
CISC 621 Algorithms, Midterm exam
March 24, 2016

Name:

Multiple choice and short answer questions count 4 points each.

1. The algorithm we studied for median that achieves worst case linear time performance
has which of the following properties?

(a) Handles the more general problem of selecting the rank k item (median is the
rank n/2 item for array of size n).

(b) Makes a recursive call on an array of size n/5

(c) Makes a recursive call on an array of size about 7n/10

(d) all of the above

[d]

2. The algorithm we studied for max-and-min that achieves worst case number of com-
parisons about 3n/2 has which of the following properties?

(a) Starts with n/2 comparisons to form a set of “winners” and a set of “losers”.

(b) Provably achieves the minimal worst case number of comparisons possible.

(c) both of the above

(d) none of the above

[c]

3. (5 points)

Circle the sorting algorithms that run in worst case cost Θ(n log(n)).

heapSort insertionSort introspectiveSort mergeSort quickSort

[heapSort, introspectiveSort, mergeSort.]

4. (5 points)

Circle the sorting algorithms that are not in place. (An in place algorithm uses a
constant amount of memory other than the input data array).

heapSort insertionSort introspectiveSort mergeSort quickSort

[mergeSort]

5. (5 points)

Circle the sorting algorithms that are randomized and have expected case cost Θ(n log(n)).

heapSort insertionSort introspectiveSort mergeSort quickSort

[introspectiveSort, quickSort]

6. Circle the sorting algorithms that can effectively use InsertionSort on base case arrays
of size less than 16.

heapSort introspectiveSort mergeSort quickSort

[introspectiveSort, mergeSort, quickSort]

7. Both classical polynomial multiplication and Karatsuba’s can be understood as divide
and conquer algorithms working with polynomials divided in half as f(x) = f1(x)xn/2+
f0(x), f has n terms and f1, f2 have n/2 terms. Regarding the number multiplications
of halves (polynomials of n/2 terms, degree n/2 − 1) used, which is true?

(a) It leads to the recurrence relation for cost of Karatsuba of T (n) = 3T (n/2) +
cnlg(3)

1

(b) Classical uses 3 multiplications and Karatsuba uses 2.

(c) Classical uses 4 multiplications and Karatsuba uses 3.

(d) Classical uses 8 multiplications and Karatsuba uses 7.

[c]

2

8. Which is true of a binary min-heap with n elements?

(a) The key at the root is greatest in the heap.

(b) The heap is a (left) complete binary tree.

(c) The heap is stored in an array A, and the last position, A[n], holds greatest entry.

(d) none of the above

[b]

9. Which priority queue implementation is efficient, worst case O(log(n)), for the oper-
ations of merging heaps (union) and splitting them in half?

(a) binary heap

(b) binomial heap

(c) both binary and binomial heaps

(d) neither binary nor binomial heaps

[b]

10. Dynamic arrays and linked lists are alternate strategies on which to base many data
structures. Fill in the blanks with “worst case”, “amortized”, or “expected” as appro-
priate.

(a) A new element can be added at the front of a linked list in Θ(1)

time.

[worst case]

(b) A new element can be added at the end of a dynamic array (dynamic table) in
Θ(1) time.

[amortized]

(c) For any position i of a dynamic table, the i-th element can be accessed in Θ(1)
time.

[worst case]

(d) What is the cost of accessing the i-th element of a linked list (use Θ)?

[Theta(i)]

11. A left leaning red-black tree implements the 2-3-4 tree balancing scheme as a binary
search tree with reasonable balance. Which statement is true about LLRBT?

(a) Every path from root to leaf has the same number of black edges.

(b) If the edge from a node to it’s left child is red then the edge from the node to it’s
right child is also red.

(c) Both of the above

(d) None of the above

[a]

12. What condition must be considered when applying the Master theorem to a recurrence
of the form T (n) = aT (n/b) + cnd

(a) A comparison of n loga(b) and nd

(b) A comparison of n loga(b) and n logc(d).

(c) A comparison of n logb(a) and n logc(d).

