
{0,1}-Matrices: The Four Russians and the Mailman

David Saunders
(Univ. of Delaware)

I am a proponent of LinBox,FFlas/FFpack, Givaro
C++ template libraries for exact linear algebra
Google: ”Linbox team” to reach github project



{0,1}-Matrices: The Four Russians and the Mailman

David Saunders
(Univ. of Delaware)

I am a proponent of LinBox,FFlas/FFpack, Givaro
C++ template libraries for exact linear algebra
Google: ”Linbox team” to reach github project



ZO and ZOMO

{0,1}- and {0,1,-1}-matrices are ubiquitous.

• Graph adjacency matrix is ZO.

• Graph Laplacian is ZO + D.

• Boundary matrices of simplicial complex are ZOMO.

• Any matrix over GF2 is ZO, over GF3 is ZOMO.

• Many relations are expressed as ZO incidence matrices.

• ZO + very sparse is also seen in practice.

• Block Wiedemann gives opening to use ZO or ZOMO as
projectors.



Matrix Multiplication

C = AB(
m × p

)
=
(
m × n

)
∗
(
n × p

)
Using indices i , j , k in the dimensions m, n, p, respectively.

Definition: of matrix multiplication is that the i , j entry of C is the
dot product of the i-th row of A times the j-th column of B.

In
the standard three nested loop presentation this is

for i in [1..m]
for k in [1..p]

for j in [1..n]
ci ,k = ci ,k + ai ,jbj ,k .



Matrix Multiplication

C = AB(
m × p

)
=
(
m × n

)
∗
(
n × p

)
Using indices i , j , k in the dimensions m, n, p, respectively.

Definition: of matrix multiplication is that the i , j entry of C is the
dot product of the i-th row of A times the j-th column of B. In
the standard three nested loop presentation this is

for i in [1..m]
for k in [1..p]

for j in [1..n]
ci ,k = ci ,k + ai ,jbj ,k .



Square Matrix Multiplication

• Matrix multiplication costs O(n3), classical.

• Matrix multiplication costs O(n2.81), Strassen.

• Matrix multiplication costs O(n2.38), in theory.

• Matrix multiplication costs O(n3/ lg(n)) over GF2, method of
4 Russians.



Square matrix multiplication

BLAS gemm is really fast. How fast?

n naive blas speedup
50 8.1e-05 6e-06 13.5

100 0.000848 3.2e-05 26.5
500 0.124 0.0025 49.6

1000 1.002 0.018 55.7
5000 174.156 2.04 85.4

How is it done?

Not by reduction in number of field operations but by attention to
hardware (caches, pipelines, simd instructions, etc.)



Square matrix multiplication

BLAS gemm is really fast. How fast?

n naive blas speedup
50 8.1e-05 6e-06 13.5

100 0.000848 3.2e-05 26.5
500 0.124 0.0025 49.6

1000 1.002 0.018 55.7
5000 174.156 2.04 85.4

How is it done?
Not by reduction in number of field operations but by attention to

hardware (caches, pipelines, simd instructions, etc.)



Block Wiedemann algorithm

Matrix A is n × n, b � n

• n × b: Vi = AiV , right projection

• b × b: Si = UAiV , left projection

• Si −→ SigmaBasis −→ MatrixMinpoly

• MatrixMinpoly −→(whp) leading Frobenius invariants,
particularly minpoly, perhaps charpoly.

• minpoly −→ solve nonsingular,
charpoly −→ determinant
(perhaps) leading invariants −→ rank, nullspace,



Block Wiedemann algorithm

Matrix A is n × n, b � n

• n × b: Vi = AiV , right projection

• b × b: Si = UAiV , left projection

• Si −→ SigmaBasis −→ MatrixMinpoly

• MatrixMinpoly −→(whp) leading Frobenius invariants,
particularly minpoly, perhaps charpoly.

• minpoly −→ solve nonsingular,
charpoly −→ determinant
(perhaps) leading invariants −→ rank, nullspace,



Block Wiedemann dominant steps

Matrix A is n × n, b � n
V0 = V is n × b, random. U is b × n.
Wiedemann: b = 1, repeat 2n times:

1. Vi = AVi−1

2. si = UVi , si are scalars.

