Applied Symbolic Computation (CS 567)

Fast Polynomial and Integer Multiplication

Jeremy R. Johnson

Introduction

- Objective: To obtain fast algorithms for polynomial and integer multiplication based on the FFT. In order to do this we will compute the FFT over a finite field. The existence of FFTs over Z_p is related to the prime number theorem.
 - Polynomial multiplication using interpolation
 - Feasibility of mod p FFTs
 - Fast polynomial multiplication
 - Fast integer multiplication (3 primes algorithm)

References: Lipson, Cormen et al.

Polynomial Multiplication using Interpolation

- Compute C(x) = A(x)B(x), where degree(A(x)) = m, and degree(B(x)) = n. Degree(C(x)) = m+n, and C(x) is uniquely determined by its value at m+n+1 distinct points.
- [Evaluation] Compute A(α_i) and B(α_i) for distinct α_i, i=0,...,m+n.
- [Pointwise Product] Compute C(α_i) = A(α_i)*B(α_i) for i=0,...,m+n.
- [Interpolation] Compute the coefficients of $C(x) = c_n x^{m+n} + ... + c_1 x + c_0$ from the points $C(\alpha_i) = A(\alpha_i)^*B(\alpha_i)$ for i=0,...,m+n.

Primitive Element Theorem

Theorem. Let F be a finite field with $q = p^k$ elements. Let F* be the q-1 non-zero elements of F. Then F* = $\langle \alpha \rangle$ = {1, α , α^2 , ..., α^{q-2} } for some $\alpha \in F^*$. α is called a *primitive element*.

In particular there exist a primitive element for Z_p for all prime p.

E.G.

$$(Z5)^* = \{1, 2, 2^2=4, 2^3=3\}$$

 $(Z17)^* = \{1, 3, 3^2 = 9, 3^3 = 10, 3^4 = 13, 3^5 = 5, 3^6 = 15, 3^7 = 11, 3^8 = 16, 3^9 = 14, 3^{10} = 8, 3^{11} = 7, 3^{12} = 4, 3^{13} = 12, 3^{14} = 2, 3^{15} = 6\}$

Modular Discrete Fourier Transform

- The n-point DFT is defined over Z_p if there is a primitive nth root of unity in Z_p (same is true for any finite field)
- Let ω be a primitive nth root of unity.

$$F_{n} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 0^{1} & \dots & 0^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & 0^{n-1} & \dots & 0^{(n-1)(n-1)} \end{bmatrix}$$

Fast Fourier Transform

Assume that n = 2m, then

$$F_{2m} = (F_2 \otimes I_m) (I_m \oplus W_m) (I_2 \otimes F_m) L_2^{2m}$$
$$W_m = \operatorname{diag}(1, \omega^1, \dots, \omega^{m-1})$$

Let T(n) be the computing time of the FFT and assume that n=2^k, then

 $T(n) = 2T(n/2) + \Theta(n)$ $T(n) = \Theta(n\log n)$

Feasibility of mod p FFTs

Theorem: Z_p has a primitive Nth root of unity iff N|(p-1)

Proof. By the primitive element theorem there exist an element α of order (p-1) Z_p . If p-1 = qN, then α^q is an Nth root of unity.

To compute a mod p FFT of size 2^m , we must find $p = 2^e k + 1$ (k odd), where $e \ge m$.

Theorem. Let a and b be relatively prime integers. The number of primes $\leq x$ in the arithmetic progression ak + b (k=1,2,...) is approximately (somewhat greater) (x/log x)/ ϕ (a)

Fast Polynomial Multiplication

- Compute C(x) = a(x)b(x), where degree(a(x)) = m, and degree(b(x)) = n. Degree(c(x)) = m+n, and c(x) is uniquely determined by its value at m+n+1 distinct points. Let N ≥ m+n+1.
- [Fourier Evaluation] Compute FFT(N,a(x),ω,A);
 FFT(N,b(x),ω,B).
- [Pointwise Product] Compute $C_k = 1/N A_k * B_k$, k=0,...,N-1.
- [Fourier Interpolation] Compute FFT(N,C,ω⁻¹,c(x)).

Fast Modular and Integral Polynomial Multiplication

- If Z_p has a primitive Nth root of unity then the previous algorithm works fine.
- If Z_p does not have a primitive Nth root of unity, find a q that does and perform the computation in Z_{pq}, then reduce the coefficients mod p.
- In Z[x] use a set of primes p₁,...,p_t that have an Nth root of unity with p₁ * ... * p_t ≥ size of the resulting integral coefficients (this can easily be computed from the input polynomials) and then use the CRT

Fast Integer Multiplication

• Let
$$A = (a_{n-1}, \dots, a_1, a_0)_{\beta} = a_{n-1}\beta^{n-1} + \dots + a_1\beta + a_0$$

 $B = (b_{n-1}, \dots, b_1, b_0)_{\beta} = b_{n-1}\beta^{n-1} + \dots + b_1\beta + b_0$

- $C = AB = c(\beta) = a(\beta)b(\beta)$, where $a(x) = a_{n-1}x^{n-1} + ... + a_1x + a_0$, $b(x) = b_{n-1}x^{n-1} + ... + b_1x + b_0$, and c(x) = a(x)b(x).
- Idea: Compute a(x)b(x) using FFT-based polynomial multiplication and then evaluate the result at β.
 Computation will be performed mod p for several word sized "Fourier" primes and the Chinese Remainder Theorem will be used to recover the integer product.

Three Primes Algorithm

- Compute C = AB, where length(A) = m, and length(B) = n. Let a(x) and b(x) be the polynomials whose coefficients are the digits of A and B respectively
- The algorithm requires K "Fourier primes" p = 2^e k + 1 for sufficiently large e
- [Polynomial multiplication] Compute c_i(x) = a(x)b(x) mod p_i for i=1,...,K using FFT-based polynomial multiplication.
- [CRT] Compute $c(x) \equiv c_i(x) \pmod{p_i}$ i=1,...,K.
- [Evaluation at radix] $C = c(\beta)$.

Analysis of Three Primes Algorithm

- Determine K
 - Since the kth coefficient of c(x), $C_k = \sum_{i+j=k} a_i b_j$, the coefficients of c(x) are bounded by $n\beta^2$
 - Therefore, we need the product $p_1 \dots p_K \ge n\beta^2$
 - If we choose $p_i > \beta$, then this is true if $\beta^{K} \ge n\beta^2$
 - Assuming n < β [β is typically wordsize for 32-bit words, β ≈ 10⁹], only 3 primes are required

Theorem. Assume that mod p operations can be performed in O(1) time. Then the 3-primes algorithm can multiply two n-digit numbers in time O(nlogn) provided:

- $n < \beta$
- n ≤ 2^{E-1}, where three Fourier primes p = 2^ek + 1 (p > β) can be found with e ≥ E (need to perform the FFT of size 2n)

Limitations of 3 Primes Algorithms

• If we choose the primes to be wordsize for 32-bit words

$ - β < p_i < W = 2^{31}-1 - β = 10^9 - n ≤ 2^{E-1} = 2^{23} ≈ 8.38 × 10^6 $	p = 2 ^e k + 1 (k odd)	е	Least primitive element α
	2013265921	27	31
	2113929217	25	5
	2130706433	24	3
	L	1	1]