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Abstract
In a conformance testing environment, an implementation under test (IUT) communicates with multiple entities.
A tester may have differing degrees of control on the interactions between these entities and the IUT: directly
controllable, semicontrollable, or uncontrollable. Semicontrollable inputs most likely render portions of an IUT
untestable. In addition, multiple communicating entities may create race conditions during testing. This paper
presents a test generation methodology for the systems where the semicontrollable inputs can be generated in-
directly. The test sequences obtained from the converted graph fully utilize the semicontrollable inputs (where
possible) while avoiding the race conditions. Although, for the most general case, the graph conversion results
in an exponentially large number of nodes, practical considerations make the converted graph size feasible. This
approach is used to generate tests for MIL-STD 188-220B. By applying the proposed graph conversion and the
race condition elimination techniques, the number of testable state transitions increased from approximately 200
to over 700, which represents a coverage of 95% of the transitions defined in the specification.

Keywords: Conformance testing; Embedded testing; Test case generation; Communication protocol specification
and testing

1 Introduction

In the automated generation of conformance tests based on the formal description of a protocol [1, 5,
16, 20, 21, 29, 33, 34], one significant problem is taking into account a tester’s limited controllability on
generating inputs to an Implementation Under Test (IUT) [20, 28]. This limited control almost always
renders certain protocol features untestable.

In an embedded testing environment, a composite System Under Test (SUT) [20, 28] consists of two
parts: (1) an IUT embedded within the SUT (often referred to ageliecomponeni37]), and (2) all

entities within the SUT other than the IUT (referred to astiw contex{25, 35, 37]). A reasonable
assumption adopted by most researchers and practitioners about the test context is that it is fault-free and
therefore testing should focus on the IUT [35, 37]. The compliance of the IUT to its specification can
only be verified from the global system behavior by examining the SUT’s input and output events [13].

In a practical embedded testing environment [28], where an IUT communicates with the test context
consisting of multiple entities, a tester may have differing degrees of controllability on the interactions

between these entities and the IUT [19, 13]. It may not be possible for a tester to directly apply some of
the inputs defined in the finite-state machine (FSM) model of an IUT; similarly, a tester may be unable to
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observe some of the outputs generated by the IUT. Those interactions that are not directly controllable are
most likely to introduce nondeterminism and/or race conditions during testing, leaving certain portions
of an IUT untestable.

Oftentimes, within an SUT, an IUT communicates with the test context’s entifyf&)/; that is not
directly controllable (i.e., the tester cannot directly apply input8'&/;). Consider an input; ; that
cannot be directly applied to the IUT by a tester, but can be generated as an oufpily In some
cases, it may be possible to foré&'M; to generate:; ; to the IUT. If the tester applies an appropriate
input to the IUT, which then generates an inputit§M;, which in turn generates; ; as input back to
the IUT, some of the interfaces become semicontrollable (as opposed to uncontrollable).

In addition, in an embedded environment where an IUT interacts with multiple entities, race conditions

and/or nondeterminism can occur during testing. If an IUT moves into a state in which several inputs

from different interfaces are waiting to be processed, choosing which input is consumed first may be a
nondeterministic decision of the IUT.

Within the framework of embedded testing [28], uncontrollable events are discussed by Phalippou [26]
and Cavalli et al. [5]. Several approaches such as ferry clip [36] and astride responder [27] were suggested
to address the limited controllability over an IUT. However, such approaches require a tester-designed
entity within the SUT, which limits their applicability. Recently, Petrenko et al. [24, 25], Lima and
Cavalli [18], and Yevtushenko et al. [35] focus on embedded test generation based on fault models. For
large communication protocols, it may be difficult to find detailed fault classes.

As opposed to the fault model oriented methods, the approach used in this paper does not attempt to
guarantee full fault coverage. Instead, this paper provides a practical algorithmic technique for test gen-
eration that utilizes as many indirectly controllable inputs as possible without creating nondeterministic
behavior of the test system. A transition graph is built for test derivation without explicitly constructing a
composite global FSM for an SUT. For eakl$ M;, only those transitions that can be used to test IUT’s
transitions are considered during the graph construction. This approach has a significant advantage, since
an F'SM;'s state and transition space may be prohibitively large. For the worst case, all transitions of
all the FSMs communicating with the IUT may be involved into the composition. However, based on
the practical experience with several protocols [7, 2], for any given semicontrollable input, only a small
portion of a communicating FSM is required to generate the semicontrollable inputs. An analysis of a
system model size and the length of the test sequence with respect to the SUT parameters is presented.
By controlling the model size, this technique could be applied to large communications protocols.

A sketch of the algorithm to build the transition graph used in this paper was introduced in [11] (full
algorithm and formal analysis of its time complexity is available in [10]). This paper extends that work
by considering controllability of arf’'SM; associated with a semicontrollable interface. This paper
enhances the model by including the preambles and postambles to move the IUT Ast\ihéogether

into a desired state.

MIL-STD 188-220B Data Link Layer [7] and the IEEE 802.2 LLC Connection Component [2] are con-
sidered as real-life examples of protocols that possess either semicontrollable inputs. In MIL-STD 188-
220B [7], over 70% of the transitions cannot be directly controlled. The initial results of applying the
method introduced in this paper to MIL-STD 188-220B to generate conformance tests are promising:
the number of testable transitions increased to over 700 from approximately 200 for the Class A-Type 1
Service Datalink module [7, 8].

The test generation approach presented in this paper studies embedded testing for an environment with
a one-party lower tester. Extension of this work will cover the systems with multiple testers, which
requires addressing synchronization issues in multi-party testing [34].



SUT

* PCO/IAP FSM,

bT iC I (N+1)-layer

Lower -,

Tester @

(N-1)-Service Provider

Figure 1: Testing (N)-layer IUT with an (N+1)-layer semicontrollable interface.

This paper is organized as follows. Section 2 presents a formal definition obthllability problem

and provides examples from real-life protocols. Some related work is discussed in Section 3. Section 4
defines a system model for a testing environment with multiple interfaces with different degrees of con-
trollability. Practical issues are introduced into this model in Section 5. In Section 6, the application
of the graph conversion algorithm and minimum cost test sequence generation techniques is presented.
Controlling FSMs associated with semicontrollable interfaces is discussed in Section 7.

2 Problem definition

Consider a testing environment shown in Figure 1. The SUT contains an IUT (test component), which
interacts withF'S M, (test context).F'S M, implemented inside the SUT, interacts with the IUT through
interfacel,. SinceF SM, represents a well-defined part of the SUT, it is reasonable to assume that the
specification forF"S M, is available. The points at which a testing system can apply inputs to and observe
outputs from the IUT are callegoints of control and observatiofPCOs) [13, 19]. Each of the IUT’s
interfaces is associated with a full-duplex PCO through which inputs and outputs can be exchanged.
If a PCO of an IUT is not accessible within an SUT, this PCO is called an Implementation Access
Point (IAP) [14, 37]. As introduced in [11], each input can be one of three different typedirét}ly
controllable: a tester can directly apply the input to the IUT through the PCOséRicontrollable:

a tester cannot directly apply the input to the IUT through the PCO (or IAP). However, it is possible to
utilize one of the FSMs interacting with the IUT to supply this input indirectly; andu(®ontrollable:

the input may be supplied through a PCO (or an IAP) without any explicit action of the tester. This
means that the input may be generated in the testing system without the tester’s control.