Coppersmith: repeat about 2n/b times:

1. Vi = AVi−1

2. Si = UVi , Si are b × b.

(same number of A × column vector in steps 1.) (same number of
A × column vector in steps 1. And simd instruction parallelism
available!)
Wait, step 2 costs more. Does it have to? Make it {0,1} or even
(Ib, Ib, . . . , Ib).



Block Wiedemann dominant steps

Matrix A is n × n, b � n
V0 = V is n × b, random. U is b × n.
Wiedemann: b = 1, repeat 2n times:

1. Vi = AVi−1

2. si = UVi , si are scalars.

Coppersmith: repeat about 2n/b times:

1. Vi = AVi−1

2. Si = UVi , Si are b × b.

(same number of A × column vector in steps 1.)

(same number of
A × column vector in steps 1. And simd instruction parallelism
available!)
Wait, step 2 costs more. Does it have to? Make it {0,1} or even
(Ib, Ib, . . . , Ib).



Block Wiedemann dominant steps

Matrix A is n × n, b � n
V0 = V is n × b, random. U is b × n.
Wiedemann: b = 1, repeat 2n times:

1. Vi = AVi−1

2. si = UVi , si are scalars.

Coppersmith: repeat about 2n/b times:

1. Vi = AVi−1

2. Si = UVi , Si are b × b.

(same number of A × column vector in steps 1.)

(same number of
A × column vector in steps 1. And simd instruction parallelism
available!)

Wait, step 2 costs more. Does it have to? Make it {0,1} or even
(Ib, Ib, . . . , Ib).



Block Wiedemann dominant steps

Matrix A is n × n, b � n
V0 = V is n × b, random. U is b × n.
Wiedemann: b = 1, repeat 2n times:

1. Vi = AVi−1

2. si = UVi , si are scalars.

Coppersmith: repeat about 2n/b times:

1. Vi = AVi−1

2. Si = UVi , Si are b × b.

(same number of A × column vector in steps 1.)

(same number of
A × column vector in steps 1. And simd instruction parallelism
available!)
Wait, step 2 costs more.

Does it have to? Make it {0,1} or even
(Ib, Ib, . . . , Ib).



Block Wiedemann dominant steps

Matrix A is n × n, b � n
V0 = V is n × b, random. U is b × n.
Wiedemann: b = 1, repeat 2n times:

1. Vi = AVi−1

2. si = UVi , si are scalars.

Coppersmith: repeat about 2n/b times:

1. Vi = AVi−1

2. Si = UVi , Si are b × b.

(same number of A × column vector in steps 1.)

(same number of
A × column vector in steps 1. And simd instruction parallelism
available!)
Wait, step 2 costs more. Does it have to?

Make it {0,1} or even
(Ib, Ib, . . . , Ib).



Block Wiedemann dominant steps

Matrix A is n × n, b � n
V0 = V is n × b, random. U is b × n.
Wiedemann: b = 1, repeat 2n times:

1. Vi = AVi−1

2. si = UVi , si are scalars.

Coppersmith: repeat about 2n/b times:

1. Vi = AVi−1

2. Si = UVi , Si are b × b.

(same number of A × column vector in steps 1.)

(same number of
A × column vector in steps 1. And simd instruction parallelism
available!)
Wait, step 2 costs more. Does it have to? Make it {0,1} or even
(Ib, Ib, . . . , Ib).



focus on row operations in B and C

The order of the loops may be changed and a useful form is when
the inner loop is ranging across a rows of B and C:

for i in [1..m]
for j in [1..n]

for k in [1..p]
ci ,k = ci ,k + ai ,jbj ,k .

If A is a {0,1}-matrix, the inner loop is row addition.

for i in [1..m]
for j in [1..n]

if ai ,j = 1 then Ci = Ci + Bj .



focus on row operations in B and C

The order of the loops may be changed and a useful form is when
the inner loop is ranging across a rows of B and C:

for i in [1..m]
for j in [1..n]

for k in [1..p]
ci ,k = ci ,k + ai ,jbj ,k .

If A is a {0,1}-matrix, the inner loop is row addition.

for i in [1..m]
for j in [1..n]

if ai ,j = 1 then Ci = Ci + Bj .



