
CISC621 Algorithm Design and Analysis, Fall 2015
Homework set 1, due Wednesday September 30, 5:30pm

Check the “homework sheet” from the syllabus for general homework details. Submit in
201 Smith Hall directly to Chunbo Song or place on shelf marked CISC 621.

1. Do problem 1.1, but instead of microseconds, use nanoseconds. Fill out the table on
the assumption the algorithm uses f(n) nanoseconds. After all, our cpu’s can do basic
instructions at the gigahertz rate.

2. Argue that the solutions to the following recurrences are as indicated by using recursion
trees. Note that you must attend to both upper and lower bound. The c is a constant.
[For reference, problems of this type are in section 4.4 and it’s exercises.]

(a) For T (n) = T (n/4) + T (2n/3) + cn, show T (n) = Θ(n).

(b) For T (n) = T (n/4) + 2T (3n/8) + cn, show T (n) = Θ(n log(n)).

(c) For T (n) = T (n/2) + T (2n/3) + cn, show T (n) = Ω(n log2(7/6)). and T (n) =

O(n log3/2(7/6)).

3. Consider a function m = median(A,n), that takes an array A of n distinct numbers
and returns index m such that A[m] is the median of A. Assume that median does
not rearrange A and runs in linear time, i.e. T (n) = Θ(n), where T (n) is the runtime
of median on an array of length n. Use this “blackbox” function for median to build a
linear time algorithm for select, where x = select(A,n,k), for the array A of size n
returns the rank k entry. You may assume the numbers in A are distinct (no repeats).

It is permitted that select rearranges the elements A as you wish (but, of course,
moving elements around is part of the cost). Also note that this permission to rearrange
is not necessary. In linear time you could copy the array A to another array and do
your rearranging in that second array.

Recall that the rank of an element in array A is the index position that the element
would occupy if A were in sorted order. Thus, for example, the minimal element in A
has rank 1 and the (lower) median has rank dn/2e.

4. Old tableaux: An m× n Old tableau is an m× n matrix of nonnegative numbers such
that the entries of each row are in nonincreasing order from left to right and the entries
of each column are in nonincreasing order from top to bottom. Note that the largest
entry is in the top left position, if any entry is zero, then the bottom right entry is
zero. If the top left entry is zero, the entire matrix is zero. We may use an Old tableau
to implement the max-priority queue data structure.

Give an algorithm to implement the function Extract-Max on an Old tableau. Your
algorithm should use a recursive subroutine that solves an m×n problem by recursively
solving either an m×n−1 subproblem or a m−1×n subproblem. Define T (p), where
p = m + n, to be the maximum running time of Extract-Max on any m × n Old
tableau. Give and solve a recurrence for T (p) that yields the O(m + n) time bound.
Note that extracting the maximum means to replace the largest entry (top left one)
with a zero and then rearrange entries so as to restore the Old tableau property of
being nonincreasing in each row and column. [For reference, the material in chapter 6
on heaps and priority queues is relevant.]


