Solution to Problem 17 (32.1)

Graded by: Pavel Laskov
Adopted from a solution by:

Problem Statement
a. Show how to multiply two linear polynomials ax + b and cz + d using only three
multiplications. (Hint: One of multiplications is (a + b)(c + d).)

b. Give two divide-and-conquer algorithms for multiplying two polynomials of
degree-bound n that run in time ©(n'¢3). The first algorithm should divide
the input polynomial coefficients into a high half and a low half, and the second
algorithm should divide them according to whether their index is even or odd.

c. Show that two n-bit integers can be multiplied in O(n'83) steps, where each step
operates on at most a constant number of 1-bit values.

Part a.

Conventional polynomial multiplication uses 4 coefficient multiplications:
(az + b)(cx + d) = acz® + (ad + be)x + bd
However, notice the following relation:
(a+b)(c+d) =ad+ bc+ ac + bd
The first two components are exactly the middle coefficient for product of two
polynomials. Therefore, the product can be computed as:
(az + b)(cx + d) = acz® + ((a + b)(c + d) — ac — bd)x + bd

The latter expression has only three multiplications.

Part b. High/Low Algorithm

Let p denote the vector of coefficients of the first polynomial P, ¢ denote the vector
of coefficients of the second polynomial). Assume both of these vectors are of
length n = max{length(p;), length(p;)} (whichever is smaller is padded with leading
zeros). Let m = [§]. It can be easily seen that

P=po+piz+...4+pp12" ' =po+piz+... + pmra™ !

+ 2™ (P + Pma1T + oo F Pz ™)
=Az™+ B
where
A=pp+Pmp1T+ ...+ ppora™ ™
B=py+piz+...4+pm_iz™"
Likewise,

Q=q@+qaz+... 4+ gz =g +qz+...+ gnorz™ "

n—l—m)

+ 2™ (qm + gmi1T + ...+ @z
=Cx™+D

where

1-m

C = qm + gm+1T + ...+ qn_lxn_
m—1

D=qg+qx+...+¢n1T

Using the result of Part a. we can write the following expression for the product of
P and Q:

(Az™ + B)(Ca™ + D) = AC2®™ + ((A + B)(C + D) — AC — BD)z™ + BD (1)

Based on equation (1) we can define a divide-and-conquer algorithm for polynomial
multiplication:

e Split polynomials P and @ of degree-bound n into polynomials A, B, C';, D
of degree-bound m.

e Calculate the expression (1) for (Az™ + B)(Cz™ + D) using recursive calls
for polynomial multiplication.

The resulting algorithm is summarized in Algorithm 1:

Algorithm 1 High/Low algorithm

1 proc RMul(p, q)

2 begin

3 n p.size()

4 m < [7]

5 if p.size() =1

6 then return pq // Size of qis also 1. See Lemma 1.
7 else

8 a+ p[m,n —1] // Split p and q in halfs
9 b+ p[0,m — 1]
10 ¢+ q[m,n —1]
11 d + q[0,m — 1]
12 tmpl < RMul(a+ b,c+d) // Do recursive multiplications
13 tmp2 < RMul(a, c)
14 tmp3 < RMul(b, d)
15 return tmp2 € n + (tmpl — tmp2 — tmp3) € m + tmp3
17 end

The operation p < k denotes “shift p to the left by k digits”. This is necessary to
produce correct powers of z.

Correctness of the algorithm follows from the fact that it starightforwardly im-
plements equation (1). The shifitng operation accounts for appropriate powers of
z in the resulting polynomial. The only part which requires special attention is
the termination condition. The following lemma justifies the condition used in the
algorithm.

Lemma 1 length(p) = length(q).

Proof. I will prove the claim by induction on valid recursion depth d (assuming
depth d is reachable). For d = 0, that is, during the initial call to RMul, the claim
is true from the assumption that two vectors are aligned. Suppose the claim is true
for some depth d and recursive calls are further made to depth d+1. length(a+b) =

m = length(c + d). length(b) = m = length(d). If n is even then length(a) = m =
length(c), otherwise length(a) = m — 1 = length(c). It can be easily seen that sizes
of both argumens in all three recursive calls are the same. g.e.d.

Part b. Even/0Odd Algorithm

Let n, = 2[5]. Let n, = 2[5] — 1. Under the same assumptions as in Part a.
another decomposition of P and @) can be derived:

P=po+piz+...+pn_1z™ = py+ poz® +...+pp "
+a(pL+ps+ ... +pp,a™h)

= Az + B
where
A=p +p3—|—...—|—pnoaj"°_1
B =py+px®+ ... +pn.a™
Likewise,
Q=w+az+...+ 12" =@ +@z" +... + ¢ 2™
+alq+as+ ...+ g™)
=Cx+D
where

C:ql—f-q?)—k...*‘qnol'noil

D=qo+qr*+... +q,z™

Using the result of Part a. we can write the following expression for the product of
P and Q:

(Az + B)(Cxz 4+ D) = ACx* + (A + B)(C + D) — AC — BD)x + BD (2)
The same divide-and-conquer scheme as in the high/low algorithm is applied with
a slightly different “conquer” phase: instead of shifting the powers of x by n and
m, they are shifted by 2 and 1 respectively. The even/odd algorithm is summarized
in Algorithm 2.

Correctness of the even/odd algorithm follows from the fact that its recursive part is
a straightforward implementation of equation (2). It can be also shown in a similar
way that length(p) = length(q) at every recursive call to RMul.

Complexity of all non-recursive operations in the high/low and even/odd algorithms
is O(n). Therefore the corresponding recurrence relation is

T(n) = 3T ({g]) +0(n)

a solution to which is ©(n'e?).

Part c.

Observe that an n-bit integer (base 2) d,,_1 ...d;dp is the evaluation of a degree-n
polynomial at = 2:

N=d, 12""+... +di2" +dp2°
Thus any of the algorithms of Part b. can be applied to multiplication of two

integers. The running time will be O(n'83) (not ©!) because the lower bound
actually depends on the highest non-zero digit in N.

Algorithm 2 Even/Odd algorithm

1 proc RMul(p, q)

2 begin

3 if p.size() =1

4 then return pq // Size of q is also 1.
5 else

6 a < plodd] // Split p and q in halfs
7 b « pleven]

8 ¢ + godd]

9 d < gleven]
10 tmpl + RMul(a+ b,c+d) // Do recursive multiplications
11 tmp2 < RMul(a, c)
12 tmp3 < RMul(b, d)
13 return tmp2 < 2 + (tmpl — tmp2 — tmp3) K 1 + tmp3
15 end

Grading Policy

Points:
2 Part a.
343 Partb.

2 Part c.