Two ways to focus on row operations

for j in [1..n]
for i in [1..m]

if ai ,j = 1 then Ci = Ci + Bj .

or

for i in [1..m]
for j in [1..n]

if ai ,j = 1 then Ci = Ci + Bj .



Two methods to speed up multiplication by {0,1} or {0,1,-1}
matrix.

V. Arlazarov, E. Dinic, M. Kronrod, I. Faradev, “On economical
construction of the transitive closure of a directed graph”, Dokl.
Akad. Nauk SSSR, 194 (11). Original in Russian in Dokl. Akad.
Nauk SSSR, 134 (3), 1970.

E. Liberty and S. W. Zucker, “The Mailman algorithm: A note on
matrix - vector multiplication”, Information Processing Letters,
Volume 109 (3) 2009.

They have dual structures and complementary strengths vis a vis
matrix shape.



4 Russians: look at column(s) of A

C2+ = Bj

C3+ = Bj

 =


0
1
1
0

×
Bj




C1+ = Bj+1

C2+ = (Bj + Bj+1)
C3+ = Bj

C4+ = (Bj + Bj+1)

 =


01
11
10
11
00

×
 Bj

Bj+1


m + 1 row adds instead of 2m row adds.



4 Russians: look at column(s) of A

C2+ = Bj

C3+ = Bj

 =


0
1
1
0

×
Bj




C1+ = Bj+1

C2+ = (Bj + Bj+1)
C3+ = Bj

C4+ = (Bj + Bj+1)

 =


01
11
10
11
00

×
 Bj

Bj+1



m + 1 row adds instead of 2m row adds.



4 Russians: look at column(s) of A

C2+ = Bj

C3+ = Bj

 =


0
1
1
0

×
Bj




C1+ = Bj+1

C2+ = (Bj + Bj+1)
C3+ = Bj

C4+ = (Bj + Bj+1)

 =


01
11
10
11
00

×
 Bj

Bj+1


m + 1 row adds instead of 2m row adds.



Mailman: look at row(s) of A

C4 = B2 + B3

 =

0 1 1 0 0

×

B1

B2

B3

B4

B5



C4 = B1 + (B2 + B5)
C5 = B3 + (B2 + B5)

 =

1 1 0 0 1
0 1 1 0 1

×

B1

B2

B3

B4

B5


m + 2 row adds instead of 2m row adds.



Mailman: look at row(s) of A

C4 = B2 + B3

 =

0 1 1 0 0

×

B1

B2

B3

B4

B5


C4 = B1 + (B2 + B5)
C5 = B3 + (B2 + B5)

 =

1 1 0 0 1
0 1 1 0 1

×

B1

B2

B3

B4

B5



m + 2 row adds instead of 2m row adds.



Mailman: look at row(s) of A

C4 = B2 + B3

 =

0 1 1 0 0

×

B1

B2

B3

B4

B5


C4 = B1 + (B2 + B5)
C5 = B3 + (B2 + B5)

 =

1 1 0 0 1
0 1 1 0 1

×

B1

B2

B3

B4

B5


m + 2 row adds instead of 2m row adds.



Back to four Russians

C2+=Bj

C3+=Bj

 =


0
1
1
0

×
Bj




C1+=Bj+1

C2+=(Bj + Bj+1)
C3+=Bj

C4+=(Bj + Bj+1)

 =


01
11
10
11
00

×
 Bj

Bj+1





t columns

Build table of 2t B-row sums.

. . .
T101 = T001 + B3 = B1 + B3

T110 = T010 + B3 = B2 + B3

T111 = T011 + B3 = B1 + B2 + B3

Using table, sweep down col panel of A to update C row by row.

C1+=T110

C2+=T010

C3+=T101

C4+=T110

C5+=T011

. . .

 =



110
010
101
110
011
. . .

×


B1

B2

B3





Four Russians analysis

A is a m × n zero-one matrix.
Panel width is t.
The following two steps must be done n/t times:

1. Table construction, costing 2t row additions (2t − t − 1 to be
precise).

2. Use table to put row combinations into C , costing m row
adds.

total cost in row additions is mn/t + n2t/t).



