
1

Applied Symbolic Computation 
(CS 567)

Fast Polynomial and Integer Multiplication

Jeremy R. Johnson



2

Introduction

• Objective:  To obtain fast algorithms for polynomial and 
integer multiplication based on the FFT.  In order to do this we 
will compute the FFT over a finite field.  The existence of FFTs 
over Zp is related to the prime number theorem.

– Polynomial multiplication using interpolation
– Feasibility of mod p FFTs
– Fast polynomial multiplication
– Fast integer multiplication (3 primes algorithm)

References:  Lipson, Cormen et al.
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Polynomial Multiplication using 
Interpolation

• Compute C(x) = A(x)B(x), where degree(A(x)) = m, and 
degree(B(x)) = n.  Degree(C(x)) = m+n, and C(x) is uniquely 
determined by its value at m+n+1 distinct points.

• [Evaluation] Compute A(αi) and B(αi) for distinct αi, 
i=0,…,m+n.

• [Pointwise Product] Compute C(αi) = A(αi)*B(αi) for 
i=0,…,m+n.

• [Interpolation]  Compute the coefficients of C(x) = cnxm+n + 
… + c1x +c0 from the points C(αi) = A(αi)*B(αi) for i=0,…,m+n.
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Primitive Element Theorem

Theorem.  Let F be a finite field with q = pk elements.  Let F* be 
the q-1 non-zero elements of F.  Then F* = <α> = {1, α, α2, 
…, αq-2} for some α ∈ F*. α is called a primitive element.

In particular there exist a primitive element for Zp for all prime 
p.

E.G.

(Z5)* = {1, 2,22=4,23=3}
(Z17)* = {1, 3, 32 = 9, 33 = 10, 34 = 13, 35 = 5, 36 = 15, 37 = 11, 38 =   

16, 39 = 14, 310 = 8, 311 = 7, 312 = 4, 313 = 12, 314 = 2, 315 = 6}
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Modular Discrete Fourier Transform

• The n-point DFT is defined over Zp if there is a primitive nth 
root of unity in Zp (same is true for any finite field)

• Let ω be a primitive nth root of unity.
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Example

Z

Z

174

54

over  

131641
161161
416131
1111

over  

2431
4141
3421
1111

11
1111

11
1111



















=



















=



















−−
−−
−−

=

F

F
ii

ii



7

Fast Fourier Transform

Assume that n = 2m, then

Let T(n) be the computing time of the FFT and assume that 
n=2k, then

T(n) = 2T(n/2) + Θ(n)
T(n) = Θ(nlogn)
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FFT Factorization over Z5
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Inverse DFT
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Example
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Feasibility of mod p FFTs

Theorem:  Zp has a primitive Nth root of unity iff N|(p-1)

Proof.  By the primitive element theorem there exist an 
element α of order (p-1) Zp.  If p-1 = qN, then αq is an Nth 
root of unity.

To compute a mod p FFT of size 2m, we must find p = 2e k + 1 
(k odd), where e ≥ m.

Theorem.  Let a and b be relatively prime integers.  The 
number of primes ≤ x in the arithmetic progression ak + b 
(k=1,2,…) is approximately (somewhat greater) (x/log x)/ϕ(a)
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Fast Polynomial Multiplication

• Compute C(x) = a(x)b(x), where degree(a(x)) = m, and 
degree(b(x)) = n.  Degree(c(x)) = m+n, and c(x) is uniquely 
determined by its value at m+n+1 distinct points.  Let N ≥
m+n+1.

• [Fourier Evaluation] Compute FFT(N,a(x),ω,A); 
FFT(N,b(x),ω,B).

• [Pointwise Product] Compute Ck = 1/N Ak * Bk, k=0,…,N-1.

• [Fourier Interpolation]  Compute FFT(N,C,ω-1,c(x)).
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Fast Modular and Integral Polynomial 
Multiplication

• If Zp has a primitive Nth root of unity then the previous 
algorithm works fine.

• If Zp does not have a primitive Nth root of unity, find a q that 
does and perform the computation in Zpq , then reduce the 
coefficients mod p.

• In Z[x] use a set of primes p1,…,pt that have an Nth root of 
unity with p1 * … * pt ≥ size of the resulting integral 
coefficients (this can easily be computed from the input 
polynomials) and then use the CRT
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Fast Integer Multiplication

• Let A = (an-1,…,a1,a0 )β = an-1βn-1 + … + a1β + a0

B = (bn-1,…,b1,b0 )β = bn-1βn-1 + … + b1β + b0

• C = AB = c(β) = a(β)b(β), where a(x) = an-1xn-1 + … + a1x + a0, 
b(x) = bn-1xn-1 + … + b1x + b0, and c(x) = a(x)b(x).

• Idea:  Compute a(x)b(x) using FFT-based polynomial 
multiplication and then evaluate the result at β.  
Computation will be performed mod p for several word 
sized “Fourier” primes and the Chinese Remainder 
Theorem will be used to recover the integer product.  
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Three Primes Algorithm

• Compute C = AB, where length(A) = m, and length(B) = n.   
Let a(x) and b(x) be the polynomials whose coefficients are 
the digits of A and B respectively 

• The algorithm requires K “Fourier primes” p = 2e k + 1 for 
sufficiently large e

• [Polynomial multiplication] Compute ci(x) = a(x)b(x) mod pi
for i=1,…,K using FFT-based polynomial multiplication.

• [CRT] Compute c(x) ≡ ci(x) (mod pi) i=1,…,K.

• [Evaluation at radix]  C = c(β).
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Analysis of Three Primes Algorithm

• Determine K
– Since the kth coefficient of c(x),                              ,                                                            

the coefficients of c(x) are bounded by nβ2

– Therefore, we need the product p1 …pK ≥ nβ2

– If we choose  pi > β, then this is true if βK ≥ nβ2

– Assuming n < β [β is typically wordsize - for 32-bit words, β ≈ 109], only 
3 primes are required

Theorem.  Assume that mod p operations can be performed in 
O(1) time.  Then the 3-primes algorithm can multiply two n-
digit numbers in time O(nlogn) provided:

– n < β
– n ≤ 2E-1, where three Fourier primes p = 2ek + 1 (p > β) can be found 

with e ≥ E (need to perform the FFT of size 2n)

bac jkji ik ∑ =+
=
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Limitations of 3 Primes Algorithms

• If we choose the primes to be wordsize for 32-bit words

– β < pi < W = 231-1
– β = 109

– n ≤ 2E-1 = 223≈ 8.38 × 106

p = 2ek + 1
(k odd) e Least primitive

element α

2013265921 27 31

2113929217 25 5

2130706433 24 3
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