CISC 320 Midterm Exam

Friday, March 26, 2010
Name: \qquad

There are 23 questions. The first 18 questions count 3 points each.
True or False: write T or F in the blank.
Multiple Choice: write the letter of the best choice in the blank.
Very Short Answer: write the very short answer in the blank.
Then there is a 6 point question and four 10 point questions, for a total of 100 points.

1. \qquad True or false: There cannot be a comparison based algorithm for finding the maximum and minimum of an array of n numbers using fewer than $5 n / 4$ comparisons.
2. For the problem of finding the maximum and the second largest of an array of n numbers, the best algorithm we discussed uses about \qquad comparisons.
(a) $n-1$
(b) $n \lg (n)$
(c) $n+\lg (n)$
(d) $3 n / 2$
3. Algorithm A manipulates an array of n items. It requires $\Theta\left(n^{2}\right)$ time. For arrays of 1000 items
 algorithm A to take?
(a) about 17 milliseconds
(b) about 17 seconds
(c) about 17 minutes.
(d) about 17 hours.
4. True or False: Nobody knows whether or not there might be a comparison based sorting method $\overline{\text { that }}$ uses $\Omega(n)$ comparisons to sort an array of n numbers.
5. \qquad True or False: Nobody knows whether or not there might be a comparison based sorting method $\overline{\text { that }}$ uses $\mathrm{O}(n)$ comparisons to sort an array of n numbers.
6. True or False: The recurrence $T(n)=T(n / 2)+\mathrm{O}(1)$, for $n \geq 2$ with $T(1)=1$ has the solution $\overline{T(n)}=\mathrm{O}(\lg (n))$.
7. the four recurrences

$$
T_{k}(n)=\left\{\begin{array}{ll}
1, & \text { for } n=1, \\
k T_{k}(n / k)+O(n), & \text { for } n>1,
\end{array}, \text { for } k=2,3,4,5\right.
$$

Which best describes the situation?
(a) $T_{k}(n)=\mathrm{O}(n)$, for each k in $2 . .5$.
(b) $T_{k}(n)=\mathrm{O}(n \lg (n))$, for each k in 2..5.
(c) $T_{k}(n)=\mathrm{O}\left(n^{\lg (5)}\right)$, for some k in $2 . .5$.
(d) none of the above
8.

$$
T_{k}(n)=\left\{\begin{array}{ll}
1, & \text { for } n=1, \\
k T_{k}(n / 2)+O(n), & \text { for } n>1,
\end{array}, \text { for } k=2,3,4,5\right.
$$

Which best describes the situation?
(a) $T_{k}(n)=\mathrm{O}(n)$, for each k in $2 . .5$.
(b) $T_{k}(n)=\mathrm{O}(n \lg (n))$, for each k in $2 . .5$.
(c) $T_{k}(n)=\mathrm{O}\left(n^{\lg (5)}\right)$, for some k in $2 . .5$.
(d) none of the above
9. \qquad Which is true of the recurrence

$$
T(n)=\left\{\begin{array}{ll}
1, & \text { for } n=1 \\
7 T(n / 2)+O\left(n^{2}\right), & \text { for } n>1
\end{array} ?\right.
$$

(a) $T(n)$ describes the runtime of a matrix multiplication algorithm.
(b) $T(n)=\mathrm{O}\left(n^{\lg (7)}\right)$.
(c) $T(n)=\mathrm{O}\left(n^{2.81}\right)$.
(d) all of the above
10. Which recurrence relation describes the runtime of FFT (the fast Fourier transform).
(a) $T(n)=2 T(n / 2)+\mathrm{O}(n)$
(b) $T(n)=2 T(n / 2)+n / 2 T(2)$
(c) both of the above
(d) none of the above
11. When the FFT is called on $n=2^{k}$ points, a primitive root of unity, ω, is used. This ω must be a primitive m th root of unity, for which m ?
(a) $m=k$
(b) $m=n$
(c) $m=n / 2$
(d) none of the above
12. When the FFT is called on n points a primitive root of unity, ω, is used. For certain X and Y,

(a) $X=n / 2$ points, $Y=2$ is exponent of ω
(b) $X=n$ points, $Y=1 / 2$ is exponent of ω
(c) $X=n / 2$ points, $Y=1 / 2$ is exponent of ω
(d) $X=n$ points, $Y=2$ is exponent of ω
13. True or false: The recurrence $T(n)=2 T(n / 2)+\mathrm{O}\left(n^{2}\right)$ describes the worst case number of comparisons used in mergesort.
14. \qquad True or false: The leaves of a full binary tree are all on the same level.
15. \qquad A graph is a DAG if, with respect to it's depth first search forest, it has no \qquad edges.
(a) tree
(b) forward
(c) back
(d) cross
16. RSA public key encryption is hard to crack, because
(a) Modular arithmetic is a total mystery
(b) testing for primality is difficult
(c) factoring large composite numbers is difficult
(d) The Fermat test is fooled by some non-primes called Carmichael numbers.
17. Let n be the number of days since the beginning of the earth's rotation until your date of birth. $\overline{\text { What }}$ is $3^{n} \bmod 2$?
18. \qquad What is $2^{2^{2^{2}}} \bmod 7 ?$
19. (6 points)
(a) A directed acyclic graph can be linearized. Explain what this means.
(b) Draw a linearization of this graph: $V=\{A, B, C, D\}, \operatorname{nbr}[\mathrm{A}]=\mathrm{C}, \mathrm{D} ; \operatorname{nbr}[\mathrm{B}]=\mathrm{A}, \mathrm{D} ; \mathrm{nbr}[\mathrm{C}]=$ $\mathrm{D} ; \mathrm{nbr}[\mathrm{D}]=$ null.
(c) How may a linearization of a DAG be constructed from the results of depth first search that computes previsit and postvisit times for each node?
20. (10 points)
(a) Using modmul (a, b, m) which computes $a \times b \bmod m$, write modexp(a, e, m), which computes $a^{e} \bmod m$, for n bit numbers a, e, m. Your program should use no more than $2 n$ calls to modmul, that is, no more than $2 n$ multiplications or squarings $\bmod m$.
(b) Up to big-O, What is the runtime of your modexp?
21. (5 points)
(a) Write mergesort (a[0..n-1]). You may use (without defining it) merge (a[0..i-1], b[0..j-1]), which merges the two sorted array segments a and b, putting the result in $c[0 . . i+j-1]$.
(b)
22. (10 points)
(a) Let $f(x)=\sum_{i+0}^{n-1} f_{i} x^{i}$ be a n term polynomial. Explain how $f(a)$ and $f(-a)$ can be computed by combining $f_{e}\left(a^{2}\right)$ and $f_{o}\left(a^{2}\right)$, where f_{e} and f_{o} are the even part and the odd part of f, respectively.
(b) When ω is an n-th root of unity, what power of ω is equal to $-\omega$?
23. (10 points)
(a) Write explore (G, v), which does a depth first search of the graph $G=(V, E)$ beginning at vertex v. You may use the adjacency list representation, with $\mathrm{nbr}[\mathrm{u}]$ being the list of neighbors of u in G.
(b) Up to big-O, what is the run time of explore?
24. Have a good spring break.