(d) A comparison of n logb(a) and nd

[d]

3

Answers will be graded for clarity and thoroughness as well as correctness.

13. (10 points) Select one of the following two algorithms and explain why it correctly
solves the corresponding algorithmic problem P, Make clear the specification or invari-
ant that lies at the heart of your argument.

(a) Problem: polynomial multiplication
Input: two polynomials f(x), g(x) of degree less than n, a power of 2.
Output: product h(x) of the two polynomials (of degree less than 2n).

Algorithm: Karatsuba(f,g,n)
1. If n = 1 return h0 = f0 ∗ g0.
2. Separate the upper n/2 coefficients and the lower n/2 coefficients of f:

f(x) = f (h)(x)xn/2 + f (l)(x).
For example, if n = 4 and f(x) = f3x

3 + f2x
2 + f1x + f0,

then f (h) = f3x + f2 and f (l) = f1x + f0.
Similarly, g(x) = g(h)(x)xn/2 + g(l)(x).

3. P (x) = f (l)(x)g(l)(x)
Q(x) = (f (h)(x) + f (l)(x))(g(h)(x) + g(l)(x))
R(x) = f (h)(x)g(h)(x)

4. return R(x)xn + (Q(x) − P (x) −R(x))xn/2 + P (x). Note that the multipli-
cation by xn, xn/2 just describes shifting. For instance Ri is added to coefficient
hi+n.

[The result of polynomial multiplication, expressed in terms of high and low parts
is f (h)(x)g(h)(x)xn+f (h)(x)g(l)(x)+f (l)(x)g(h)(x)xn/2+f (l)(x)g(l)(x). Since R(x)
and P (x are the first and third terms of this sum, it remains to show the middle
term is correct. Here

Q− P −R = (f (h)(x) + f (l)(x))(g(h)(x) + g(l)(x)) − f (l)(x)g(l)(x) − f (h)(x)g(h)(x) (1)

= f (h)(x)g(h)(x) + f (h)(x)g(l)(x) + f (l)(x)g(h)(x) + f (l)(x)g(l)(x) − f (h)(x)g(h)(x) − f (l)(x)g(l)(x)(2)

= f (h)(x)g(l)(x) + f (l)(x)g(h)(x) (3)

as required.

]

(b) Problem: x = Select(A,n, k)
Input: Unordered array of numbers A of size n and an index k.
Output: the entry x of A of rank k (x would be in position k if A were sorted)

Algorithm: x = RandomizedSelect(A,n, k)
1. If (n = 1) return A[1] // remark: k must be 1.
2. p = Partition(A,n);
3. If (p = k) return A[p] 4. If (p > k) return RandomizedSelect(A, p− 1, k);

else return RandomizedSelect(A + p, n− p, k − p);

You may assume Partition works correctly, but state the specification of what
Partition does.

[Partition returns an index p and reorders the elements of A so that items in
position 1..p-1 are less than A[p] and items in positions p+1..n are greater than
A[p]. In particular, then, A[p] has rank p, and is thus the correct value to return
when p = k (line 3).

Correctness proof is by induction on n. If n = 1 then k (which must be a valid
index) is 1 and the one entry of A has rank 1 and is the correct value to return.

Inductive step: assume correct for array sizes less than n.
Case 1, k = p: (already discussed)
Case 2, k < p: The rank k item of (A,n) is the rank k item of (A, p-1), since
these are precisely the p-1 items of rank less than p. Thus the recursive call in
line 4 is correct.
Case 3, k > p: The rank k item of (A,n) is the rank k-p item of (A+p, p-1), since
the p ignored items are those of the first 1..p ranks in (A,n). It suffices to find

4

the rank k-p item among the remaining n-p larger items. Thus the recursive call
in line 5 is correct.]

5

14. (9 points)The Union-Find data structure for the Dynamic Disjoint Sets abstraction
works on length n arrays boss and rank, such that initially boss[i]=i and rank[i] = 0.

(a) Give pseudo code for the operations Union(a,b) and Find(a) such that Union
assumes a and b are CEO’s. It forms the merger of the two trees using the union
by rank heuristic. Find(x) returns the CEO(i.e., root) of x’s tree and performs
path compression.

