
CISC621 Algorithm Design and Analysis, Fall 2015
Corrected Homework set 3, due Wednesday, October 28, 5:30pm

Check the “homework sheet” from the syllabus for general homework details. In par-
ticular, each homework solution is on an entirely separate (set of) sheet(s) of paper and is
identified with your name(s). Do not staple solutions to two or more problems together.
Submit in 201 Smith Hall directly to Chunbo Song or place on shelf marked CISC 621.

8. [Individual Problem] Binomial-HeapSort?

(a) In CLRS section 6.3 the function Build-Max-Heap is shown to require at most
2n comparisons in the worst case. Explain why Build-Max-Heap requires n − 1
comparisons in the best case and describe, for each n, an input that requires only
n− 1.

(b) Give (and analyze) a function Build-Max-Binomial-Heap that builds a binomial
heap from an array of n items using n − h(n) comparisons, where h(n) is the
Hamming weight of n, namely the number of 1’s in it’s binary representation.
For example, the Hamming weight of 11 is 3.

[Food for thought (no written submission expected on this): Do you think a heap
sort based on binomial heaps instead of binary heaps would be faster (albeit not
in place)?]

9. [Group Problem] Union-Find programs

vector<int> wt;

vector<int> parent;

void init(n) { // initialize to n singleton sets

wt.resize(n+1);

parent.resize(n+1);

for (int i = 1; i <= n; ++i) { wt[i] = 1; parent[i] = i; }

}

void union(int a, int b) { // union by weight

// Assume a and b are roots

if (wt[a] < wt[b]) { parent[a] = b; wt[b] = wt[a] + wt[b]; }

else { parent[b] = a; wt[a] = wt[a] + wt[b]; }

}

int find(int a) { // return the root of a’s set

if (a == parent[a]) return a;

parent[a] = find(parent[a]); // path compression

return parent[a];

}

Above is C++ code for union-find using union by weight and path compression. A
union-find program consists of an init(n) followed by m union and find operations. Let
us count the number of parent accesses (read or write) made. Init(n) does n accesses.
Union does one access. Find(a) does one read and one write per node in the path to
the root and one read at the root itself, thus a total of 1 + 2× depth(a). Consider the
class of all union-find programs in which init(n) is followed m operations in which, for
some 1 ≤ s ≤ m, the first s are unions and the remaining m− s are find’s. Show that
these programs run in O(n + m) parent accesses.


