
CISC320 Algorithms, Spring 2010
Modexp() and Addition Chains

function modexp(a, e, N)
Input: n-bit positive integers a, e, N .
Output: ae mod N .
Basic idea: repeated squaring
if e = 1, return a
b = modexp(a, be/2c, n)
b = b ∗ b mod N
if e is odd,

b = b ∗ a mod N
return b

By definition, an n-bit number, e, has binary expansion e =
∑n−1

i=0 ei2
i, where each ei is

a bit with value 0 or 1. Let us say that the length of a number e is the minimum n such
that e is a n-bit number. In other words, if k is the largest index such that the ek bit in the
binary expansion of e is a 1, then the length of e is k + 1. Put yet another way, the length
of e, len(e), is the least exponent m such that e ≤ 2m.

We have observed that if len(e) is m, then the number of squarings mod N is m− 1 and
the number of multiplications b∗a in the else clause is k−1, where k is the number of 1-bits
in the binary expansion of e. Thus we know that the number of multiplications modulo N
done in modexp() is O(n) and more precisely, for len(e) = m, is at most 2m− 2 and at least
m − 1. Question: Is modexp optimal? That is, might there be an algorithm using fewer
multiplications for some exponent e?

Consider the sequence of powers of a computed as successive values of b in the algorithm1.
For instance, when b = 11 = 10112, the sequence of values of b is (a1, a2, a4, a5, a10, a11). For
short, let’s list just the sequence of exponents of a, (1, 2, 4, 5, 10, 11). Note that each entry
in th sequence is either double a previous entry or one more than a previous value. More
generally, an addition chain for e is a sequence of integers such that the first is 1, and each
succeeding entry is either the sum of two previous or double a previous one, and the last
entry is e. So our optimality question can be converted to this: ”is there an exponent e
which has a shorter addition chain for it than the one generated by modexp?”

The answer is yes, and one example is e = 31. Our modexp builds the length 9 addition
chain (1, 2, 3, 6, 7, 14, 15, 30, 31). But e also has the chain (1, 2, 3, 6, 12, 24, 30, 31) of
length 8.

Addition chains have been studied at considerable length, but no systematic patterns have
emerged of general use for algorithm design yielding anything that is a real improvement
over modexp. And of course, modexp is optimal up to big-O. This is basically because no
addition chain can have an i-th entry larger than 2i.

Postscript: There is no shorter addition chain for e = 11 than the one produced by
modexp.

1Strictly speaking, b is a local variable in each each recursive call to modexp, but since each local b is
first set as the result of a call and is the returned value of that call, there is no ambiguity in considering all
of the local b’s as being one variable.

1


