fault scenarios are getting more and more
frequent. In multi-fault experiment, it is rather difficult to de-
tect all actual faults, which leads to partially correct solutions.
While the contribution of the partially correct solutions to the
decrease of the detection rate is smaller in case of multi-fault
experiments, the frequency of such partially correct solutions
seems to cause the decrease of the detection rate observed in

the case of Algorithm 5. Another reason behind the decreasing
accuracy is the fact that in large networks the number of pos-
sible symptom explanations is bigger; if a sufficient number of
symptoms is not observed, the algorithms are likely to choose
a very likely, but not correct solution.

The gradual drop of the detection rate observed in the case of
Algorithm 5 suggests that this drop may be asymptotic. One
can also conclude that all analyzed algorithms have the very
satisfactory detection rate of at least 95% (for graphs larger
than 5 nodes).

Figure 7 presents the relationship between false positive rate
and the graph size. The false positive rate for a particular graph
size is calculated as a mean of average false positive rates for
particular graphs of that size. Similarly to the detection rate
metric, the false positive rates for Algorithms 2 and 4 in the an-
alyzed graph size range are almost identical and slightly lower
(better) than the false positive rates for Algorithms 1, 3, and 5.
Interestingly, the false positive rate for Algorithm 4 starts to
grow sharply when the graph size reaches 15. This observation,
along with the shape of the detection rate curves for this algo-
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rithm presented in Figure 6, lets us conclude that Algorithm 4
tends to propose too broad solutions as the explanations of the
observed symptoms. This phenomenon, which occurs in large
networks, is caused by the increased frequency of multi-fault
scenarios.

The false positive rate calculated for Algorithm 5 exhibits the
gradual increase with the growth of the graph size. Similarly
to the detection rate, the shape of the curve indicates that the
growth may be asymptotic. If this was the case we could con-
clude that the false positive rate for Algorithm 5 does not ex-
ceed 4%. The false positive rate for Algorithm 4 reaches 8% in
the tested range. Unfortunately, temporal complexity does not
allow us to perform meaningful experiments to calculate the
false positive rate values for Algorithm 4 in the wider graph
size range.
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Figure 8: Comparison of single fault detection time for algo-
rithms presented in Section 5 vs. network size

The next sequence of figures, Figures 8, 9, 10, and 11, present
the dependency of the correlation time on the graph size in the
presence of 1, 2, 3, and 4 network faults, respectively. The
figures may be used to order Algorithms 2, 3, 4, and 5 with re-
spect to their performance. Regardless of the number of faults
occurring in the system, Algorithm 5 appears to be the most
efficient, followed by Algorithm 3, Algorithm 4, and Algo-
rithm 2 as the most time consuming. Algorithm 5 is at least an
order of magnitude faster than any of the above algorithms.

Algorithm 1 is very efficient if only one fault occurs in the net-
work. In this case, its correlation time is comparable to the cor-
relation time of Algorithm 5 (Figure 8). However, already with
two-fault scenarios (Figure 9) its temporal complexity seems
to be closer to that of Algorithm 3 than Algorithm 5. Further
performance degradation is observed with three fault scenar-
ios (Figure 10) when the correlation time curve of Algorithm 1
overlaps with the curve of Algorithm 4. With four-fault scenar-
ios, (Figure 11), for graphs of size up to 10, Algorithm 1 has
the same correlation time as Algorithm 2. For bigger graphs,
in the absence of correlation time results for Algorithm 2, Al-
gorithm 1 is the most time consuming of all algorithms.

Figures 8, 9, 10, and 11 prove that the additional complexity
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Figure 9: Comparison of correlation time for algorithms pre-
sented in Section 5 vs. network size in the presence of two
network faults

involved in the design and implementation of Algorithms 3,
4, and 5 is justified by their greater efficiency, unless the
multi-fault scenarios occur so rarely that their existence may
be neglected. When multi-fault scenarios are likely, the naive
combinatorial Algorithm 1 offers rather non-impressive perfor-
mance.

In the tested graph size range, Algorithm 2 exhibited the best
accuracy. However, the difference between the accuracy of Al-
gorithm 2 and that of other algorithms is too small to justify the
substantially worsened performance. Algorithm 5 proved to be
the most efficient while also preserving very good accuracy. In
Figure 12, its correlation time measured over the entire tested
graph size range is presented. The correlation time of the or-
der of several seconds even for large networks and multi-fault
scenarios is very encouraging.