If a PCO (or IAP) has any semicontrollable inputs and does not have any uncontrollable inputs, we say
that its associated interface and the FSM are semicontrollable. If there are no semicontrollable or uncon-
trollable inputs, the interface and the FSM are called directly controllable. In this paper, we consider that
each interface has only one type of input: either directly controllable or semicontrollable. The analysis
can be easily adopted to the case where an interface has a combination of directly controllable and semi-
controllable inputs. The uncontrollable inputs are not considered in this paper. Typically, a lower tester
(LT) FSM [19, 13] has a directly controllable interface. A timer FSM, whose only inputs come from an
IUT (e.g., start, restart, and stop the timer), has a semicontrollable interface.

Consider the testing framework in Figure 1. Since the interfade not exposed in the SUT, the tester
can neither directly apply inputs nor observe the outputs between the IUT and the (N+1)-layer. Therefore,
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at best the interfacé, is semicontrollable, provided th&tS A/, can be utilized to supply inputs to the

IUT. On the other hand, the tester can apply inputs to the IUT directly at inteffabg using an LT,

which exchanges N-PDUs with the IUT by using the (N-1)-Service Provider. The intdifastherefore
directly controllable through the (N-1)-Service Provider, whose erroneous behavior may or may not be
observed as an error of the IUT, whether or not the actual error in the IUT occurred.

To test an IUT'’s transition from state to v;, the following steps must be taken: (1) put an IUT into state
v, (2) apply required input and compare the output(s) generated with those defined in the specification,
and (3) (optionally) verify that the new state of the FSMjs

If the IUT's transitions are triggered by the inputs from a semicontrollable inteffadie tester must
use one of the directly controllable interfaces to force the IUT to generate outpiits fthese out-

puts are applied té"SM; at I;'s PCO. As responsd;'SM; will send back inputs to the IUT through
semicontrollable interfacg . These inputs will trigger the desired transitions to be tested in the [UT.

This paper addresses the problem of generating realizable test sequences for a fault-free IUT communi-
cating with a fault-free context through multiple semicontrollable interfaces. By executing the generated
test sequences, we expect the errors in the IUT to be uncovered based on performing steps (1) through
(3) above for each transition in a test sequence. The problem of test generation as defined above will be
referred to as theontrollability problem.

2.1 Practical examples

The controllability problem was motivated by two real protocols implementations in which certain tran-
sitions within an (N)-layer IUT can be tested only by utilizing an SUT’s (N+1)-layer. Moreover, there is
a danger of introducing race conditions to test sequences while utilizing an (N+1)-layer indirectly.

MIL-STD 188-220B [7] is a military standard for interoperability of command, control, communica-

tions, computers, and intelligence over Combat Net Radios. There are many transitions in 188-220B
that cause controllability problems during testing. Without these transitions, over 70% of the transitions
cannot be tested because many protocol states are unreachable, 70% of the transitions cannot be tested
because of these semicontrollable inputs. In this case, test coverage is seriously reduced. However,
by applying the technique introduced in this paper, almostali506) transitions defined in the speci-

fication can be tested (the number of testable transitions rose to over 700 from approximately 200 for
the Class A—Type 1 Service Datalink module [7, 8]). The application of this paper’s methodology to
MIL-STD 188-220B is detailed in [9].

In the IEEE 802.2 LLC Type 2 Connection Component2], the LLC layer IUT communicating with

a semicontrollable upper layer is considered. Suppose that, when an IUT is in,stike tester applies

from the lower tester a sequence of inputs that calises/; to supply inputa; ; to the IUT. The tester
desires this input to be consumed at state In general, a race condition will occur if this input from
FSM; is consumed by the IUT before the IUT reaches state? valid test sequence should avoid these
conditions while traversing the IUT’s transitions. A detailed scenario that shows how race conditions
may occur in a test sequence for the 802.2 LLC’s IUT is presented in [11].

3 Related work

The controllability problem defined in Section 2 is related to a protocol and software engineering issue
of testing embedded systems [28, 31]. An IUermsbeddedh the SUT (Figure 1). The SUT is directly
accessible by a tester, whereas the IUT can be tested only as a component embedded in the SUT.
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Rayner [28] discusses the concept of testing an IUT embedded in a multilayer SUT (with an upper
tester available above the SUT) for various OSI test methods [19] in which an (N)-layer IUT has only
two interfaces: one controllable with a lower tester, and one semicontrollable with the (N+1)-layer. A
similar model, but limited to a single layer embedded testing, is presented by Timohovich [31]. A test
sequence is derived based on a combined finite automaton, which is constructed using an IUT’s FSM and
a simplified description of the adjacent layers. A need to introduce mechanisms to control uncontrollable
events, a necessity to avoid nondeterminism in test sequences, and the limits imposed by test architecture
on the controllability and observability of an IUT are discussed in [5, 26]. Compared to the models

in [27, 31, 36], the test system considered in this paper (Figure 2) is a more general architecture, where
an IUT has interfaces with multiple (N)- and (N+1)-layer entities, and there is no upper tester available.

In the test system depicted in Figure LS M, is part of the protocol defined by the protocol standard.
Therefore, the tester cannot redefine the states and transitidnS/df, suitable to her needs. There are
several testing frameworks in which, as in Figure 1, the interface between an IUF @] resides

inside the SUT, but'SM, is defined by the tester. One of these frameworks is the ferry clip testing
method [36], where the SUT contains an entity called a passive ferry clip to apply inputs to the IUT. In
such a test system, there exists a special-purpose protocol for exchanging PDUs between an active and a
passive ferry clip. Ferry clip testing cannot be directly used in the test system considered in this paper,
since the interfaces between the IUT and other entities inside the SUT are not accessible. A related
approach [27] uses the “astride responder” to supply inputs to the IUT at the intéffadde astride

testing is not directly applicable to the system in Figure 1, because there is no tester-designed responder,
nor are extra communication channels available.

Recent research has focused on testing embedded components [18, 23, 24, 25, 35, 37]. Petrenko et al. [25]
provide a basic framework for “testing in context” based on the model of communicating FSMs. The
proposed solution consists in computing a so-called approximation of the specification in context, i.e.,
the FSM model of the component’s properties that can be controlled and observed through the context.
The IUT’s transfer and output faults are translated into faults of the composite FSM representing an SUT,
resulting in tests with guaranteed fault coverage and executability.

Lima and Cavalli [18] propose an approach based on combining the component and the context into a
composite machine. The composite machine’s transitions that are not affected by the component are
called redundant the remaining transitions are callsdspicious In the case of a fault-free context,

the test sequences traversing only redundant transitions are superfluous. A method is introduced for
detecting redundant transitions and sufficient conditions for removing superfluous test cases are given.
An extension of this work presented by Yevtushenko et al. [35] contains a rigorous analysis of suspicious

transitions, where conditions are provided to detect all of the redundant transitions. The evaluation of

test suites for embedded system testing is provided by Zhu et al. [37].

