Reading covered: Chapters 1-5, 6.2, 6.3

Definitions of estimation tools: big-O, Ω, Θ.

- the inequalities between functions defining these must hold up to a positive constant factor. For instance, $f(n)$ is $\mathrm{O}(g(n))$ requires $f(n) \leq c * g(n)$, for some positive c. Often the first challenge in proving a big-O relationship is guessing c, i.e. finding a c that will work.
- The inequalities may be wrong for a few small values of n. It is only required that they be true for all values of n after some threshold. For instance, n is $\mathrm{O}(n * \log (n))$ even though when $n=1$, we see that $n>c * n * \log (n)$, regardless of c. On the other hand - and what counts for all $n \geq 2$, we see that $n \leq n * \log (n)$ is true because $\log (n) \geq 1$ for $n \geq 2$.

Master theorem and Muster theorem

- Master theorem (applies to recurrences diving down to n / b) and Muster theorem (applies to recurrences stepping down to $n-b$)
- divide and conquer sorting (merge sort) (p50)
- lower bound for sorting (p51)
- divide and conquer selection (randomized median) (homework problem)

Themes: divide and conquer algorithms may be organized around applicable case of Master theorem (see algorithms list below).
Algorithms to which Master theorem applies:

- Case 1 of Master theorem: binary search, selection (randomized median)
- Case 2 of Master theorem: merge sort,
- Case 3 of Master theorem: stooge sort has recurrence $\mathrm{T}(\mathrm{n})=3 \mathrm{~T}((2 / 3) n)$, for $n>2$.

Algorithms to which Muster theorem applies:

- Case 1 of Muster theorem: $a<1$ doesn't come up much.
- Case 2 of Muster theorem: insert sort has recurrence $T(n)=T(n-1)+O(n)$ [insert sort on the first $\mathrm{n}-1$ followed by insert the last elt.]
- Case 3 of Muster theorem applies to many exponential algorithms: For instance on a robot arm tour variant. The problem as to find a minimal cost tour through all the points of a weighted graph in which all nodes have degree at most k. Pick a point a, remove it, and, for each pair b, c of neighbors, combine them into one point. find the optimal tour through the resulting graph, add the cost of going from b to a to c. Take the minimal of all those tours. The recurrence is $\mathrm{T}(\mathrm{n})=(\mathrm{k})(\mathrm{k}-1) / 2 \mathrm{~T}(\mathrm{n}-2)+\mathrm{O}(\mathrm{n})$. Muster theorem says $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(n k^{n}\right)$. $\left[() k^{2}\right)^{n / 2}=k^{n}$.]

Graphs

- Breadth first search (bfs) in (undirected) graphs and digraphs (directed graphs).
- Single source shortest path via bfs.

Themes: basic graph representation and terminology, bfs is basis of solving some problems.
Chapter 6.3: Dijkstra's algorithm (assuming a priority queue) for single source shortest paths.
Overall: Things to know about each algorithm:

- Why is it correct (vis a vis it's input/output specification)? What are the theorems and properties used to explain it's workings?
- What measure, n , of it's input is used as basis for analysis (for instance, $\mathrm{n}=$ bound on number of bits in numbers, or $n=$ size of an array)?
- What formula (function of that n) estimates it's runtime? Usually the formula is a recurrence relation.
- What is the solution of that formula/recurrence up to big O or Θ ?

Kinds of questions: multiple choice, short answer, analyze given algorithm, write (simple) algorithm.