To make the evaluation of algorithms presented in Section 5
complete, one also needs to compare them with respect to other
features. We believe that the following factors should be taken
into account in this evaluation: (1) potential for dealing with
lost and spurious symptoms, (2) ability to work in the event-
driven environment and (3) usability for prediction and test
planning. Comparison of algorithms with respect to these fac-
tors is presented in Table 1. Although the solution for dealing
with lost and spurious symptoms is not described in this paper,
all algorithms presented in Section 5 have a potential for work-
ing in an environment in which lost and spurious symptoms oc-
cur. This additional form of uncertainty may be embedded in
the probability distribution and/or the graphical belief network
model. Also, all presented algorithms, except Algorithms 1
and 2, are iterative and allow an event-driven building of fault
hypotheses. Prediction of network symptoms based on other
observed symptoms is possible with algorithms based on be-
lief networks, i.e., Algorithms 2, 3, and 4. In addition, Algo-
rithms 2 and 3 may be used to calculate the utility of tests that
would check the existence of unobserved faults or symptoms,
to allow optimizing the testing procedure.
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Figure 10: Comparison of correlation time for algorithms pre-
sented in Section 5 vs. network size in the presence of three
network faults

7 RELATED WORK

In the past, various event correlation techniques were proposed
including rule-based systems [39, 60], model-based reasoning
systems [28, 47], model traversing techniques [30, 32], case-
based systems [38], fault propagation models [22, 34], and the
code-book approach [61].

Rule-based systems are composed of rules (productions) of the
form if conditionthen action. The condition part is a logical
combination of propositions about the current set of received
alarms and the system state [39, 60]; the action determines the
state of correlation process. The operation of the system is
controlled by an inference engine, which in fault management
applications typically uses a forward-chaining inference mech-
anism [39, 47]. Rule-based systems are believed to lack scala-
bility, to be difficult to maintain, and to have difficult to predict
outcomes due to unforeseen rule interactions. The most fre-
quently mentioned difficulty in using rule-based systems stems
from the necessity of rewriting many rules when system de-
sign or implementation changes. Although approaches have
been proposed to automatically derive correlation rules based
on the observation of statistical data [35], it is still necessary to
regenerate the large portion of correlation rules when the sys-
tem configuration changes. The lack of structure in the system
of rules typically makes it very difficult to allow reusability of
rules that seems so intuitive in hierarchically built distributed
systems.

Another group of approaches incorporate an explicit represen-
tation of the structure and function of the system being diag-
nosed. The representation provides information about depen-
dencies between network components [27, 28, 30, 32, 34] or
about cause-effect relationships between network events [22,
47]. The fault isolation process explores the network model
to verify correlation between events. Model-based reason-
ing systems [28, 47] utilize inference engines controlled by
a set of correlation rules, which contain model exploration
predicates. Model-traversal techniques recursively search the
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Figure 11: Comparison of correlation time for algorithms pre-
sented in Section 5 vs. network size in the presence of four
network faults

dependency graph towards the failing object in an event-
driven fashion starting from the component that symptoms re-
fer to [27, 30, 32]. Fault propagation models [22, 34] provide
heuristic symptom explanation algorithms aimed at satisfying
some optimality criteria.

Event correlation systems based on a formal representation of
network dependencies and structure represent an improvement
over early rule-based systems by having the potential to solve
novel problems, and by being more expandable. However, the
models that they require are difficult to obtain and keep up-to-
date. The computational complexity involved in model traver-
sals limits the scalability of the fault isolation process. The ap-
proach presented in [3] avoids maintaining an explicit network
model by providing scenario templates organized on a hierar-
chically based network structure, which are instantiated with
the data obtained from the arriving event attributes or from the
configuration database. In addition, the internal event publish-
ers need not be aware which components consume the events
that they forward; therefore, a change to higher-level scenario
does not require changes to any of the lower level scenarios.
One of the problems that the approach in [3] does not solve is
dealing with complex network topologies. The solution shows
how to propagate events between layers gradually increasing
their level of abstraction. It does not, however, show how the
reasoning should be performed within a layer if the network
topology in this layer is complex.

The code-book technique [61] uses a network model to de-
rive a code – a set of possible symptom observations for every
problem that may occur in the network. This process, called
code-book generation, is performed in advance upon the in-
stallations particular network topology. Code-book generation
eliminates the runtime computational complexity involved in
model traversals. Network alarms observed over a certain time
window constitute a coded problem to be decoded using the
code-book based on the minimum Hamming distance metric.
The code-book technique is very efficient and is resilient to the
noise in the alarm data. However, it is difficult to apply to the
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Figure 12: Fault localization time with Algorithm 5

correlation of transport and application layer events since rela-
tionship changes between managed objects, which are frequent
in higher-layers, require reconfiguration of the code-book. It
may be argued that fault-symptom mapping dictionaries are not
suitable as a model for fault localization in a large, constantly
changing enterprise network [54]. Additionally, multi-layer
event correlation using a single correlation window is inade-
quate as events on different layers may have substantially dif-
ferent temporal relationships. Also, we can not perform tests
or access or access information about the already detected fail-
ures during correlation.

Case-based systems [38] try to use experience gathered
through past problem solving to find a solution for the new
problem. The solution for the new problem is adapted form
the solution of the closest matching problem solved in the past.
Case-based systems are able to learn correlation patterns and
are resilient to network configuration changes. They do not
have a problem with network model maintenance. However,
they do not take advantage of the known knowledge regarding
entity behavior, nor do they allow fault isolation to be com-
bined with fault detection. The need to build a substantial case
library before the system is able to isolate faults makes case-
based systems difficult to apply to an evolving or frequently
changing architecture, such as server farms, or in the transport
and application layers.