These proposed approaches [18, 23, 24, 25, 35, 37] focus on defining fault models, generating complete
test suites (see [32] for a formal definition of a test suite’s completeness) and their evaluation with respect
to given fault models. However, in many complex protocols detailed fault classes are unknown or are
difficult to construct. A systematic approach to finding fault classes that is feasible for large protocols is
not given. It is well known that for a specification #| states,| /| inputs, andO| outputs, there exist

((|S] * |08 — 1) faulty implementations [29]. Therefore, building complete test suites, i.e., the
ones guaranteeing full coverage of all faults within the defined fault model [24], for a large number of
potential fault models is likely to be impractical due to a prohibitive growth of test suite size. Itis unclear
how the fault-oriented approaches for testing in context scale with respect to a protocol’s size, as detailed
analysis of the algorithms’ running time and the generated test suite size are not provided.

The approach used in this paper does not attempt to guarantee full fault coverage, since such a goal is
unlikely to be achieved with limiting a test suite to a reasonable size. Instead, the emphasis is put on
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Figure 2: Testing IUT with multiple interfaces

providing the tester with a practical algorithmic technique that achieves a test purpose of utilizing as
many indirectly controllable inputs as possible without creating nondeterministic behavior of the test
system. Another contribution of the presented methodology is the consideration of race conditions and
their avoidance in test generation. In addition, special importance is given to carefully analyzing the
growth of a system model and the length of the test sequence with respect to the SUT parameters.
By keeping the test sequence length under control, the presented technigque could be applied to large
communications protocols.

4 Building test system model taking into account controllability problem

In this paper, an FSM model, which is sufficient to model protocols with finite state space and determin-
istic behavior, is used to represent an implementation.

Consider a testing environment shown in Figure 2. The SUT contains an IUT (test component), which
interacts withF FSMs.FSMy, - - -, FSMp, implemented inside the SUT, interact with the IUT through
semicontrollable interfaces, - - -, I'», which, together withF’ FSMs, represent the test context. The goal

of test generation in this environmentdsderive a set of tests exercising each transition in an IUT's FSM

at least onceSpecifically, given a grap¥ representing an IUT’s FSM, we want to find a minimum cost
tour of G such that each transition is covered at least once.

A preliminary version of the model presented in this section was introduced in [11]. This model has been
extended here to handle the controllability of semicontrolldht&M, - - -, FSMp.

4.1 System model for IUT with semicontrollable interfaces

Given a graplG(V, E) representing an FSM model of an IUT with multiple semicontrollable interfaces,
let us define the following parametergt) |V |—number of nodes it7; (2) F—number of semicon-
trollable interfaces interacting with the 1UT3) 7; C EF—subset of edges i@ triggered by the inputs
from thei-th semicontrollable interfacé4) b,—buffer size (max. number of inputs buffered) at iktbe
semicontrollable interfacg; (5) A;—set of inputs triggering transitions ; (6) O,—set of outputs of

the IUT that are consumed by the semicontrollaBleM;; (7) c,—number of different transition classes
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Edge name  Inputfrom Outputtg Edge name Inputfrom  Outputto
el LT 7%, FS]\/Il!OLl e6 LT‘7$6 LT'yﬁ
e2 LT?xo FS]\/IQ!OQJ e’ LT?$7 LT'y7
e3 FSMl?(lLl LT'y3 e8 FSMl?(lLZ LT'yg
e4 FSMQ?UIQJ FSMl!Ol’Z e9 LT?xg LT'yg
e5 LT?x5 FSMZ!OZ’Z el0 LT?x19 LT'ylg

Table 1: Inputs and outputs for the edges of FigureA®2 denotes receiving input from A. Bly
denotes sending outpytto B.

SUT
FSMy FSM,
ly I UT
Lower
Tester o—o
(LT)

Figure 3: IUT interacting with two semicontrollable interfaces.

inthe IUT triggered by inputs dt. Two transitiong; andt, belong to the same transition clags C T;
iff they are both made fireable by the same input € A;; (8) U; ; C E—set of transitions in the IUT
with outputo; ; such that, in response tg ;, an inputa; ; € A; is buffered atl;; (9) W; ; C E—set of
transitions in the IUT with output; ; such that, in response ¢ ;, no output is generated ySM7;.

Let A; = {a;1,...,ai¢} andO; = {0;1,...,0;m;}. Letthe sets off; andU; be defined as follows:

T; def Uj;l T; 5, andU; def U;'Tizl U; ;. Note that there may be several outputs in@gthat force input

a; ;j to be buffered af;. For the sake of simplicity, let; ; denote any output forcing; ; at ;.

Based on the above definitions, the transitions triggered by the inputs from the semicontrollable interface
I; are divided intoc; classes, each corresponding to a distinct input that fires any transition within the
class. No single transition can belong to more thanBrje Similarly, each transition can belong to only
oneU; ;. In generalT; ; andU; ; may or may not be disjoint.

Example : Consider the IUT of Figure 3 which is interacting wits M, andF S M- through semicontrollable
interfaced andlI,, respectively. The IUT's FSM is described in Table 1. Transi¢ibrtriggered by input, from

an LT, generates outpuit ; to FSM,. In responseF'S M, sends back input; 1 which triggers transition3. (By
definition,a; ; is the expected responsedig;.) Transitiore2, which is triggered by the LT’s input,, outputs, 1

to F'SM>, which responds with input. , triggeringe4. Whene4 is traversed, it outputs, » to F'SM;, which
responds witl, » triggeringe8. Transition5, €6, e7, €9, ande10, can be triggered directly by the LT. Transitions

€6, €7, €9, andel0, generate outputs only to the LT, not to the semicontrollable interfabegenerates output »

to F'SMs,, which does not send any input back to the IUT (which is observationally equivalent to sending a null
input to the IUT). For this example, we have:

e |V| =3, whichareA, B, andC; F = 2, which arel; andl;; ¢y =2,¢3 =1
Tp=A{e3}, T2 ={e8}, Tog ={ed}, Th =T1 1 UT 2 = {e3,e8}, Tp = To 1 = {ed}
Uig ={el}, Urs = {ed}, Usq = {e2}, U1 = U1,1 UU12 = {el,e3},Us = Uz 1 = {€2}
Wao ={eb}; A1 ={a11,a12}, Ao = {a21}; 01 = {011,012}, O2 = {021,002}
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4.2 Impact of buffer sizes on feasibility

Let us first assume that there is a separate FIFO buffer in a semicontrollable inigrfdceing testing,

a buffer may be empty or store an arbitrary sequence of inputs to the IUT generated indirectly through
thei-th semicontrollable interface. Then the entire system can be modeléd(mich represents the
IUT's FSM) and the variables1, w», . . . , wr representing the test context. Eaghhas a distinct value

for each permutation of inputs that tih buffer can hold.

