
1

Applied Symbolic Computation 
(CS 567)

Fast Polynomial and Integer Multiplication

Jeremy R. Johnson



2

Introduction

• Objective:  To obtain fast algorithms for polynomial and 
integer multiplication based on the FFT.  In order to do this we 
will compute the FFT over a finite field.  The existence of FFTs 
over Zp is related to the prime number theorem.

– Polynomial multiplication using interpolation
– Feasibility of mod p FFTs
– Fast polynomial multiplication
– Fast integer multiplication (3 primes algorithm)

References:  Lipson, Cormen et al.



3

Polynomial Multiplication using 
Interpolation

• Compute C(x) = A(x)B(x), where degree(A(x)) = m, and 
degree(B(x)) = n.  Degree(C(x)) = m+n, and C(x) is uniquely 
determined by its value at m+n+1 distinct points.

• [Evaluation] Compute A(αi) and B(αi) for distinct αi, 
i=0,…,m+n.

• [Pointwise Product] Compute C(αi) = A(αi)*B(αi) for 
i=0,…,m+n.

• [Interpolation]  Compute the coefficients of C(x) = cnxm+n + 
… + c1x +c0 from the points C(αi) = A(αi)*B(αi) for i=0,…,m+n.



4

Primitive Element Theorem

Theorem.  Let F be a finite field with q = pk elements.  Let F* be 
the q-1 non-zero elements of F.  Then F* = <α> = {1, α, α2, 
…, αq-2} for some α ∈ F*. α is called a primitive element.

In particular there exist a primitive element for Zp for all prime 
p.

E.G.

(Z5)* = {1, 2,22=4,23=3}
(Z17)* = {1, 3, 32 = 9, 33 = 10, 34 = 13, 35 = 5, 36 = 15, 37 = 11, 38 =   

16, 39 = 14, 310 = 8, 311 = 7, 312 = 4, 313 = 12, 314 = 2, 315 = 6}



5

Modular Discrete Fourier Transform

• The n-point DFT is defined over Zp if there is a primitive nth 
root of unity in Zp (same is true for any finite field)

• Let ω be a primitive nth root of unity.



















=

−−−

−

ωω

ωω
)1)(1(1

11

...1
............

...1
1...11

nnn

n

nF



6

Example

Z

Z

174

54

over  

131641
161161
416131
1111

over  

2431
4141
3421
1111

11
1111

11
1111



















=



















=



















−−
−−
−−

=

F

F
ii

ii



7

Fast Fourier Transform

Assume that n = 2m, then

Let T(n) be the computing time of the FFT and assume that 
n=2k, then

T(n) = 2T(n/2) + Θ(n)
T(n) = Θ(nlogn)

( )( )( )
( )ωω 11

2
2222

,...,,1diag −=

⊗⊕⊗=
m

m

m
mmmmm

W
LFIWIIFF



8

FFT Factorization over Z5

( ) ( )LIFTIF

F

4
222

4
222

4

1000
0010
0100
0001

4100
1100
0041
0011

2000
0100
0010
0001

4010
0401
1010
0101

2431
4141
3421
1111

⊗⊗=









































































=



















=



9

Inverse DFT



















=

=

−−−−−

−−−

−−

ωω

ωω

ω

)1)(1()1(

)1(1

11

...1
............

...1
1...11

/1

)()/1(

nnn

n

nn

n

n FF



10

Example

 

4000
0400
0040
0004

 

3421
4141
2431
1111

2431
4141
3421
1111

over  

3421
4141
2431
1111

)4/1( Z5
1

4



















=























































=−F



11

Feasibility of mod p FFTs

Theorem:  Zp has a primitive Nth root of unity iff N|(p-1)

Proof.  By the primitive element theorem there exist an 
element α of order (p-1) Zp.  If p-1 = qN, then αq is an Nth 
root of unity.

To compute a mod p FFT of size 2m, we must find p = 2e k + 1 
(k odd), where e ≥ m.

