CISC320 Algorithms, Homework set 4
Due Tue, Nov 23, 2010

A Modify the editDistance function to show the value of string S after each edit

in a minimal sequence of edits that convert it to string T. For instance if
S is "latch” and T is ”cache”, your program might print:

latch
latche
lache
cache

(representing 3 edits: an insertion, a deletion, and a substitution.) This
may be done by modifying either editDistanceMemoized or editDistanceDP
in edit-distance.C. Your solution should work in O(mnlog(m+n)) time.

B 8-1. This may be done by a 2 line addition to the editDistance function. I

suggest you implement this.

In fact you may submit one code as solution to problems A and B. In
particular, it is ok if your problem A solution includes swap edits as well
as insertions, deletions, substitutions. You may solve A and B individually
or as a team of 2. If you work with a partner, you must do 2 things: (1)
tell me in advance, and (2) use extreme programming — by this I mean
that you actually work out the entire solution together. You do the coding
together with at any one time person A at the keyboard while person B
looks on and provides observations and advice. What I require teams
don’t do is divide up the work and go off individually to do it.

C 8-4. We will do part of this in class (part a, LCS — but not SCS) so the

homework is part (a) SCS and part (b).

D A sequence is palindromic if it is the same read left to right as read right to

left. For example the sequence
hello madam, I'm adam

has many palendromic subsequences (ignoring spaces and punctuation)
such as “lI”, “madam”, “ada”, and “madam i'm adam”. Create a dy-
namic programming algorithm that takes a sequence S[0..n-1] of letters
and returns the length of the longest palendromic subsequence in S. The

run time should be in O(n?).

E Design a function palindromeEditDistance(S, i, j) that returns the min-

F 86

imal number of edits (insertions, deletions, subsitutions) to convert Sli..j]
to a palendrome. Note that the palendrome may be shorter or longer than
the starting number of characters, n = j + 1 —i. For instance, one edit
turns “abcb” into “abcba’. Alternatively, a deletion produces “beb”.