Back to Mailman

C4 = B2 + B3

 =

0 1 1 0 0

×

B1

B2

B3

B4

B5


C4 = B1 + B2 + B5

C5 = B3 + B2 + B5

 =

1 1 0 0 1
0 1 1 0 1

×

B1

B2

B3

B4

B5





t rows

Build table of 2t B-row sums. Each row of B goes in exactly one
sum, indexed by the pattern of C rows to which it contributes..
For instance, with t = 3, T101 includes Bj when Bj contributes to
C1 and C3, but not C2. Next, for each Ci , combine the entries of
T that are sums that contribute to Ci (all those T entries for
indices with i-th bit on.)



T001 + T011 + T101 + T111

T010 + T011 + T110 + T111

T100 + T101 + T110 + T111


=



1 0 1 1 0
0 1 1 1 1
1 0 1 1 0


×


B1

B2

B3

B4

B5





Table handling

T [000]
T [001]
T [010]
T [011]
T [100]
T [101]
T [110]
T [111]
Add last 4 entries to C3.

Also add them to the first four entries.
T [∗00] = T [000] + T [100]
T [∗01] = T [001] + T [101]
T [∗10] = T [010] + T [110]
T [∗11] = T [011] + T [111]



Table handling

T [000]
T [001]
T [010]
T [011]
T [100]
T [101]
T [110]
T [111]
Add last 4 entries to C3. Also add them to the first four entries.
T [∗00] = T [000] + T [100]
T [∗01] = T [001] + T [101]
T [∗10] = T [010] + T [110]
T [∗11] = T [011] + T [111]



Mailman analysis

A is a m × n zero-one matrix.
Panel width is t.
The following two steps must be done m/t times:

1. Build table using n row additions.

2. Use table to row combinations into C at cost 2× 2t row ops.

total cost in row ops is mn/t + 2m2t/t).

Compare 4 Russians: mn/t + n2t/t.



Mailman analysis

A is a m × n zero-one matrix.
Panel width is t.
The following two steps must be done m/t times:

1. Build table using n row additions.

2. Use table to row combinations into C at cost 2× 2t row ops.

total cost in row ops is mn/t + 2m2t/t).
Compare 4 Russians: mn/t + n2t/t.



Map for choosing method

0 20 40 60 80 100
0

20

40

60

80

100

n

m

m = 32

m = n/2



Timing over Z10003

A = time of 8× 80000 ZO matrix times 80000× 1000 matrix

vs

B = time of 8 reps of 1× 80000 dense vector times 80000× 1000
matrix.

11-fold speedup B/A = 11.

C = B with ZO vector, speedup C/A ≈ 7.



Example: Solve nonsingular system

1. Minpoly via Block Wiedemann using U ∈ ZO4×n and rational
(poly) linear system solve with random rhs.
m(x) =

∑d
i=0mix

i . [2d mv’s]

2. x = (−1/m0
∑d

i=1miA
i−1b. [d − 1 mv’s]

3. Check Ax = b [1 mv]. Go to 1 if fail, else return x.

Block Wiedemann is faster than b = 1 Wiedemann because of
simd in mv’s and Mailman in panel products and tiny block size.
Probability of success is adequate. Expected number of repetitions
is 1 + ε. C



Example: Solve nonsingular system

1. Minpoly via Block Wiedemann using U ∈ ZO4×n and rational
(poly) linear system solve with random rhs.
m(x) =

∑d
i=0mix

i . [2d mv’s]

2. x = (−1/m0
∑d

i=1miA
i−1b. [d − 1 mv’s]

3. Check Ax = b [1 mv]. Go to 1 if fail, else return x.

Block Wiedemann is faster than b = 1 Wiedemann because of
simd in mv’s and Mailman in panel products and tiny block size.
Probability of success is adequate. Expected number of repetitions
is 1 + ε. C



Method duality

4 Russians Mailman

matrix use in kernel

A m × t (few cols) t × n (few rows)
each row a t bit index each col a t bit index

C update all rows write t rows, done with

B read t rows, done with reread all rows

The table’s two phases

build it B −→ T , indep of A scan A
use it scan A T −→ C , indep of A

building is overhead using is overhead


