Applied Symbolic Computation

(CS 567)

Fast Polynomial and Integer Multiplication

Jeremy R. Johnson

Introduction

 Objective: To obtain fast algorithms for polynomial and
iInteger multiplication based on the FFT. In order to do this we
will compute the FFT over a finite field. The existence of FFTs
over Z, is related to the prime number theorem.

— Polynomial multiplication using interpolation
— Feasibility of mod p FFTs

— Fast polynomial multiplication

— Fast integer multiplication (3 primes algorithm)

References: Lipson, Cormen et al.

Polynomial Multiplication using
Interpolation
Compute C(x) = A(x)B(x), where degree(A(x)) = m, and

degree(B(x)) = n. Degree(C(x)) = m+n, and C(x) is uniquely
determined by its value at m+n+1 distinct points.

[Evaluation] Compute A(a;) and B(a;) for distinct a,
1=0,...,m+n.

[Pointwise Product] Compute C(o;) = A(a;)*B(a) for
1=0,...,m+n.

[Interpolation] Compute the coefficients of C(x) = ¢, x™*™" +
... + C,X +Cy from the points C(o;) = A(oy)*B(a;) for i=0,...,m+n.

Primitive Element Theorem

Theorem. Let F be afinite field with g = pX elements. Let F* be
the g-1 non-zero elements of F. Then F* =<a>={1, a, a?,
..., 092} for some o € F*. a is called a primitive element.

In particular there exist a primitive element for Z; for all prime
p.

E.G.

(Z5)* = {1, 2,22=4,23=3}

(Z17)*={1,3,32=9,3%=10,34=13,3°=5,30=15,37=11,38 =
16,3°=14,310=8,311=7,312=4,313=12 314 =2, 315=6}

Modular Discrete Fourier Transform

The n-point DFT is defined over Z, if there is a primitive nth
root of unity in Z, (same is true for any finite field)

Let o be a primitive n'" root of unity.

1 1 1
1 n-1

F,-

n-1 (n-1)(n-1)

F.

e S S

1 1 1

L e

1 13 16 4
116 1 16
1 4 16 13

w &~ N B

I SN NG

NN B W

over /. _

overZ5

Fast Fourier Transform

Assume that n = 2m, then

F..=(F.@1.X.eW.X.®F.)L"
W = diag(l, wl,...,a)m_l)

Let T(n) be the computing time of the FFT and assume that
n=2K then

T(n) = 2T(n/2) + O(n)
T(n) = ®(nlogn)

FFT Factorization over Z;

1111

1 2 4 3

1 3 4 2

Fa=ly 4 1 4

101 02 00 O0O2 10012 O0O0DO
c 10 1j0 1 0 01 4 0 040 0 1 O

10 4 00 01 00 01 101 0O

0O 10 40 0 0 2|0 0 1 40 0 0 1

F.

Inverse DFT

=wnF (@)
11
=1/n o

Example

over /.

|
— N <
— < <«

— O <t

_11_1

1 2 4 3

(1/ 4)

-1

F.

4 0 0 O

0 4 0 O

0 0 4 0

0O 0 0 4

111 11111
1 2 4 3|1 3 4 2
1 4 1 4|1 4 1 4

1 3 4 2|1 2 4 3

10

Feasibility of mod p FFTs

Theorem: Z, has a primitive Nth root of unity iff N|(p-1)

Proof. By the primitive element theorem there exist an
element a of order (p-1) Z,. If p-1 =qN, then afis an Nth
root of unity.

To compute amod p FFT of size 2™, we mustfind p =28k + 1
(k odd), where e > m.

Theorem. Let aand b be relatively prime integers. The
number of primes < x in the arithmetic progression ak + b
(k=1,2,...) is approximately (somewhat greater) (x/log x)/¢p(a)

11

Fast Polynomial Multiplication

Compute C(x) = a(x)b(x), where degree(a(x)) = m, and
degree(b(x)) = n. Degree(c(x)) = m+n, and c(x) is uniquely
determined by its value at m+n+1 distinct points. Let N >
m+n+1.

[Fourier Evaluation] Compute FFT(N,a(x),®,A);
FFT(N,b(x),®,B).

[Pointwise Product] Compute C, = 1/N A, * B,, k=0,...,N-1.

[Fourier Interpolation] Compute FFT(N,C,o1,c(x)).

12

Fast Modular and Integral Polynomial
Multiplication

If Z, has a primitive Nth root of unity then the previous
algorithm works fine.

If Z, does not have a primitive Nth root of unity, find a g that
does and perform the computation in Z,., then reduce the
coefficients mod p.

In Z[x] use a set of primes p4,...,p, that have an Nth root of
unity with p, * ... * p, 2 size of the resulting integral
coefficients (this can easily be computed from the input
polynomials) and then use the CRT

13

Fast Integer Multiplication

Let A=(a,4,.-,8,80)g = @ f" + ... + B + &
B=(,4,....03,00)s=b4f"+ ... +b,B+ by

C=AB =c(B) = a({B)b(B), where a(x) =a,x"1 + ... + a;x + a,,
b(x) =b,x"1+ ... +b,x + b, and c(x) = a(x)b(x).

Idea: Compute a(x)b(x) using FFT-based polynomial
multiplication and then evaluate the result at B.
Computation will be performed mod p for several word
sized “Fourier” primes and the Chinese Remainder
Theorem will be used to recover the integer product.

14

Three Primes Algorithm

Compute C = AB, where length(A) = m, and length(B) = n.
Let a(x) and b(x) be the polynomials whose coefficients are
the digits of A and B respectively

The algorithm requires K “Fourier primes” p =28k + 1 for
sufficiently large e

[Polynomial multiplication] Compute c;(x) = a(x)b(x) mod p;
for i=1,...,K using FFT-based polynomial multiplication.

[CRT] Compute c(x) = c;(x) (mod p;) i=1,...,K.

[Evaluation at radix] C = c(pB).

15

Analysis of Three Primes Algorithm

e Determine K

— Since the kth coefficient of c(x), Cv= Ziﬂ:k aibj,
the coefficients of c(x) are bounded by nf?

— Therefore, we need the product p; ...px = np?
— If we choose p;> B, then this is true if BX > np?

— Assuming n < B [B is typically wordsize - for 32-bit words, B ~ 10, only
3 primes are required

Theorem. Assume that mod p operations can be performed in
O(1) time. Then the 3-primes algorithm can multiply two n-
digit numbers in time O(nlogn) provided:

— nN< B
— n <281 where three Fourier primes p =2k + 1 (p > B) can be found
with e > E (need to perform the FFT of size 2n)

16

Limitations of 3 Primes Algorithms

If we choose the primes to be wordsize for 32-bit words

p=2%k+1 o Least primitive
(k odd) element a
- B <pj<W=23%1 2013265921 27 31
- B = 109
— n< 281 =22%%8.38 x 10° 2113929217 25 5
2130706433 24 3

	Applied Symbolic Computation �(CS 567)��Fast Polynomial and Integer Multiplication
	Introduction
	Polynomial Multiplication using Interpolation
	Primitive Element Theorem
	Modular Discrete Fourier Transform
	Example
	Fast Fourier Transform
	FFT Factorization over Z5
	Inverse DFT
	Example
	Feasibility of mod p FFTs
	Fast Polynomial Multiplication
	Fast Modular and Integral Polynomial Multiplication
	Fast Integer Multiplication
	Three Primes Algorithm
	Analysis of Three Primes Algorithm
	Limitations of 3 Primes Algorithms

