5. (2-2) What is the value returned by the following function? What is the runtime in big-O?

```
int pesky(int n) {
  int r = 1;
  for (int i = 1; i <= n; ++i)
  for (int j = 1; j <= i; ++j)
  for (int k = j; k <= j+i; ++k)
  r += 1;
  return r;
}</pre>
```

The innermost loop (indexed by k) increases r by 1 a total of i times, so the loop could be replaced by r += i;. Then the second loop (indexed by j) increases r by i a total of i times, so can be replaced by $r += i^2;$. Finally the outer loop (indexed by i) increases r by i^2 for i running from 1 to n. [Remark: For the first time the body of the loop depends on the index of the loop.] This is problem 1-11 which we solved in class using induction. The loop computes $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$, which is $O(n^3)$.

The runtime has the same $O(n^3)$ complexity since the total number of steps is proportional to the number of times 1 is added to r. To be pedantic about it, the loop index k is compared and incremented for each increment of r, thus directly in proportion. The other loop index steps occur less often. QED.

7. Show n^2 is $O(2^n)$.

We all sort of know that 2^n grows much faster than n^2 (exponential vs quadratic growth). How can we show it using only elementary algebra?

I suggest using proof by induction (but depending on the n/2 case, not the n-1 case in the inductive step).

I'll show that $n^2 \leq 2^n$ (ie. I'll use C = 1).

Base cases:

n	n^2	2^n
1	1	2
2	4	4
3	9	8
4	16	16
5	25	32
6	36	64
$\overline{7}$	49	128

We see that the assertion is true for n = 4 through 7. My plan is that the inductive step for n will be based on a previous case of n/2 or (n + 1)/2, whichever is an integer. Thus we'll have a basis for induction starting at n = 8 and using the inequality starting at k = 4.

Inductive step: Suppose n = 2k is even. Then $n^2 = 4 \times k^2 \leq 4 \times 2^k$ (using inductive hyp.) $= 2^{k+2}$ $< 2^{2k}$, if $k \geq 2$. Done with the even n case. Now suppose n is odd, n = 2k - 1. $n^2 = 4k^2 - 4k + 1 \leq 4 \times 2^k - 4k + 1$ (by inductive hyp.) $< 2^{k+2}$ (using that 4k - 1 is pos for pos integer k.) $< 2^{2k-1}$, if $k \geq 3$. Done with the odd n case. QED.