[see unionfind handout. There was an error in find() there (it had the return
statement of both with and without path compression, without first – and meant
to be commented out. As a result it didn’t do path compression. Sorry, no credit
for verbatim copy of that mistake.]

(b) Prove that with union by rank that for each node, height(a) ≤ rank[a] so that
worst case cost of find is O(log(n))..

[proof is by induction on tree size. Initialization has one node of height=rank=0,
so the condition is valid in the base case. Union(a,b) changes the tree size by either
making either a child of b or vice versa. If a is made child of b because rank(a)
¡ rank(b), then depth of all nodes in a is increased by 1. However, height(a) ¡=
rank(a) by inductive hypothesis and rank(a) ¡ rank(b) assumption. Thus depth
of nodes of a in new tree rooted at b is no more than existing height of b and the
height ¡ rank property is preserved. The argument if rank(b) ¡ rank(a) is similar.
Now consider the case rank(a) = rank(b). The height may actually be increased
by 1, but the rank is explicitly increased by one, so the condition height ¡= rank
is certainly preserved.]

(c) State (without explanation) a better amortized cost for each find operation over
the course of a program when path compression is used.

[log(log(n)) or log ∗ (n) or inverse Ackerman function of n]

15. (30 points) Select two of the following four algorithms. Describe the algorithm. State
and explain the worst case runtime of the algorithm on inputs of size n. If randomiza-
tion is involved, mention the expected runtime. If answer is given for more than two
parts, only the first two will be read.

(a) Binomial-heap-extract-min(H)

[It costs O(lg(n)) worst case time. The method is to find the binomial tree with
the min at root and chop off that root. The children of that tree constitute a heap
(in reverse order). Merge the rest of the heap with that children heap. Merging
the two heaps into order sorted by tree size costs O(lg(n)). then a consolidation
pass does up to lg(n) ”carry” operations costing another O(Lg(n)).]

(b) BST-next(x), algorithm to find the node with the next larger key after x’s key in
a binary search tree.

[Let h be the height of the search tree. Next(x) costs O(h), since you either go
down to the leftmost node in the right subtree or (if right subtree is null) go up
toward the root until the step in which the parent is to the right.]

(c) Binary-heap-insert(H,k), algorithm to insert key k in a binary min heap H, and
restore the heap property.

[It costs O(lg(n)), since the method it to put the new element in last postion (of
left complete binary tree stored in an array) and then ”bubble up” to restore the
heap property. Bubbling up can involve a swap at each node on the path from
the new item to the root, thus up to O(lg(n)) steps.

bubble-up(H,i) {

parent = floor(i/2);

if i > 1 and H(i) < H(parent) then {

swap(H(i), H(parent));

bubble-up(H, parent);

}

}

6

(d) IntroSort(A,n,d){\\

1. if (n < 20) { InsertionSort(A,n); return; }

2. if (d <= 0) { HeapSort(A,n); return; }

3. p = Partition(A,n);

4. IntroSort(A, p, d-1); IntroSort(A+p, n-p, d-1); return;

}

Include explaination of the role of d and what it’s initial value should be. You
may assume that InsertionSort runs in worst case time O(n2), HeapSort in worst
case time O(n log(n)), Partition in worst case time O(n).

[IntrospectiveSort(A,n) works by calling IntroSort(A,n,D) where D is about
2lg(n), in any case O(lg(n)). The recursion tree is like that of QuickSort, ex-
cept that at depth D it switches to HeapSort. As in QuickSort, at each level
of the recursion tree partitioning is done on portions of the array whose lengths
add up to at most n, thus the quicksort style part of the computation has cost
bounded by O(nD = O(nlg(n)). Suppose k portions of the array are to be sorted
at depth D of the recursion tree, with sizes n1, n2, . . . , nk. HeapSort is applied
to them at total cost

∑
i ni lg(ni). Since

∑
i ni < n and lg(ni) < lg(n), we have∑

i ni lg(ni) < lg(n)
∑

i ni ≤ lg(n)n.

7

