
Solution to Problem 17 (32.1)
Graded by: Pavel Laskov
Adopted from a solution by:

Problem Statement

a. Show how to multiply two linear polynomials ax+ b and cx+ d using only three
multiplications. (Hint: One of multiplications is (a+ b)(c+ d).)

b. Give two divide-and-conquer algorithms for multiplying two polynomials of
degree-bound n that run in time �(nlg 3). The �rst algorithm should divide
the input polynomial coe�cients into a high half and a low half, and the second
algorithm should divide them according to whether their index is even or odd.

c. Show that two n-bit integers can be multiplied in O(nlg 3) steps, where each step
operates on at most a constant number of 1-bit values.

Part a.

Conventional polynomial multiplication uses 4 coe�cient multiplications:

(ax+ b)(cx+ d) = acx2 + (ad+ bc)x+ bd

However, notice the following relation:

(a+ b)(c+ d) = ad+ bc+ ac+ bd

The �rst two components are exactly the middle coe�cient for product of two
polynomials. Therefore, the product can be computed as:

(ax+ b)(cx+ d) = acx2 + ((a+ b)(c+ d)� ac� bd)x+ bd

The latter expression has only three multiplications.

Part b. High/Low Algorithm

Let p denote the vector of coe�cients of the �rst polynomial P , q denote the vector
of coe�cients of the second polynomial Q. Assume both of these vectors are of
length n = maxflength(p1); length(p1)g (whichever is smaller is padded with leading
zeros). Let m = dn

2
e. It can be easily seen that

P = p0 + p1x+ : : :+ pn�1x
n�1 = p0 + p1x+ : : :+ pm�1x

m�1

+ xm(pm + pm+1x+ : : :+ pn�1x
n�1�m)

= Axm +B

where

A = pm + pm+1x+ : : :+ pn�1x
n�1�m

B = p0 + p1x+ : : :+ pm�1x
m�1

Likewise,

Q = q0 + q1x+ : : :+ qn�1x
n�1 = q0 + q1x+ : : :+ qm�1x

m�1

+ xm(qm + qm+1x+ : : :+ qn�1x
n�1�m)

= Cxm +D

where

C = qm + qm+1x+ : : :+ qn�1x
n�1�m

D = q0 + q1x+ : : :+ qm�1x
m�1

Using the result of Part a. we can write the following expression for the product of
P and Q:

(Axm +B)(Cxm +D) = ACx2m + ((A +B)(C +D)�AC �BD)xm +BD (1)

Based on equation (1) we can de�ne a divide-and-conquer algorithm for polynomial
multiplication:

� Split polynomials P and Q of degree-bound n into polynomials A, B, C, D
of degree-bound m.

� Calculate the expression (1) for (Axm+B)(Cxm+D) using recursive calls
for polynomial multiplication.

The resulting algorithm is summarized in Algorithm 1:

Algorithm 1 High/Low algorithm

1 proc RMul(p; q)
2 begin
3 n p.size()
4 m dn

2
e

5 if p.size() = 1
6 then return pq // Size of q is also 1. See Lemma 1.
7 else
8 a p[m;n� 1] // Split p and q in halfs
9 b p[0;m� 1]
10 c q[m;n� 1]
11 d q[0;m� 1]
12 tmp1 RMul(a+ b; c + d) // Do recursive multiplications
13 tmp2 RMul(a; c)
14 tmp3 RMul(b; d)
15 return tmp2 � n+ (tmp1 � tmp2 � tmp3)� m+ tmp3
17 end

The operation p � k denotes \shift p to the left by k digits". This is necessary to
produce correct powers of x.

Correctness of the algorithm follows from the fact that it starightforwardly im-
plements equation (1). The shi�tng operation accounts for appropriate powers of
x in the resulting polynomial. The only part which requires special attention is
the termination condition. The following lemma justi�es the condition used in the
algorithm.

Lemma 1 length(p) = length(q).

Proof. I will prove the claim by induction on valid recursion depth d (assuming
depth d is reachable). For d = 0, that is, during the initial call to RMul, the claim
is true from the assumption that two vectors are aligned. Suppose the claim is true
for some depth d and recursive calls are further made to depth d+1. length(a+b) =

m = length(c + d). length(b) = m = length(d). If n is even then length(a) = m =
length(c), otherwise length(a) = m� 1 = length(c). It can be easily seen that sizes
of both argumens in all three recursive calls are the same. q.e.d.

Part b. Even/Odd Algorithm

Let ne = 2bn
2
c. Let no = 2dn

2
e � 1. Under the same assumptions as in Part a.

another decomposition of P and Q can be derived:

P = p0 + p1x+ : : :+ pn�1x
n�1 = p0 + p2x

2 + : : :+ pnex
ne

+ x(p1 + p3 + : : :+ pnox
no�1)

= Ax+B

where

A = p1 + p3 + : : :+ pnox
no�1

B = p0 + p2x
2 + : : :+ pnex

ne

Likewise,

Q = q0 + q1x+ : : :+ qn�1x
n�1 = q0 + q2x

2 + : : :+ qnex
ne

+ x(q1 + q3 + : : :+ qnox
no�1)

= Cx +D

where

C = q1 + q3 + : : :+ qnox
no�1

D = q0 + q2x
2 + : : :+ qnex

ne

Using the result of Part a. we can write the following expression for the product of
P and Q:

(Ax +B)(Cx +D) = ACx2 + ((A +B)(C +D)�AC �BD)x+BD (2)

The same divide-and-conquer scheme as in the high/low algorithm is applied with
a slightly di�erent \conquer" phase: instead of shifting the powers of x by n and
m, they are shifted by 2 and 1 respectively. The even/odd algorithm is summarized
in Algorithm 2.

Correctness of the even/odd algorithm follows from the fact that its recursive part is
a straightforward implementation of equation (2). It can be also shown in a similar
way that length(p) = length(q) at every recursive call to RMul.

Complexity of all non-recursive operations in the high/low and even/odd algorithms
is O(n). Therefore the corresponding recurrence relation is

T (n) = 3T
�ln

2

m�
+O(n)

a solution to which is �(nlg 3).

Part c.

Observe that an n-bit integer (base 2) dn�1 : : : d1d0 is the evaluation of a degree-n
polynomial at x = 2:

N = dn�12
n�1 + : : :+ d12

1 + d02
0

Thus any of the algorithms of Part b. can be applied to multiplication of two
integers. The running time will be O(nlg 3) (not �!) because the lower bound
actually depends on the highest non-zero digit in N .

Algorithm 2 Even/Odd algorithm

1 proc RMul(p; q)
2 begin
3 if p.size() = 1
4 then return pq // Size of q is also 1.
5 else
6 a p[odd] // Split p and q in halfs
7 b p[even]
8 c q[odd]
9 d q[even]

10 tmp1 RMul(a+ b; c + d) // Do recursive multiplications
11 tmp2 RMul(a; c)
12 tmp3 RMul(b; d)
13 return tmp2 � 2 + (tmp1 � tmp2 � tmp3)� 1 + tmp3
15 end

Grading Policy

Points:
2 Part a.
3+3 Part b.
2 Part c.

