function $\operatorname{modexp}(\mathrm{a}, \mathrm{e}, \mathrm{N})$

Input: n-bit positive integers a, e, N.
Output: a $\bmod N$.
Basic idea: repeated squaring
if $e=1$, return a
$b=\operatorname{modexp}(a,\lfloor e / 2\rfloor, n)$
$b=b * b \bmod N$
if e is odd,
$b=b * a \bmod N$
return b
By definition, an n-bit number, e, has binary expansion $e=\sum_{i=0}^{n-1} e_{i} 2^{i}$, where each e_{i} is a bit with value 0 or 1 . Let us say that the length of a number e is the minimum n such that e is a n-bit number. In other words, if k is the largest index such that the e_{k} bit in the binary expansion of e is a 1 , then the length of e is $k+1$. Put yet another way, the length of $e, \operatorname{len}(e)$, is the least exponent m such that $e \leq 2^{m}$.

We have observed that if len (e) is m, then the number of squarings $\bmod N$ is $m-1$ and the number of multiplications $b * a$ in the else clause is $k-1$, where k is the number of 1-bits in the binary expansion of e. Thus we know that the number of multiplications modulo N done in $\operatorname{modexp}()$ is $\mathrm{O}(n)$ and more precisely, for len $(e)=m$, is at most $2 m-2$ and at least $m-1$. Question: Is modexp optimal? That is, might there be an algorithm using fewer multiplications for some exponent e ?

Consider the sequence of powers of a computed as successive values of b in the algorithm ${ }^{1}$. For instance, when $b=11=1011_{2}$, the sequence of values of b is $\left(a^{1}, a^{2}, a^{4}, a^{5}, a^{10}, a^{11}\right)$. For short, let's list just the sequence of exponents of $a,(1,2,4,5,10,11)$. Note that each entry in th sequence is either double a previous entry or one more than a previous value. More generally, an addition chain for e is a sequence of integers such that the first is 1 , and each succeeding entry is either the sum of two previous or double a previous one, and the last entry is e. So our optimality question can be converted to this: "is there an exponent e which has a shorter addition chain for it than the one generated by modexp?"

The answer is yes, and one example is $e=31$. Our modexp builds the length 9 addition chain $(1,2,3,6,7,14,15,30,31)$. But e also has the chain $(1,2,3,6,12,24,30,31)$ of length 8.

Addition chains have been studied at considerable length, but no systematic patterns have emerged of general use for algorithm design yielding anything that is a real improvement over modexp. And of course, modexp is optimal up to big-O. This is basically because no addition chain can have an i-th entry larger than 2^{i}.

Postscript: There is no shorter addition chain for $e=11$ than the one produced by modexp.

[^0]
[^0]: ${ }^{1}$ Strictly speaking, b is a local variable in each each recursive call to modexp, but since each local b is first set as the result of a call and is the returned value of that call, there is no ambiguity in considering all of the local b 's as being one variable.