The common feature of most of the above approaches is that
their reasoning is deterministic. This paper focuses on non-
deterministic event correlation which is unavoidable in fault di-
agnosis related to quality of service degradation particularly in
upper protocol layers. In nondeterministic fault model, alarm
correlation aims at finding the most probable explanation of the
observed alarms. This is an NP-hard problem [5, 34]. In the
past, some research has been performed on finding appropriate
heuristics to solve the problem in polynomial time. Katzela et
al. [34] proposed anO(n3) algorithm that finds the most prob-
able explanation of a set of symptoms in ann-node dependency
graph. The approach presented in [34] does not allow lost or
spurious symptoms and the correlation may not be performed
in event-driven fashion. They base the approach on the depen-

dency graph in which every dependency graph node (terminal
object) has only one mode of failure. The approach lacks a de-
scription presenting its possible application to real-life fault lo-
calization tasks. The solution presented in this paper addresses
all the above issues achieving comparable computational com-
plexity.

Kliger et al. [36] proposed a probabilistic model to be used
with the codebook approach. Unfortunately, they do not
present the non-deterministic decoding schema. We believe
that the approach of Algorithms 3 and 4 can be used for this
purpose.

The literature on event correlation contains reports of applying
belief networks to fault diagnosis. However, the approaches
are limited to rather narrow applications. In [17] a polynomial
time algorithm for updating belief in a restricted Bayesian net-
work used as a model for fault diagnosis in linear light-wave
networks was proposed. In [24] belief networks have been ap-
plied to troubleshoot printing services. Other reported appli-
cations of Bayesian network theory to fault diagnosis include
proactive fault detection [26]. The belief network used here
is tree-shaped based on the structure of SNMP [8] MIB [41].
Wang et al. [59] applied Bayesian theory to identifying faulty
links in communication networks. The analysis is performed
based on connectivity information obtained by the manage-
ment station through testing. The identification is done using
maximum a posteriorimethod. Bipartite belief networks repre-
senting fault-symptom causal relationships were used in [9] to
develop a hierarchical domain-oriented reasoning mechanism
in the delegated management architecture. The proposed tech-
nique is able to pinpoint LAN segments suspected of having a
particular fault.

Statistical data analysis methods were used for non-
deterministic fault diagnosis in bipartite-graphs in [20]. The
solution was proposed to detect link failures in wireless and/or
battlefield networks.

8 CONCLUSIONS ANDFUTURE WORK

In this paper, we presented and evaluated several algorithms
to perform fault localization using fault propagation models
represented by bipartite graphs. We showed that exact algo-
rithms are not only theoretically unacceptable, because of their
exponential complexity bound, but they are also not usable in
practice even for relatively small networks. Algorithms based
on iterative message propagation (Algorithms 3 and 4) and
iterative hypothesis updating (Algorithm 5) allow to find a so-
lution efficiently in an event-driven fashion. In addition, Algo-
rithm 5 builds the explanation incrementally, forming it after
every symptom observation from the already existing explana-
tion. All iterative algorithms, as revealed through an exten-
sive simulation study, have very promising accuracy and per-
formance.

There are a number of issues that need to be addressed in fu-
ture work. So far, we have implicitly assumed that the set of
observed symptoms is accurate, i.e., every symptom indicates a
failure of the corresponding end-to-end service. In reality, spu-
rious symptoms may occur, which do not indicate any abnor-
mal condition. Moreover, the reasoning was performed based
only on the negative information, i.e., observed end-to-end ser-
vice failures. We did not take into account positive information
that some end-to-end services did not fail. Confidence in the
failure of a particular hop-to-hop service should be decreased if
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many of its resultant end-to-end service failures did not occur.
Reasoning with positive feedback needs to take into account
that some symptoms are not observed because of their loss
rather than because there was no failure. It is rather straight-
forward to incorporate positive, lost, and spurious symptoms
in the iterative algorithms presented in this paper. The impact
of this additional form of uncertainty on the accuracy of the
fault localization process remains to be investigated.

In our simulation study, we considered the case in which the
conditional probability distribution represented by a belief net-
work is known accurately. In general, only estimates of proba-
bility values may be known. We plan to investigate the impact
of inaccuracy within these estimates on the fault localization
process.

The algorithms presented in this paper were evaluated on a re-
stricted class of network topologies. While we find no reason
to believe that in arbitrary network topologies the performance
or accuracy of these algorithms would be substantially differ-
ent, we think that the algorithms should be evaluated also on
arbitrary topologies resembling real-life networks.

In this paper, we considered the situation in which the routing
information necessary to build a dependency model for end-to-
end services is available. However, to obtain this information
may be time consuming and require substantial amount of re-
sources needed to install and run management agents on net-
work devices, which collect the management information, and
to regularly transmit the routing information over the network.
Obtaining routing information may be particularly difficult if
the management information is transmitted over the managed
network, because the managed network outages, i.e., situations
when there is a need for fault localization, may affect the abil-
ity to transmit the routing information. In future research, we
would like to investigate diagnosing end-to-end service failures
without access to the accurate routing information.
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