CISC621 Algorithm Design and Analysis, Spring 2016
Homework set IV, problems 10, 11, 12,13, due Tuesday, May 3, 8:00am

Check the “homework sheet” from the syllabus for general homework details. In par-
ticular, each homework solution is on an entirely separate (set of) sheet(s) of paper and is
identified with your name(s). Do not staple solutions to two or more problems together.
Submit at the beginning of class, May 3. Strict lateness penalty for any later than 8am.

10.

11.

12.

[Individual Problem — modular powering]

Consider this proposition:
Let n be a positive integer, then a®™*! = ¢ mod n for all a € Z,
(Z = (1,2,...,n—1) is the set of nonzero elements of Z,, = (0,1,2,...,n — 1)).

This proposition seemingly follows from theorem 31.30 in CLRS. However that theorem
is misstated. Theorem 31.30 is valid if and only if a is relatively prime to n.

(a) Show by example that the proposition is false when n is the square of a prime,

n = p2.

(b) Show that the proposition is true when n is a product of two distinct primes,
n = pg. [Hint: Use Chinese remainder theorem]

(c) Extra credit: A positive integer n is called square free if a?|n implies a = 1. Show
that the proposition is true if and only if n is square free.

Remark: This exercise shows that RSA works even in the unlikely event that the
message encrypted is a multiple of one of the prime factors of n.

[Individual Problem — dynamic programming] We have studied LCS, the problem of
finding the largest common subsequence of two sequences, and we have studied LIS, the
problem of finding the largest increasing subsequence of a single sequence. Let’s put
these together. Find the length of LCIS, the largest common increasing subsequence
of two given sequences. Concretely, let lcis(a,m, bjn) be a function which is given two
arrays of numbers, a and b, of lengths m and n, respectively. It returns the length
of a longest sequence ¢ = ¢y,...,¢; such that ¢; < ¢;41 fori € 1.k — 1 and c is a
subsequence of a and of b.

The task is to design an efficient algorithm for lcis() and analyze it.

[Group Problem — Hankel matrices] Hankel matrices are matrices having a pattern
that arises in many applications including hidden Markov models. Specifically, A
Hankel matrix is a matrix h = (h; ;) such that h; ; = hy; whenever i + j = k + . Let
indexing be zero based so that the row and column indices run from 0 to n-1 rather
than from 1 to n. A n x n Hankel matrix can be represented by the 2n — 1 values in

the first row and last column, Hy, Hy, ..., Hap—2. We can represent h by h; j = H;4 ;.
a b ¢ d
b ¢ d e
h_ c d e f 7H_(a/7bacadaeaf’g)
d e f g

(a) Give a linear time algorithm to add two Hankel matrices when they are repre-
sented as indicated above.

(b) A Hankel matrix, represented as above can be multiplied by a vector as follows.

mvHankel(H, v, n) {
for i from 0 to n-1 do
w[i] = 0;
for j from 0 to n-1 do
wli]l = wli] + H[i+jlv[j];
return w

3



This algorithm runs in ©(n?) time just as general matrix vector product does.
Write and analyze an algorithm to compute Hankel matrix times vector product
in O(n log(n)) time.

Hint: Hankel matrix times vector product corresponds to (part of) polynomial
multiplication.

(c) Design and analyze an efficient algorithm for product of two nxn Hankel matrices.
You can get a complexity much better than Strassen’s general puropse matrix
multiplication algorithm in O(n?8!.

13. [Group Problem — dynagram] Dynagram is a village laid out neatly with numbered
streets which run east to west and numbered avenues which run north to south. As
a prize to recognize your algorithmic talents, the mayor of Dynagram has a bucket of
coins waiting for you at each intersection. The matrix B¢, j] contains the value of the
bucket at the intersection of i street with j avenue. The challenge is to make a tour
from intersection (0,0) to intersection (m,n) and back to (0,0) collecting the maximal
possible prize from the buckets along the way. However you are restricted to go only
east and south on the way from (0,0) to (m,n) and go only west and north on the
return portion of the trip. Thus until you reach (m,n) the valid moves are to go from
(i,j) to (i+1,j) or to (i, j+1). Then from (m,n) onwards the valid moves are to go from
(i,j) to (i-1, j) or to (i, j-1). It may or may not be to your advantage to visit some
intersection (i,j) both on the way out and on the way back. However you only get one
bucket of coins at (i,j)!

Design and analyze an efficient algorithm which, given the payoff matrix B and farthest
intersection (m,n), maximizes the prize obtained. What is the asymptotic run time of
your algorithm in terms of m and n? What is the amount of memory you need (other
than the storage of the given matrix B)?