If the buffer sizes at thé” semicontrollable interfaces are infinite, each varialjlean have an infinite
number of values. In this case, even the reachability analysis (deciding whether a given state is reachable
from the initial state), which is an easier problem than finding a minimum cost traver&albgfcomes
undecidable [12]. If the buffer sizes are finite, in which cagews, ...,wr have finite domains, the
reachability analysis is PSPACE-complete for the most general case [12].

Given the difficulty of analyzingz and F’ variables, let us explore the possibility of modeling the system
as an FSM, represented loy (V', E') with the maximum number of node$”|,,.., equal to|V| =
15, B(i), whereB(i) is the maximum possible number of states of #tk buffer defined a$3 (i) =
(7T —1)/(¢; — 1) for ¢; > 1, andB(i) = 1 + b; for ¢; = 1. In general, if eacl; = ¢ > 1, and each

)

b; = b, then

V' lmae = |V]*0O(F) (1)

Each vertex inV’ is a tuple consisting of an original vertex In and a set of values of variables
w1, ws, - - . ,wp (this set is called aonfiguration. As indicated by (1), the maximum number of nodes in
G' grows exponentially with the number of semicontrollable interfacemnd the buffer sizé. Clearly,

the conversion frond: to G’ is not feasible for the general case. However, for a constrained environment
(Section 5)G’ can be constructed efficiently, and test generation techniques can be applied to it.

5 Objectives for practical test system

This section shows through the detailed examples how a test sequence derived from the model of Sec-
tion 4 may become nondeterministic. To avoid nondeterminism in test sequences, two practical objectives
for a practical test system are introduced in Section 5.1. Diagnostic issues are discussed in Section 5.2.

5.1 Buffering inputs at semicontrollable interfaces during testing

The model of Section 4 utilizes FIFO-type buffers in semicontrollable interfaces. In practice, in addition
to (or instead of) FIFO buffers, semicontrollable interfaces may include interrupt-driven mechanisms
with multiple buffers in one interface. This freedom in implementing interfaces is mostly due to the
interface not being part of a protocol specification. Therefore, test sequences generated for an IUT with
only FIFO-type buffers become nondeterministic for IUTs using different interface implementations.

Example (cont'd): Consider the following potential test sequence for the IUT of Figure 3:
e7,e2,ed,el,e8, e, e5,e3,e9,el0, eb (2)

As can be verified by Table 1, when the underlined portion of the above test sequence trayensesta; »

will be buffered atl,. Subsequently, wheel is executed with output, ; to I, the buffer atl, should contain
[a12,a11] (i.€.,a1 2 in front of the buffer). The IUT is expected to be in stdewith e8 to be tested next. This
sequence is only realizable under the assumption that iapytanda, 1 are stored al, in the FIFO order, i.e.,
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[a12,a11]. In practice, however, this may not be the case for all inplementations. Since the response time of a
semicontrollable interface is unknown, it is possible that, after traversirandel, the buffer atl; will contain
[a11,a12]. Then, afteel is traversede8 cannot be triggered hy; », because. 1 improperly blocksi, » from

being available. TransitioeB will cause the IUT to fail because the model assumes one type of buffering, and the
implementation uses a different type. Clearly, the test sequence (2) is not realizable without FIFO-type buffers.

This nondeterminism in a test sequence due to multiple inputs at one interface can be eliminated if
a test sequence never creates a situation where more than one input will be stored in a given buffer
(i.e., b; = 1). Although each buffer’s the capacity may be arbitrarily large, the technique presented
in this paper preferably generates a test sequence with the objéétjye: at any given time, each
semicontrollable buffer will store at most one inpin. this case, the maximum number of node<in
becomesV’ |, = V| * [12,(c; + 1). If Obj; cannot be achieved due to heavy interactions among
the FSM; (and possibly with uncontrollable inputs), the number of stored inputs will not be limited to
one by a test sequence, and therefore, the test sequence will most likely have nondeterminism.

In a practical testing environmentf,, the number of semicontrollable interfaces, is expected to be small.
For most cases, the (N)-layer IUT interacts only with an (N+1)-layer implementation and several semi-
controllable timers. Typically, for each timer, the only output is the timeout, which defines 1.
Therefore, for smalF andc;, the size ofG’ is only a small multiplicant of.

Let us now consider the number of inputs that can be buffered simultaneously at all of an IUT’s semicon-
trollable interfaces. A test sequence may cause several inputs being buffered at the same time at several
semicontrollable interfaces. b5, is satisfied, each buffer stores at most one input during testing, and

the nondeterminism due to multiple inputs stored in a buffer is avoided. However, nondeterministic
behavior of the system during testing may still occur because of the IUT’s interactions with multiple
interfaces (each interface with at most one stored input).

Example (cont'd): Consider a potential test sequence (3) for the IUT of Figure 3. The test sequence was
generated for an IUT with buffer sizes bat1; andl;:

el,e2,e3,ed,e7,e8,e7,e5,e9,el0, e6 3)

The test sequence of (3) avoids the nondeterminism due to multiple stored inputs in a given buffer shown pre-
viously in (2), since it stores at most one input at a given interface. However, the test sequence of (3) may still
be nondeterministic since the IUT is interacting with multiple interfaces simultaneously. Consider the underlined
portion of (3). Afterel is traversed, input, 1 is buffered atl;. Traversing:2 results ina» i being buffered af>.
Sincea, 1 was generated earlier thaf, , the test sequence expects transitidiis expected to be triggered before

e4. In reality, due to the unknown response time of the interfaces/may be applied to the IUT earlier than, later

than, or simultaneously witly, ;. In this case, the behavior of the overall system becomes nondeterministic under
a test sequence, thereby making the test sequence unrealizable.

To avoid this type of nondeterministic behavior of the IUT during testing, the model presented in Sec-
tion 4 will be used to generate tests with a second objecivg: at any time, the test sequence will
cause only a single input to be stored in only one of the IUT’s semicontrollable interfédcesther

words, whenDbjs can be achieved, only a single message is in transit when a test sequence is applied.
In this case, the maximum number of noded/tnis |V'|,naz = |V * (1 + S5, ¢).

The objectives o0fDbj; and Obj, address the types of nondeterminism that will occur when an IUT
moves into a state where there are multiple inputs stored in multiple interfaces. A valid test sequence
which satisfiegDbj; andObj, will not bring the IUT into a state with multiple inputs pending. Instead,

a valid test sequence should traverse the IUT transitions in such an order that avoids these situations.

This type of nhondeterminism caused by multiple inputs is one of several types of nondeterministic be-
havior that can occur in a system with multiple communicating modules. The discussion of various types
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of nondeterministic behavior, algorithms to detect them, and guidelines how to rewrite specifications to
avoid nondeterminism are discussed in [16] in the context of Formal Description Technique Estelle [4].

It is important to note that the minimum-length test sequences satigBipgandObjs (i.e., at most one

input at only one semicontrollable interface utilized at any time) will likely be longer than the minimum-
length test sequences for the unrestricted case. However, tests satisfying these two objectives can be used
for testing implementations regardless of their interface structure, avoiding nondeterministic behavior of
the SUT during testing. Test generation is further discussed in Section 6.

