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Introduction

 Objective: To obtain fast algorithms for polynomial and
iInteger multiplication based on the FFT. In order to do this we
will compute the FFT over a finite field. The existence of FFTs
over Z, is related to the prime number theorem.

— Polynomial multiplication using interpolation
— Feasibility of mod p FFTs

— Fast polynomial multiplication

— Fast integer multiplication (3 primes algorithm)

References: Lipson, Cormen et al.




Polynomial Multiplication using
Interpolation
Compute C(x) = A(x)B(x), where degree(A(x)) = m, and

degree(B(x)) = n. Degree(C(x)) = m+n, and C(x) is uniquely
determined by its value at m+n+1 distinct points.

[Evaluation] Compute A(a;) and B(a;) for distinct a,
1=0,...,m+n.

[Pointwise Product] Compute C(o;) = A(a;)*B(a) for
1=0,...,m+n.

[Interpolation] Compute the coefficients of C(x) = ¢, x™*™" +
... + C,X +Cy from the points C(o;) = A(oy)*B(a;) for i=0,...,m+n.




Primitive Element Theorem

Theorem. Let F be afinite field with g = pX elements. Let F* be
the g-1 non-zero elements of F. Then F* =<a>={1, a, a?,
..., 092} for some o € F*. a is called a primitive element.

In particular there exist a primitive element for Z; for all prime
p.

E.G.

(Z5)* = {1, 2,22=4,23=3}

(Z17)*={1,3,32=9,3%=10,34=13,3°=5,30=15,37=11,38 =
16,3°=14,310=8,311=7,312=4,313=12 314 =2, 315=6}




Modular Discrete Fourier Transform

The n-point DFT is defined over Z, if there is a primitive nth
root of unity in Z, (same is true for any finite field)

Let o be a primitive n'" root of unity.
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Fast Fourier Transform

Assume that n = 2m, then

F..=(F.@1.X.eW.X.®F.)L"
W = diag(l, wl,...,a)m_l)

Let T(n) be the computing time of the FFT and assume that
n=2K then

T(n) = 2T(n/2) + O(n)
T(n) = ®(nlogn)




FFT Factorization over Z;
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Example
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Feasibility of mod p FFTs

Theorem: Z, has a primitive Nth root of unity iff N|(p-1)

Proof. By the primitive element theorem there exist an
element a of order (p-1) Z,. If p-1 =qN, then afis an Nth
root of unity.

To compute amod p FFT of size 2™, we mustfind p =28k + 1
(k odd), where e > m.

Theorem. Let aand b be relatively prime integers. The
number of primes < x in the arithmetic progression ak + b
(k=1,2,...) is approximately (somewhat greater) (x/log x)/¢p(a)
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Fast Polynomial Multiplication

Compute C(x) = a(x)b(x), where degree(a(x)) = m, and
degree(b(x)) = n. Degree(c(x)) = m+n, and c(x) is uniquely
determined by its value at m+n+1 distinct points. Let N >
m+n+1.

[Fourier Evaluation] Compute FFT(N,a(x),®,A);
FFT(N,b(x),®,B).

[Pointwise Product] Compute C, = 1/N A, * B,, k=0,...,N-1.

[Fourier Interpolation] Compute FFT(N,C,o1,c(x)).
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Fast Modular and Integral Polynomial
Multiplication

If Z, has a primitive Nth root of unity then the previous
algorithm works fine.

If Z, does not have a primitive Nth root of unity, find a g that
does and perform the computation in Z,., then reduce the
coefficients mod p.

In Z[x] use a set of primes p4,...,p, that have an Nth root of
unity with p, * ... * p, 2 size of the resulting integral
coefficients (this can easily be computed from the input
polynomials) and then use the CRT
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Fast Integer Multiplication

Let A=(a,4,.-,8,80 )g = @ f" + ... + B + &
B=(,4,....03,00)s=b4f"+ ... +b,B+ by

C=AB =c(B) = a({B)b(B), where a(x) =a,x"1 + ... + a;x + a,,
b(x) =b,x"1+ ... +b,x + b, and c(x) = a(x)b(x).

Idea: Compute a(x)b(x) using FFT-based polynomial
multiplication and then evaluate the result at B.
Computation will be performed mod p for several word
sized “Fourier” primes and the Chinese Remainder
Theorem will be used to recover the integer product.
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Three Primes Algorithm

Compute C = AB, where length(A) = m, and length(B) = n.
Let a(x) and b(x) be the polynomials whose coefficients are
the digits of A and B respectively

The algorithm requires K “Fourier primes” p =28k + 1 for
sufficiently large e

[Polynomial multiplication] Compute c;(x) = a(x)b(x) mod p;
for i=1,...,K using FFT-based polynomial multiplication.

[CRT] Compute c(x) = c;(x) (mod p;) i=1,...,K.

[Evaluation at radix] C = c(pB).
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Analysis of Three Primes Algorithm

e Determine K

— Since the kth coefficient of c(x), Cv= Ziﬂ:k aibj,
the coefficients of c(x) are bounded by nf?

— Therefore, we need the product p; ...px = np?
— If we choose p;> B, then this is true if BX > np?

— Assuming n < B [B is typically wordsize - for 32-bit words, B ~ 10, only
3 primes are required

Theorem. Assume that mod p operations can be performed in
O(1) time. Then the 3-primes algorithm can multiply two n-
digit numbers in time O(nlogn) provided:

— nN< B
— n <281 where three Fourier primes p =2k + 1 (p > B) can be found
with e > E (need to perform the FFT of size 2n)
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Limitations of 3 Primes Algorithms

If we choose the primes to be wordsize for 32-bit words

p=2%k+1 o Least primitive
(k odd) element a
- B <pj<W=23%1 2013265921 27 31
- B = 109
— n< 281 =22%%8.38 x 10° 2113929217 25 5
2130706433 24 3
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