Longest common subsequence(lcs)

$\operatorname{lcs}(\mathrm{A}, \mathrm{m}, \mathrm{B}, \mathrm{n})=$ length of longest common subsequence in $A[0 . . m), B[0 . . n)$
Example: $A=\{1,2,3,6,5,4,7\}, B=\{7,1,2,6,5,4,3\}$. An lcs is $\{1,2,6,4\}$ of length 4.

Recursive solution:

$$
l c s(m, n)= \begin{cases}0, & \text { if } m==0 \text { or } n==0 \\ 1+l \operatorname{lcs}(A, m-1, B, n-1), & \text { if }(A[m-1]=B[n-1] \\ \max \binom{l c s(A, m-1, B, n),}{l c s(A, m, B, n-1)}, & \text { otherwise }\end{cases}
$$

This works because if the last item in A and the last in B are equal then there is always a longest common subsequence ending at this item. (proof left to reader). Thus the second clause is correct by induction when the last items are equal. When the last items of A and B are unequal, at least one of them will not be in the longest common subsequence, so induction implies the third clause is correct. (We are inducting on $\mathrm{m}+\mathrm{n}$. So the hypothesis of inductive correctness applies to $\mathrm{m}-1+\mathrm{n}-1$, to $\mathrm{m}-1+\mathrm{n}$, and to $\mathrm{m}+\mathrm{n}-1$.)

Dynamic programming on the variables m, n gives a $\Theta(m n)$ time and memory algorithm. An implementation is in lcs.C, attached.

