
CISC621 Algorithm Design and Analysis, Fall 2015
Homework set 2, due Wednesday, October 14, 5:30pm

Check the “homework sheet” from the syllabus for general homework details. In par-
ticular, each homework solution is on an entirely separate (set of) sheet(s) of paper and is
identified with your name(s). Do not staple solutions to two or more problems together.
Submit in 201 Smith Hall directly to Chunbo Song or place on shelf marked CISC 621.

5. [Individual Problem] We saw that in divide and conquer sorting algorithms, such as
merge sort and quick sort, it pays to shift to insertion sort when the array size, n,
is small. For instance, by experiment on random arrays, when n = 10 insertion sort
seems to pay off. Yet insertion sort has a worst case of 45 comparisons when n = 10,

(a) whereas mergesort uses how many comparisons?

(b) The theoretical minimum number of comparisons when n = 10 is 22, since 21 <
lg(10!) < 22. Construct a sorting method that uses at most 23 comparisons when
n = 10. Take care to clearly explain your method and it’s correctness. Hint: it
may help to find an optimal solution for 5.

6. [Group Problem] Consider the following game: I think of a positive integer: n, which
you are to determine by guessing numbers and being told whether each guess is too
high or too low or is n. There is no a priori upper bound on n – I am free to pick any
n.

(a) Give a strategy for determining n using at most 2 lg(n)+c guesses (c is a constant
that you can choose).

(b) But maybe I don’t always tell the truth (or there is static on the communication
line). Give a strategy for determining n using at most 2 lg(n) + 3lg(lg(n)) + k
guesses (k is a constant you choose) on the assumption that at most one of the
answers to your guesses will be a lie.

7. [Group Problem] Sometimes it is necessary to combine priority queues or break one
into pieces. For instance on a multicore, it is an emerging practice to shut down
some cores for energy efficiency when the load gets low. In this case you would merge
the process priority queues of a shutting down core with that of a still active core
Conversely, when load gets high, we want to split the priority queue of a busy core
and give half it’s process queue to a waking up core.

(a) For the (min) binomial heap representation of priority queue, give efficient im-
plementations of merge (combine two binomial heaps into one) and split (split
a single binomial heap of size n into two heaps of size bn/2c and dn/2e.

(b) In some applications, there are many more insert operations than extract-min
operations. Show that a series of n insert operations in a row, beginning with an
empty binomial heap, costs O(n)


