# Applied Symbolic Computation (CS 567) 

Fast Polynomial and Integer Multiplication

Jeremy R. Johnson

## Introduction

- Objective: To obtain fast algorithms for polynomial and integer multiplication based on the FFT. In order to do this we will compute the FFT over a finite field. The existence of FFTs over $Z_{p}$ is related to the prime number theorem.
- Polynomial multiplication using interpolation
- Feasibility of mod p FFTs
- Fast polynomial multiplication
- Fast integer multiplication (3 primes algorithm)

References: Lipson, Cormen et al.

## Polynomial Multiplication using Interpolation

- Compute $C(x)=A(x) B(x)$, where degree $(A(x))=m$, and degree $(B(x))=n$. Degree $(C(x))=m+n$, and $C(x)$ is uniquely determined by its value at $\mathrm{m}+\mathrm{n}+1$ distinct points.
- [Evaluation] Compute $A\left(\alpha_{i}\right)$ and $B\left(\alpha_{i}\right)$ for distinct $\alpha_{i}$, $\mathrm{i}=0, \ldots, \mathrm{~m}+\mathrm{n}$.
- [Pointwise Product] Compute $C\left(\alpha_{i}\right)=A\left(\alpha_{i}\right) * B\left(\alpha_{i}\right)$ for $\mathrm{i}=0, \ldots, \mathrm{~m}+\mathrm{n}$.
- [Interpolation] Compute the coefficients of $C(x)=c_{n} x^{m+n}+$ $\ldots+c_{1} x+c_{0}$ from the points $C\left(\alpha_{i}\right)=A\left(\alpha_{i}\right) * B\left(\alpha_{i}\right)$ for $i=0, \ldots, m+n$.


## Primitive Element Theorem

Theorem. Let F be a finite field with $\mathrm{q}=\mathrm{p}^{\mathrm{k}}$ elements. Let $\mathrm{F}^{*}$ be the q-1 non-zero elements of $F$. Then $F^{*}=\langle\alpha\rangle=\left\{1, \alpha, \alpha^{2}\right.$, $\left.\ldots, \alpha^{q-2}\right\}$ for some $\alpha \in F^{*}$. $\alpha$ is called a primitive element.

In particular there exist a primitive element for $Z_{p}$ for all prime p.
E.G.
$(Z 5)^{*}=\left\{1,2,2^{2}=4,2^{3}=3\right\}$
(Z17)* $=\left\{1,3,3^{2}=9,3^{3}=10,3^{4}=13,3^{5}=5,3^{6}=15,3^{7}=11,3^{8}=\right.$ $\left.16,3^{9}=14,3^{10}=8,3^{11}=7,3^{12}=4,3^{13}=12,3^{14}=2,3^{15}=6\right\}$

## Modular Discrete Fourier Transform

- The n -point DFT is defined over $\mathbf{Z}_{\mathrm{p}}$ if there is a primitive nth root of unity in $Z_{p}$ (same is true for any finite field)
- Let $\omega$ be a primitive $n^{\text {th }}$ root of unity.

$$
F_{n}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega^{1} & \cdots & \omega^{n-1} \\
\cdots & \cdots & \cdots & \cdots \\
1 & \omega^{n-1} & \cdots & \omega^{(n-1)(n-1)}
\end{array}\right]
$$

## Example

$$
\begin{gathered}
F_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 3 \\
1 & 4 & 1 & 4 \\
1 & 3 & 4 & 2
\end{array}\right] \text { over } Z_{5} \\
F_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 13 & 16 & 4 \\
1 & 16 & 1 & 16 \\
1 & 4 & 16 & 13
\end{array}\right] \text { over } Z_{17}
\end{gathered}
$$

## Fast Fourier Transform

Assume that $\mathbf{n}=\mathbf{2 m}$, then

$$
\begin{aligned}
& F_{2 m}=\left(F_{2} \otimes I_{m}\right)\left(I_{m} \oplus W_{m}\right)\left(I_{2} \otimes F_{m}\right) L_{2}^{2 m} \\
& W_{m}=\operatorname{diag}\left(1, \omega^{1}, \ldots, \omega^{m-1}\right)
\end{aligned}
$$