5.2 Diagnostic issues during testing

As presented in Section 2, during testing an IUT may interact with several semicontrollable interfaces.
Testing is performed under the assumption that all FSM implementations other than the IUT conform to
their specifications. Otherwise, it is difficult to tell whether failure occurs in the IUT, or in the external
FSM implementation, or at the semicontrollable interface between them.

Example (cont'd): Consider the beginning of the test sequence (2) for the IUT of Figure 3:
ev,e2,ed,el, ...

When this part of the test sequence is applied to the IUT, traversal stiould causé’'S M, to send back input
as,1. The IUT will move to state” with a1 buffered atl,. Suppose that a faulty implementation incorrectly
containsy ; instead ofi, ; atl,. Then in stat& transitione3 will be triggered by, ,, and the IUT will remain

in C' instead of moving ta\ aftere4’s traversal, even &2, e3, ande4 are implemented correctly. The tester cannot
distinguish whethe#2's, e3's, ored’s implementation is faulty, oF S M, is not conformant to its specification, or
the semicontrollable interfade malfunctioned. Althought'S M, andI, can be assumed fault-free as part of the
test context [35], a test verdict should be based on the test context’s correctness only when necessary.

This practical concern for problem diagnosis suggests the following testing guideline: “Test as many
transitions as possible without interactions at semicontrollable interfaces.” Transitions preferably should
be tested when there are no inputs buffered at the semicontrollable interfaces. As aresult of this guideline,
a minimum cost test sequence generation can be formulated (under Section 5’s considerations) and solved
as a Rural Chinese Postman Problem [17], as discussed in Section 6.

6 Minimum-cost test generation

This section discusses test generation for the practical testing environment as described in Section 5. A
method to obtain a test sequence as a solution to the Rural Chinese Postman Problem [1, 17] on graph
G'(V', E') is shown; this method is then applied to an example practical testing environment.

The graphG’ is built by the algorithm (referred to &ONVERT-SEMI-INThenceforth) presented and
analyzed in [10, 11]. The algorithm creates a new state V' from two components: the original state
v € V, and the current configuration of buffers modeled by variablgsvs, . . . ,wg . In this process,
all possible buffer configurations with up &pinputs in bufferB; at I; are constructed by examining in a
breadth-first-search manner all outgoing edges. @ne or more copies are createdrdhfor each edge

e € E, based ore’s class. In general, each edgefihbelongs to one of the four classes [11] defined
based on the source and destinatibiy'(//; or/andLT') of the edge’s input and output(s) as follows:

e Class 1:eis triggered by an input from and generates output(s) to an LT.

10



Step Edgename Inputfrom Outputtp Step Edge name Inputfrom Output to
-1 el.0 LT?7z, FSMl!OLl 8 e7.2 LT7.Z'7 LT'y7

2 e5.1 LT?$5 FSM2!0272 -9 e8.2 FSMl?aLg LT'yg
—+3 e3.l FSMi%a4 1 LTy 10 e7.0 LT?z; LTy,
— 4 €6.0 LT ?7z¢ LT'yG — 11 eb.0 LT?x5 FSMz'OZ,Z
—+5 e7.0 LT?x; LTy, — 12 e9.0 LT?x9 LTy
— 6 e2.0 LT 7z, FSM2!0271 — 13 el10.0 LT?x19 FS]V[Q'yIO
-7 e4.3 FS]\/IQ()G,Q’I FSMl!OLQ 14 €6.0 LT7.Z'6 LT'yﬁ

Table 2: Minimum-length test sequence for the IUT of Figure 3.

e Class 2:eis triggered by an input from an LT and generates an outpufbuffered inB, to create
a new configuration) af,.

e Class 3: e is triggered bya, ; (extracted fromB, to create a new configuration) frody and
generates output(s) to an LT.

e Class 4:¢is triggered by an inpui, ;, from I, and generates an outpyy; at /.

The algorithm’s running time is shown [10] to 6¥c x F' « |E|) if the objectives 0f0bj; andObj, can
be satisfied, an@(c**" x | E|) for ¢ > 1 otherwise.

Each path of7’, which consists of edges iA’, can be proven valid [10], i.e., for any of its composite
edgese’ € E' the following hold true: (1)’ has no race conditions, (2)4f is triggered by a buffered
inputa; ;, this input is consumed from the buffer, (3) the buffer that should sts@utput is not full in

a given state, and (4) i is fireable by input; ;, this input is the first one buffered in the configuration
corresponding te@'’s start state. Therefor&;’ can be shown [10] to be minimal valid representation
of the system defined b andwy, - - - ,wr, which implies that each path 6f is a valid path of7, and
that no invalid paths off are included inG’. A test sequence obtained frai does not contain any race
conditions, as proven in [10] and illustrated through an example at the end of this section.

For graphs7(V, E) andG’(V', E'), a test sequence is derived by obtaining the following goal: “find a
minimum cost tour ofZ’ in which each original edge fro included inG' is covered at least once.”
(Note that if an IUT’s transition cannot be covered within a given test context, the algorithm for graph
conversion will not include this transition &'.) Let E/ be the set of edges defined based on the practical
considerations (Section 5.2) as containing copies incident to nodes corresponding to configurations with
empty buffers (where possible). It is clear that will include at least one copy of each edgefh
Therefore, obtaining the above goal is equivalent to finding a minimum cost to@f #fat includes

each transition inZ’, the set ofmandatoryedges, at least once, and each transitiofFh— E.), the

set ofoptional edges, zero or more times (so called Rural Chinese Postman Problem (RCPP) [17], with
an efficient solution presented by Aho et al. [1]). It can be shownZhats defined above is a weakly-
connected subset @'; therefore, a polynomial-time solution to RCPP formulated®d@and E’, exists.

Example (cont'd): Consider the graph of Figure 3. After conversiorGto(Figure 4), each state is replaced

with at most four copies—each corresponding to the buffer configuration at a semicontrollable interface. Each
edgee is annotated as.x, wherex = 0, 1,2, 3, depending on the input buffered in the:'s start state, as shown

in Figure 4. Given graphs andG', the setd; andE' are as follows:

E = {el,e2,e3,e4,e5,e6,e7,e8,e9,e10} 4)
E' = {el.0,e2.0,e3.1,e4.3,€5.0,€5.1,€6.0,€7.0,€7.2,€8.2,€9.0,€10.0,10.1} (5)
To build the set of mandatory edges to be included in a test sequence, we adopt the approach discussed in Sec-

tion 5.2. InG’', edge%5 andeT appear multiple times. The solid edges in Figure 4 are the mandatory edges that
are incident to nodes that correspond to the case where both buffers are empt/Qiande.0. The copies that

11



no inputs buffered ay 1 buffered

Legend:

mandatory edge

————— >

optional edge

a, , buffered | a, , buffered

Figure 4: Graph transformation applied to the graph of Figure 3. Mandatory and optional edges appear
in solid and dashed lines, respectively.

can be traversed only when either buffer contains an input are shown in dashed lin@nde7.2. These are the
optional edges, which will be included in the test sequence only when necessary. In this example we have:

E. = {el.0,e2.0,e3.1,e4.3,e5.0,e6.0,e7.0,e8.2,e10.0} (6)

Given setsE’ andE!. defined by (5) and (6), the Aho et al. optimization technique gives the minimum length
test sequence fdi' shown in Table 2. Steps with~) indicate that an edge is tested in this step. Note that, for
simplicity, the UIO sequences [20] for state verification are not included in this sequence.

