5. (2-2) What is the value returned by the following function? What is the runtime in big-O?
```
int pesky(int n) {
int r = 1;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= i; ++j)
for (int k = j; k <= j+i; ++k)
r += 1;
return r;
}
```

The innermost loop (indexed by k) increases r by 1 a total of i times, so the loop could be replaced by $\mathrm{r}+=\mathrm{i}$; Then the second loop (indexed by j) increases r by i a total of i times, so can be replaced by $r+=i^{\wedge} 2$; Finally the outer loop (indexed by i) increases r by i^{2} for i running from 1 to n. [Remark: For the first time the body of the loop depends on the index of the loop.] This is problem 1-11 which we solved in class using induction. The loop computes $\sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6$, which is $\mathrm{O}\left(n^{3}\right)$.
The runtime has the same $\mathrm{O}\left(n^{3}\right)$ complexity since the total number of steps is proportional to the number of times 1 is added to r. To be pedantic about it, the loop index k is compared and incremented for each increment of r, thus directly in proportion. The other loop index steps occur less often. QED.
7. Show n^{2} is $\mathrm{O}\left(2^{n}\right)$.

We all sort of know that 2^{n} grows much faster than n^{2} (exponential vs quadratic growth). How can we show it using only elementary algebra?
I suggest using proof by induction (but depending on the $n / 2$ case, not the $n-1$ case in the inductive step).
I'll show that $n^{2} \leq 2^{n}$ (ie. I'll use $\mathrm{C}=1$).
Base cases:

n	n^{2}	2^{n}
1	1	2
2	4	4
3	9	8
4	16	16
5	25	32
6	36	64
7	49	128

We see that the assertion is true for $n=4$ through 7 . My plan is that the inductive step for n will be based on a previous case of $n / 2$ or $(n+1) / 2$, whichever is an integer. Thus we'll have a basis for induction starting at $n=8$ and using the inequality starting at $k=4$.
Inductive step: Suppose $n=2 k$ is even. Then
$n^{2}=4 \times k^{2} \leq 4 \times 2^{k}$ (using inductive hyp.)
$=2^{k+2}$
$<2^{2 k}$, if $k \geq 2$. Done with the even n case.
Now suppose n is odd, $n=2 k-1$.
$n^{2}=4 k^{2}-4 k+1 \leq 4 \times 2^{k}-4 k+1$ (by inductive hyp.)
$<2^{k+2}$ (using that $4 k-1$ is pos for pos integer k.)
$<2^{2 k-1}$, if $k \geq 3$. Done with the odd n case.
QED.