Theorem.  Let a and b be relatively prime integers.  The 
number of primes ≤ x in the arithmetic progression ak + b 
(k=1,2,…) is approximately (somewhat greater) (x/log x)/ϕ(a)



12

Fast Polynomial Multiplication

• Compute C(x) = a(x)b(x), where degree(a(x)) = m, and 
degree(b(x)) = n.  Degree(c(x)) = m+n, and c(x) is uniquely 
determined by its value at m+n+1 distinct points.  Let N ≥
m+n+1.

• [Fourier Evaluation] Compute FFT(N,a(x),ω,A); 
FFT(N,b(x),ω,B).

• [Pointwise Product] Compute Ck = 1/N Ak * Bk, k=0,…,N-1.

• [Fourier Interpolation]  Compute FFT(N,C,ω-1,c(x)).



13

Fast Modular and Integral Polynomial 
Multiplication

• If Zp has a primitive Nth root of unity then the previous 
algorithm works fine.

• If Zp does not have a primitive Nth root of unity, find a q that 
does and perform the computation in Zpq , then reduce the 
coefficients mod p.

• In Z[x] use a set of primes p1,…,pt that have an Nth root of 
unity with p1 * … * pt ≥ size of the resulting integral 
coefficients (this can easily be computed from the input 
polynomials) and then use the CRT



14

Fast Integer Multiplication

• Let A = (an-1,…,a1,a0 )β = an-1βn-1 + … + a1β + a0

B = (bn-1,…,b1,b0 )β = bn-1βn-1 + … + b1β + b0

• C = AB = c(β) = a(β)b(β), where a(x) = an-1xn-1 + … + a1x + a0, 
b(x) = bn-1xn-1 + … + b1x + b0, and c(x) = a(x)b(x).

• Idea:  Compute a(x)b(x) using FFT-based polynomial 
multiplication and then evaluate the result at β.  
Computation will be performed mod p for several word 
sized “Fourier” primes and the Chinese Remainder 
Theorem will be used to recover the integer product.  



15

Three Primes Algorithm

• Compute C = AB, where length(A) = m, and length(B) = n.   
Let a(x) and b(x) be the polynomials whose coefficients are 
the digits of A and B respectively 

• The algorithm requires K “Fourier primes” p = 2e k + 1 for 
sufficiently large e

• [Polynomial multiplication] Compute ci(x) = a(x)b(x) mod pi
for i=1,…,K using FFT-based polynomial multiplication.

• [CRT] Compute c(x) ≡ ci(x) (mod pi) i=1,…,K.

• [Evaluation at radix]  C = c(β).



16

Analysis of Three Primes Algorithm

• Determine K
– Since the kth coefficient of c(x),                              ,                                                            

the coefficients of c(x) are bounded by nβ2

– Therefore, we need the product p1 …pK ≥ nβ2

– If we choose  pi > β, then this is true if βK ≥ nβ2

– Assuming n < β [β is typically wordsize - for 32-bit words, β ≈ 109], only 
3 primes are required

Theorem.  Assume that mod p operations can be performed in 
O(1) time.  Then the 3-primes algorithm can multiply two n-
digit numbers in time O(nlogn) provided:

– n < β
– n ≤ 2E-1, where three Fourier primes p = 2ek + 1 (p > β) can be found 

with e ≥ E (need to perform the FFT of size 2n)

bac jkji ik ∑ =+
=



17

Limitations of 3 Primes Algorithms

• If we choose the primes to be wordsize for 32-bit words

– β < pi < W = 231-1
– β = 109

– n ≤ 2E-1 = 223≈ 8.38 × 106

p = 2ek + 1
(k odd) e Least primitive

element α

2013265921 27 31

2113929217 25 5

2130706433 24 3


	Applied Symbolic Computation �(CS 567)��Fast Polynomial and Integer Multiplication
	Introduction
	Polynomial Multiplication using Interpolation
	Primitive Element Theorem
	Modular Discrete Fourier Transform
	Example
	Fast Fourier Transform
	FFT Factorization over Z5
	Inverse DFT
	Example
	Feasibility of mod p FFTs
	Fast Polynomial Multiplication
	Fast Modular and Integral Polynomial Multiplication
	Fast Integer Multiplication
	Three Primes Algorithm
	Analysis of Three Primes Algorithm
	Limitations of 3 Primes Algorithms