7 Controlling FSMs associated with semicontrollable interfaces

The analysis presented thus far is focused on controlling an IUT where a semicontrliablginter-
acts with the IUT. In this systenF S M; generates a desired input to the IUT as a response to the IUT’s
stimulus without a tester’s explicit control.

This section enhances the model presented in Section 4 by including preambles and postambles to control
both the IUT andF'SM;: bringing F'SM; into a desired state by a preamble (Section 7.1), and bringing
FSM; from a given state into its initial state by a postamble (Section 7.2). The graph augmentation
with preambles and postambles needed to obtain a near-minimum cost test sequence is proposed in
Section 7.3. Section 7.4 discusses the validity of paths in the augmented graph. Finally, test coverage
and cost effectiveness of the proposed methodology is discussed in Section 7.5.

Note that this augmentation doestaim to test the the FSMs that are communicating with the IUT; the
purpose of the augmentation is to move a semicontrollable FSM into a state where a matching transition
(defined below) can be utilized to test the IUT.

Let G;(V;, E;) be the graph representing the semicontrollable interfaseith FSM;. LetU; ; be the
set of edges ii; that are triggered by input; ; from the IUT, and that generate outpyt; to the IUT.
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Consider a transition; ; = (u}], ”) € U, ; in the IUT. The methodology presented in the paper up
to this point is applicable to a testing system where givgn there is always a matching transition
Dij = (p”,p”) € U, j in FSM;. This constraint implies that upon applying inpy; to F'SM;, there

is always an output; ; from F'SM;. A trivial case where this holds true is @SM; with each state
having an edge; ;. In practice, however’SM; may be in a state whegg ; is undefined, making the

controllability overl; more difficult.

One possible solution is to model an IUT combined with all semicontrollable interfaces as a single FSM.
This solution is infeasible, since it amounts to multiplying the IUT's FSM &M, , ..., FSMp,
resulting in a state explosion problem. Fortunately, it is possible to achieve controllability in such a
system by restricting the state spac&18/; that is reachable by the IUT. The goal of testing is to test
eacht; ; = (t;;,t7;) € T; ; in the IUT. For a givert; ;, we suggest the following test steps:

e the IUT isin any state € V, andF SM; in its initial statez

« for a givenu;, ;, move the IUT from state to stateu; ;, and 'S M; from stated, to statep; ;

e triggeru; ; by applying its input from the lower tester; ; generates; ; to F'SM;; transitionp; ;
consumes; ; and outputsy; ; to the IUT. Now the IUT is in state2 andF'SM; in statepaj

 move the IUT to state] ; (F.SM; remains in statg; ;)
o buffered inputa; ; triggerst; ;, and the IUT moves to staté.

e move the IUT from:? ; to stater € V, and moveF'SM; from p? ; to its initial statesy

The above sequence suggests that the testerfk8p; in its initial stater, while the IUT is being tested;
only whenu; ; is to be traversed, does the tester moveHls&\/; to statepl{j. After p; ; is traversed, the
FSM; is brought back t@y. This restriction will be referred to as tleentrollability restriction

7.1 Bringing semicontrollable FSM to a desired state

Sabnani et al. [30] introduce an algorithmic procedure for checking the safety properties of communica-
tion protocols. The procedure takes a collection of communicating FSMs as input, and produces a com-
posite output FSM by doing incremental composition and reduction. The state space of the composite
FSM, which is observationally equivalent to the input FSMs, is reduced by several orders of magnitude.

Given G; for FSM;, let G (V;*, Ef) be the graph obtained by combiniidg for the IUT andG; as
given by Sabnani et al. [30]. Le&®yr, P, and P7, be the sets of paths of graptis G;, and G,
respectively. GiverG;(V;*, Ef) and the initial vertexsy € V;, let pn](v,u”,p”) € P, where
veV,u = (u}], 1]) € U;j UW,;, andp; j = (p”,p”) € U, j, be a shortest path originating in
(v,79) € V;* such that

_ prij _
(vao) ~¥ (uzl,jvpzl,j) (7)

pri,; Will be called apreamble of state u; i;- For example, Figure 5 |IIustratqsr”(v,u”,p”)
and pr”(v,u”,q”) which are two preambles defined for staie in the IUT. The preamble
p?"m(v,u”,p”) consists of a path from to u} i |n the IUT, and the correspondlng path from to
pZ in the F'SM;. Similarly, the preambler; ; (y, Ui js q”) is a combination of a path fromto u”

the IUT, and the corresponding path fragto q” in the F’'SM;. All possible such preambles must be
considered to minimize the total test sequence cost, as described later in this section.
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Legend:

—— edge ~—— "~ preamble path
-~~~ path ey pOStamble path

Figure 5: Two preamblesp(; (v, u; ;,p; ;) and pri;(v,u; ;,q;;)) for u;; and two postambles
(POi,j(th,ﬁ%,j) andpoi,j(t%,ja CZZ])) for ¢ ;.

Let P; ;, the set of all preambles associated with; andW; ;, be defined as follows:

P = {pr” (Fv e V)(Elu” € Ui UW; ])(le] e U; ]) pri,g —prw( zl,jaljzl,j)} (8)

Itis clear thay P; ;| = O(|V| = |U; ; UW; ;| |U; ;|). Tofind the set of shortest paths for @il o) € V;*
to other nodes iit7; takesO(|V|(|V;*|1g |Vi*| + | Ef])) time [6].

Recall from Section 5 that at any time a single input may be buffered in only one of the IUT’s semicon-
trollable interfaces. The algorithm presented in [30] ensures that métja(and in statq)Z in FSM;)
no inputs are buffered df. This implies that after traversing apy(v, u, J,p”) followed byuZ j €EUij,
onIy inputa; ; is buffered atl; (or no input ifu; ; € W; ;). The IUT is in stateﬂ and F'SM; in state

. Therefore, traversing a preamble as defined in (7) will not generate any extra inputs buftEred at
WhICh will enable the application of the algorith@ONVERT-SEMI-INT

After traversingpr (v, u; ;,p; ;) followed byu; ; € U;;, FSM; remains in statg? ; until a; ; is con-
sumed atl; by a transitiont; ; = (t}], ”) € T; ;. After ¢; ; is triggered,F'SM; must be brought back
to statety. The postamble to bring’'SM; back to its initial state is discussed next.

