
CISC 621 Algorithms, Homework due Tue, May 17, 2011 (accepted until Fri,
May 20)

1. We have seen that edit distance, the minimal number of inserts, deletions,
substitutions to convert string S to string T, can be found in O(mn) time,
where m is length of S, n is length of T. We have also seen that the longest
common substring of S and T can be found in O(mn) time.

The longest approximately matching substring problem is LAMS(S, T,
k), to find the longest substrings S’ of S and T’ of T such that the edit
distance of S’ and T’ is at most k. For convenience we will stipulate that
S’ and T’ be of the same length. Recall that a substring is a contiguous
subsequence (adjacent elements) in the parent string. Furthermore, to
simplify this exercise, and we will will only allow edit steps which are
substitutions (replacement of a letter in S’ corresponding letter in T’).
Thus the edit distance between two strings S’ and T’ of the same length
is the number of positions in which they differ.

(a) Design and explain an algorithm to solve the LAMS(S,T,k) problem
in O(mnk) time, where m = size(S) and n = size(T)..

(b) LAMS is relevant to genomics, where long approximately matching
substrings represent shared genes. Here not only the longest is of
interest. Design and explain an algorithm on (S, T, m, k) to find all
(i,j) such that the substrings S[i]..S[i+m-1] and T[j]..T[j+m-1] have
edit distance at most k. Incidentally, cases of interest have the lengths
of S and T in the millions, m in the thousands, and k small (tens).

2. Longest bimodal subsequence: Give a sequence of numbers S of length n,
find the longest subsequence that is bimodal. It suffices to return the length
of a longest bimodal subseqence. Bimodal means that the subsequence
first increases then decreases (or vice versa), but it reverses direction only
once. Thus (1,2,3,4,3,2) is bimodal, as is (4,3,2,1,2,5), but (2,3,4,3,4) is
not. The longest bimodal subsequence of that last one has length 4, and
is (2,3,4,3) or (2,3,4,4). Design and explain an efficient algorithm to find
a longest bimodal subsequence.

Hint: Longest increasing subsequence (LIS) has the following recursive
solution which leads to a dynamic programming solution using O(n) space
and O(n2) time.

int LIS(S) n = size(S); return maxj=1..nLIS(S, j);

int LIS-end(S, j) // return length of longest increasing subsequence ending
at j-th position. if (j == 1) return 1; // find max you can get by LIS-end
to i followed by single step to j. ans = 1; for (int i = 1; i ¡ j; ++i) if (S[i]
¡= S[j]) ans = max(ans, 1+LIS-end(S,i)); return ans;

3. Extra credit problem: We have studied two algorithms dealing with sets
of points in the (x,y) plane, namely convex hull and nearest pair of points.

1



This exercise is to find a farthest pair of points between two sets of points
in the plane. Farthest(S, T) takes sequences of points S and T. It returns
the maximum of dist(S[i], T[j]), for i in 1..size(S) and j in 1..size(T). Find
an algorithm for Farthest(S,T) that runs in O(n log(n)) time, for n =
size(S) + size(T).

4. Matrix hole problem is discarded.

5. 3SAT variants. Do 2 of the 3 parts.

(a) Consider 3SAT-2l, the version of 3SAT in which each literal occurs at
most 2 times. Thus the input is a conjunction of n clauses, each clause
of length 3. There are 3n occurences of literals. Each literal occurs at
most twice in the input. Thus if x is a variable, x is at most 2 of the
3n literal occurences and x̄ is at most 2 of the 3n literal occurences.
Saying that again: A literal is either a variable or it’s negation, so we
are considering the input to be a conjunction of clauses (of 3 literals
each) in which a variable x occurs at most twice without negation
and at most twice with negation (for a total of at most 4 times for
the variable). For example (x, y, z), (x̄, w, u), (x̄, w̄, z) is a valid input
since the literals x̄ and u occur twice and all other literals occur once.
Show that 3SAT-2l is NP-complete.
Hint: use a reduction in which each instance of a variable is replaced
by a new variable and clauses are added to link the new variables to
behave as if they where instances of the original variable. Thus the
reduction might be somewhat in the spirit of the reduction of SAT
to 3SAT (3-CNF satisfiability, page 1082).

(b) Consider 3SAT-1l, the version of 3SAT in which each literal appears
at most once. (Thus each variable might occur twice, once negated
and once not.) Example input: (x, y, z̄, (x̄, w̄, z). Solve 3SAT-1l in
polynomial time.

(c) Consider 3SAT-e3v, the version of 3SAT in which each variable ap-
pears exactly three times and each clause has exactly three literals.
(For a given variable, it might be once negated, twice not-negated,
or vice versa, or all 3 times negated or all 3 times not negated.) Ex-
ample input: (x, y, z), (x, ȳ, w), (x̄, w, z), (z, w, ȳ). Solve 3SAT-e3v in
polynomial time.

6. Binary search trees and Trieps.

(a) Draw a binary tree of maximum height such that it’s nodes have
average depth of exactly 3. The depth of the root is 0.

(b) Problem 13-4, parts a, b, c, d only.

2