Let $T(n)$ be the computing time of the FFT and assume that $\mathrm{n}=\mathbf{2}^{\mathrm{k}}$, then

$$
\begin{aligned}
& T(n)=2 T(n / 2)+\Theta(n) \\
& T(n)=\Theta(n \log n)
\end{aligned}
$$

## FFT Factorization over $\mathbf{Z}_{5}$

$$
\begin{aligned}
F_{4} & =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 3 \\
1 & 4 & 1 & 4 \\
1 & 3 & 4 & 2
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 4 & 0 \\
0 & 1 & 0 & 4
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 4 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \left.=\left(F_{2} \otimes I_{2}\right)\right)_{2}^{4}\left(F_{2} \otimes I_{2}\right) L_{2}^{4}
\end{aligned}
$$

## Inverse DFT

$$
\begin{aligned}
F_{n}^{-1} & =(1 / n) F_{n}\left(\omega^{-1}\right) \\
& =1 / n\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \cdots & \omega^{-(n-1)} \\
\cdots & \cdots & \cdots & \cdots \\
1 & \omega^{-(n-1)} & \cdots & \omega^{-(n-1)(n-1)}
\end{array}\right]
\end{aligned}
$$

## Example

$$
F_{4}^{-1}=(1 / 4)\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 3 & 4 & 2 \\
1 & 4 & 1 & 4 \\
1 & 2 & 4 & 3
\end{array}\right] \text { over } Z_{5}
$$

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 3 \\
1 & 4 & 1 & 4 \\
1 & 3 & 4 & 2
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 3 & 4 & 2 \\
1 & 4 & 1 & 4 \\
1 & 2 & 4 & 3
\end{array}\right]=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

## Feasibility of mod p FFTs

Theorem: $Z_{p}$ has a primitive Nth root of unity iff $N \mid(p-1)$

Proof. By the primitive element theorem there exist an element $\alpha$ of order $(p-1) Z_{p}$. If $p-1=q N$, then $\alpha^{q}$ is an $N$ th root of unity.

To compute a mod $p$ FFT of size $2^{m}$, we must find $p=2^{e} k+1$ ( k odd), where $\mathrm{e} \geq \mathrm{m}$.

Theorem. Let $\mathbf{a}$ and $\mathbf{b}$ be relatively prime integers. The number of primes $\leq x$ in the arithmetic progression $a k+b$ ( $k=1,2, \ldots$ ) is approximately (somewhat greater) $(x / \log x) / \varphi(a)$

## Fast Polynomial Multiplication

- Compute $\mathbf{C}(x)=a(x) b(x)$, where degree $(a(x))=m$, and degree $(b(x))=n$. Degree $(c(x))=m+n$, and $c(x)$ is uniquely determined by its value at $\mathrm{m}+\mathrm{n}+1$ distinct points. Let $\mathrm{N} \geq$ $\mathbf{m + n + 1}$.
- [Fourier Evaluation] Compute $\operatorname{FFT}(\mathrm{N}, \mathrm{a}(\mathrm{x}), \omega, \mathrm{A})$; FFT(N,b(x), $\omega, \mathbf{B})$.
- [Pointwise Product] Compute $\mathrm{C}_{\mathrm{k}}=1 / \mathrm{N} \mathrm{A}_{\mathrm{k}}{ }^{*} \mathrm{~B}_{\mathrm{k}}, \mathrm{k}=0, \ldots, \mathrm{~N}-1$.
- [Fourier Interpolation] Compute $\operatorname{FFT}\left(\mathrm{N}, \mathrm{C}, \omega^{-1}, \mathrm{c}(\mathrm{x})\right)$.