7.2 Bringing semicontrollable FSM back to initial state

) € P, wheret; ; = (tl 2 ) e T

GivenG} (V;*, E;) and the collection of set§; ;, letpo; ;(t; ;,p7 ; it

andp; ; = (p”,p”) € U, ;, be a shortest path @f; such that

(508 = (vw), veV €)
po; ; Will be called apostambleof an edge state2 For example, Figure 5 depicts two postambles
defined for state; ; in the IUT. The postamblpom( ?j,D7 ;) consists of a path fron¥ ; to x in the
IUT, and the correspondlng path fropﬁ to vy in F.SM;. Similarly, the postamblgo”( i q”) isa
combination of a path frort? tozin the IUT, and the corresponding path fr@ﬁ} to vg in F'SM,;.

For a givent; ;, there may be multiple states S AZ; in which o; ; can be consumed ang ; output to
the IUT. Depending on which preamble is used to bring the IUT uﬁp a matching postamble must
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be utilized to bringF’SM; back tozy. For example, in Figure 5, the preambleg ; (U,u”,pw) requires
the postambleo; ;(t w,pw) to bring theF'S M; from pf to vy (which causes the IUT to end up in state
x). The other postamble shown in Figurepb; ;(t ”,q”) cannot be used in this case. Similarly, the
preamblepr; (v, u; RIX ]) requires the postambje; ; (¢ é], q; ]) and prohibits the use @biyj(tl?’j,p?’j).

In the case ofv; ; = (w] ;, w?;) € W; ;, the postamble defined by (9) starts from the sigtg, i.e.,

po;,;

(w?,jaﬁz]) ~ (U760)7 veV (10)

Let Q;,;, the set of all postambles associated With andWV; ;, be defined as follows:

Qij = {pOZ] (Eltl] €L UW; ])(Elplj e U; ]) Po;j; = Poz,](tzz,jaﬁ%,j)} (11)

In the above|Q; ;| = O(|T;,; U W, | * |U; j]), which requires at mosd(|V|(|V;*| g |V;*| + | Ef|)) time
to compute [6].

7.3 Augmenting graph with preambles and postambles

To obtain a near-minimum cost test sequence, all possible preambles and their matching postambles
must be considered, i.e., an augmentation must be defined to include all the preamplesd all the
postamblego; ;, for a givenp; ; = (p} ;,7; ;) € Us; in FSM;. Letj; ; be chosen by minimizing an
objective functionf; ; : UZ-,]- — RT (whereR* is the set of non-negative real numbers), which computes

the average length of a preamble ending‘}gt and a postamble startingﬁfgj in FSM;.:

EUEV Eui,j eU; ;UW; ; |pri,j (U, ui]?ﬁ},g” Zti,j €T; ;UW; 5 |p0i,j (tzz,]apzz,j”
[V (U4l + [Wil) |Ti5] + Wil

fij(Pig) = 0.5 ( ) (12)

Let us augment grapf¥ with preambles (prior to conversion & by the algorithmCONVERT-SEMI-
INT) for the edges i/; ; andW; ; as follows:

1. Vuj € Uy U Wy splitul; intou)>l andu/’
1 II
2. Ypr; (v, ”,pu) € P, ; create an edge, u;’; )
1 L,I1 2
3. replaceu; j = (u U ;s ”)Wlth u;j = (uiyj ,ui’j)

4. all incoming (outgoing) edges m},j become incoming (outgoing) edges@f

Using postambles, we continue the augmentatiot; ¢dr the edges ir¥; ; as follows (to augments
with postambles for the edgesi¥i; ;, replacet; ; with w; ;):

1. Vti; € Ty splitt?, into £,/ andt.’f’

2,IT
v)

2. Vpoi j(t7;,P% ;) € Qi create an edgg;”; ",

0,57 Pij

2 ywith ¢;; = (¢}, £21")

3. replacet; ; = (t!.,t Lty

1,70 Yt,]

4. allincoming (outgoing) edges 03,]. become incoming (outgoing) edgestéj-’

As mentioned earlier, the running time of the combined algorithms for findingf3etandQ; ; for all
transition classes in all interfaces is given by [613S°F, (|V|(|Vi*|1g |Vi*| + | EE)).
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q,:IUT? 0, ,/IUTla, Ps
g,:IUT? 0,/ IUT!a, ,

q;:1UT? 0,/ 1IUTla p,: IUT?0,,/1UT!a,,
q,:1UT?0,,/1UT!a, P21 IUT? 05,/ 1UT a5,

_ ' ps: IUT? 0,,/ null _

Ui1={ds, qs} Pa: IUT? 0,,/ null Uy 1={p1. P2}
Ui2={0qz,da} Ps: IUT? 0,,/ null U,,={ Pz, Ps, Ps}

Figure 6: The FSM for thé’SM; (a) and theF'S M- (b) in the system of Figure 3.

preamble start state end state IUT edges F'SM, edges
pr271(A7BaK)!pTZ,Z(A,B,K) (A’K) (B’K) 67 @
pT’271(B,B,K),pT’272(B,B,K) (B,K) (B,K) @ [Z)
pr21(C,B,K), pro2(C,B,K) | (C,K) (B, K) €6, e7 0

pra1(A, B, L), pra2(A,B, L) (A, K) (B, L) e7,e5,€e9 3
praa(B,B, L), pra2(B,B, L) (B,K) (B, L) €5, €9 3

pr21(C, B, L), pra2(C, B, L) (C,K) (B, L) €9, €5, €9 3

pra2(A, B, M) (A, K) (B,M) €T7,e5,e9,¢e5,e9 P3, P4
pT’272(B,B,M) (B,K) (B,M) 65,69,65,69 P3, D4
pra2(C, B, M) (C,K) (B, M) €9,e5,¢e9,¢e5,e9 D3, P4
postamble start state end state IUT edges FSM; edges
pos1(A, L) (A, L) (C,K) e7,e8,e7,e5,€9,e5  pg,ps
poa 1 (A, M) (A, M) (C,K) e7,e8,e7,e5 Ds

po2 Z(C, L) (C, L) (Cv K) €9, ed, €9, ed P4, Ds

P02 2(C, M) (C,M) (C,K) €9, e D5

po22(C, K) (C,K) (C,K) 0 0

Table 3: Preambles and postambles for the FSMs of Figure 6.

7.4 Checking validity of preambles and postambles

As proven in [10], all paths in grapf’ are valid. Augmenting grapty with preambles and postam-
bles results in adding a new class of edgeé&/tethe concatenated edges consisting of preambles’ and
postambles’ composite edges. The algoritB@NVERT-SEMI-INBhould be modified accordingly to
account for the existence of concatenated edges. In particular, to avoid introducing invalid pats into
it must be verified that each concatenated edge to be includ@tiga valid path.

All preambles associated withi; ; are necessarily valid paths @&'. A test sequence satisfying the
objectives ofObj; andObjs requires that, at any given time, only one input can be bufferdg &ince

each preamble associated wiff); is followed inG’ by an edge if; j, whose traversal causes; to be

buffered atl;, the algorithm makes sure that each such preamble starts and ends in states corresponding
to the configurations with empty buffers. Therefore, there is no buffered input that can disrupt the
preamble’s traversal. Similarly, each postamble associatediyjtts always valid inG’. However, both
preambles and postambles associated Wiy may or may not be valid iz’ and should be checked

for validity by the algorithmCONVERT-SEMI-INT

Example (cont'd): Consider the testing environment depicted in Figure 3. F8&1, andF S M- are shown in
Figure 6. Suppose that the IUT's transitigy which output® » to F'S My, triggersF’S M's transitiongs, ps, or
ps. Among theF'S M, ’s transitions, the ones i, 1 generate outputs to the IUT. For the IUT’s edge¥in and
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Legend:
—————— mandatory edge
————— » optional edge
<7 >—"~~ preamble path
e postamble path

(b) |

no inputs buffered

a ; buffered

a, ; buffered a, , buffered

Figure 7: (a) Augmenting grapfi with preambles and postambles; (&)obtained from the augmented
G by using the algorithnCONVERT-SEMI-INT
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U, ,» there is always a matching transition in th& M. However, for the IUT’s edges iti, 1, the two matching
transitions are defined only for stat&sandL. Therefore, utilizing transitions ii> ; andU- » requires the use of
preambles and postambles. Table 3 shows the preambles and postambles for the testing system of Figure 3. For
this systeng,l = {62}, T271 = {64}, W272 = {65}, U271 = {pl,pg}, andU272 = {pg,p4,p5}.

To augment graphy, we first compute the value of the objective functifyn (defined by (12)) fop: andp-:
faa(p1) = 4.5 andf» 1(p2) = 4.33. Sincep, produces slightly shorter preambles and postambles, it will be
used for augmentation @f. Similarly, we computefs 5 for ps, ps, andps: fa2(ps) = 3.5, fa2(ps) = 3.33,

andf, »(ps) = 3.33. Let us pickps to augmenti. By applying the technique presented in Section 7.3, we first
augment with preambles and postambles (Figure 7 (a)), and then caavier@’ (Figure 7 (b)) by the algorithm
CONVERT-SEMI-INT. The preambler, »(B, B, M ), which consists of edges, €9, 5, ande9, is a valid path
with respect to the configuration with all buffers empty. However, it is an invalid path with respect to configurations
with a, » (0ray 1) buffered atly, oras,; buffered atl,. For example, the preamble’s edgkeis invalid whena, 1

is buffered atl,, since in stat€' transitione3 will automatically trigger instead @ being triggered by a lower
tester’s inputry. (Edges that would have been includeddhby the algorithmCONVERT-SEMI-INT had the
preambles and postambles not been checked for validity, are shown in Figure 7 (b) as crossed with “X.”)

Finally, we find a rural Postman tour 6f :

el.0, €10.1, e3.1, €6.0, pra1(A, B, L), €2.0, 4.3, pos1(A, M), €9.0, (13)
~———— ———
e7,e5,e9 e7,e8,e7,eb
pra2(B, B, M), 5.0, pos2(C, K), €6.0, €7.0, pra2(B,B, M), €5.0, po22(C, K), 6.0 (14)
< § 5 < . . . , R ,
eb5,e9,e5,e9 0 eb,e9,e5,e9 0

After replacing the preambles and the postambles with their composite edges, and dropping the suffixes of regular
edges, the following near-minimum cost (Section 7.5) test sequence is obtained:

el, el0, e3, eb6, e7, eb, €9, e2, ed, e7, e8, e7, e5,e9, e, €9, €5, €9, €5, €6, e7, eb, €9, e, €9, e, eb

7.5 Test coverage and cost effectiveness

In general, without limiting the number of possible state transitiong'§1\/; during testing, finding

a cost-effective test sequence for the IUT becomes infeasible: the number of potential test scenarios
involving the IUT and allF'SM;’s is prohibitively large. Even when the objective @bj- (defined in

Section 5.1) can be met, deriving a tour based on a part of a composite machine satisfying a requirement
of a single message in transit would involve the testing of the entire state space of the semicontrollable
FSMs. To avoid this inefficiency in test sequences, the so-catiattollability restrictiondefined at the
beginning of Section 7 suggests tHas M; must be kept in its initial state and brought into a desired
state only when needed, yielding test sequences of feasible length. The proposed approach is particularly
efficient in the case where the state space of the semicontrollable FSMs is large, since there may be many
transitions of the text context that are not needed to test the desired transitions of the IUT.

However, it may be argued that the controllability restriction does not make all IUT transitions testable. In
particular, to bringF’SM; into a desired state may involve edgeginthat require interactions between
FSM; and interfaces other than the IUT. Based on the controllability restriction of’fhd;'s state

space, such edges will not be traversed during testing. If avoiding such edfég\ify is impossible,

a matchingu; ; transition in the IUT will be untestable. In spite of this restriction, initial research has
shown [11] that this approach substantially increases the test coverage for several protocols. Examples
are MIL-STD 188-220B and the IEEE 802.2 LLC Type 2 Connection Component.

With the controllability restriction and the augmentation(ofvith preambles and postambles (prior to
convertingG to G’), some of the possible interactions between the IUT Aisd\/; are not modeled

in G'. Since matching transitions are typically defined in most of the statés5af/;, this divergence

of G’ from a minimal system representation is expected to be insignificant (for example, in 188-220B
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Data Link Layer, every state in the Intranet Lay€6'M; has a matching transition for a number of
semicontrollable inputs). Therefore, a minimum cost tour derived fe8i{Section 6) can be claimed as
a near-minimum cost test sequence-of

8 Conclusion

In an embedded testing environment, where an IUT communicates with multiple entities, a tester may
have differing degrees of control on the interactions between these entities and the IUT: directly con-
trollable, semicontrollable, or uncontrollable. Semicontrollable and uncontrollable interactions severely
reduce the testable portions of an SUT. In addition, race conditions may arise during testing due to
multiple communicating interfaces.

While nothing can be done regarding uncontrollable interactions, semicontrollable inputs can be utilized
to improve test coverage. This paper provides a practical algorithmic technique for test generation that
utilizes as many indirectly controllable inputs as possible without creating nondeterministic behavior of
the test system. Although, for the most general case, the graph conversion results in an exponentially
large number of nodes, practical considerations can make the converted graph size feasible. The algo-
rithm builds a transition graph for test derivation without explicitly constructing a composite global FSM
modeling an SUT. This approach has a significant advantage, siric8 &f's state and transition space

may be large. For each'SM;, only those transitions that can be used to test an IUT’s transitions are
considered during the graph construction.

This methodology has been applied to generate tests for MIL-STD 188-220B. By using the graph con-
version and the race condition elimination approaches presented in this paper, the number of testable
state transitions increased from approximately 200 to over 700, which represents an increase in a test
coverage from 30% to 95% of the transitions defined in the 188-220B specification.

The extension of this work is planned to cover the embedded systems with multiple testers, which re-
quires addressing synchronization issues in multi-party testing [34]. Also, more efficient algorithms for
finding preambles and postambles that do not build a reduced composite machine will be investigated.
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