## Fast Modular and Integral Polynomial Multiplication

- If $Z_{p}$ has a primitive Nth root of unity then the previous algorithm works fine.
- If $Z_{p}$ does not have a primitive Nth root of unity, find a q that does and perform the computation in $Z_{p q}$, then reduce the coefficients mod p .
- In $Z[x]$ use a set of primes $p_{1}, \ldots, p_{t}$ that have an Nth root of unity with $p_{1}$ * ... * $p_{t} \geq$ size of the resulting integral coefficients (this can easily be computed from the input polynomials) and then use the CRT


## Fast Integer Multiplication

- Let $A=\left(a_{n-1}, \ldots, a_{1}, a_{0}\right)_{\beta}=a_{n-1} \beta^{n-1}+\ldots+a_{1} \beta+a_{0}$

$$
B=\left(b_{n-1}, \ldots, b_{1}, b_{0}\right)_{\beta}=b_{n-1} \beta^{n-1}+\ldots+b_{1} \beta+b_{0}
$$

- $C=A B=c(\beta)=a(\beta) b(\beta)$, where $a(x)=a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, $b(x)=b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}$, and $c(x)=a(x) b(x)$.
- Idea: Compute $\mathrm{a}(\mathrm{x}) \mathrm{b}(\mathrm{x})$ using FFT-based polynomial multiplication and then evaluate the result at $\beta$. Computation will be performed $\bmod p$ for several word sized "Fourier" primes and the Chinese Remainder Theorem will be used to recover the integer product.


## Three Primes Algorithm

- Compute $C=A B$, where length $(A)=m$, and length $(B)=n$. Let $a(x)$ and $b(x)$ be the polynomials whose coefficients are the digits of $A$ and $B$ respectively
- The algorithm requires $K$ "Fourier primes" $p=\mathbf{2}^{\mathrm{e}} \mathrm{k}+\mathbf{1}$ for sufficiently large e
- [Polynomial multiplication] Compute $c_{i}(x)=a(x) b(x) \bmod p_{i}$ for $i=1, \ldots, \mathrm{~K}$ using FFT-based polynomial multiplication.
- [CRT] Compute $c(x) \equiv c_{i}(x)\left(\bmod p_{i}\right) i=1, \ldots, K$.
- [Evaluation at radix] $C=c(\beta)$.


## Analysis of Three Primes Algorithm

- Determine K
- Since the kth coefficient of $\mathbf{c}(\mathrm{x}), C_{k}=\sum_{i+j=k} a_{i} b_{j,}$ the coefficients of $\mathrm{c}(\mathrm{x})$ are bounded by $\mathrm{n} \beta^{2}$
- Therefore, we need the product $p_{1} \ldots p_{K} \geq n \beta^{2}$
- If we choose $p_{i}>\beta$, then this is true if $\beta^{K} \geq n \beta^{2}$
- Assuming $n<\beta$ [ $\beta$ is typically wordsize - for 32 -bit words, $\beta \approx 10^{9}$ ], only 3 primes are required

Theorem. Assume that mod $p$ operations can be performed in $\mathrm{O}(1)$ time. Then the 3-primes algorithm can multiply two n digit numbers in time O(nlogn) provided:

- $n<\beta$
- $n \leq 2^{E-1}$, where three Fourier primes $p=2^{e} k+1(p>\beta)$ can be found with $e \geq E$ (need to perform the FFT of size $2 n$ )


## Limitations of 3 Primes Algorithms

- If we choose the primes to be wordsize for 32-bit words
$-\beta<p_{i}<W=2^{31-1}$
$-\beta=10^{9}$
$-\mathrm{n} \leq 2^{\mathrm{E}-1}=2^{23} \approx 8.38 \times 10^{6}$

| $p=2^{e} k+1$ <br> (k odd) | $e$ | Least primitive <br> element $\alpha$ |
| :---: | :---: | :---: |
| 2013265921 | 27 | 31 |
| 2113929217 | 25 | 5 |
| 2130706433 | 24 | 3 |

