
Out-of-core SSet implementations

When the data set is too large to store in main memory, secondary
storage must be used, eg. hard drive storage.

Since access time to disk is much slower, this changes the
considerations for an SSet implementation.

Search trees work, but major changes are appropriate. You don’t
want to cause a disk read for every item accessed during a find
operation...



b-trees

Key properties of b-trees:

1. 1.1 A b-tree node has from b to 2b children and contains from b-1
to 2b-1 keys.

1.2 Exception: the root node may have fewer, containing from 2
to 2b children and from 1 to 2b-1 keys.

2. All leaves of a b-tree are at the same depth.

3. A b-tree is a search tree. If a node contains child links
c0, c1, . . . , cn and keys k0 < k1 < . . . < kn−1, then we have

3.1 k < k0, for all keys k in the subtree rooted at c0,
3.2 for 1 ≤ i ≤ n − 1, we have ki−1 < k < ki , for all keys k in the

subtree rooted at ci , and
3.3 kn−1 < k , for all keys k in the subtree rooted at cn.

A 2-3-4-tree is the case b = 2 of a b-tree.



HDD (Hard Disk Drive) storage medium

I Hard drive capacities: terabyte becoming common.

I Hard drives may rotate 10,000 rpm.

I Seek time (move head to proper ring) circa 10ms.

I Latency (average time for proper point of disk to rotate under
head) circa .3ms.

I A logical block is read at a time
The old logical block size standard was 512 = 29 bytes, new
standard is 4096 = 212 bytes.

I 212 bytes = 29 8-byte words = 2 arrays (of 2b words and of
2b-2 words) for b ≈ 27.

So a possibly good value for b is 128.



min and max number of keys in a b-tree of given height

height min max
−1 0 0
0 1 2b − 1
1 1 + 2(b − 1) 2b − 1 + 2b(2b − 1)
2 1 + 2(b − 1) + 2b(b − 1) 2b − 1 + 2b(2b − 1) + 4b2(2b − 1)
3 1 + (2 + 2b + 2b2)(b − 1) (1 + 2b + 4b2 + 8b3)(2b − 1)
3 2b3 − 1 (2b)4 − 1)
...

...
...

h O(bh) O((2b)h+1)

Also, the max at height h is about b2h times the min at height h.



min and max number of keys in a b-tree of given height

b = 2 b = 3 b = 128
ht min + 1 max + 1 min + 1 max + 1 min + 1 max + 1
−1 1 1 1 1 1 1

0 2 4 2 6 2 256
1 4 16 6 36 256 65536
2 8 64 18 216 32768 16777216
3 16 256 54 1296 4194304 4294967296
4 32 1024 162 7776 536870912 1099511627776
...

...
...

...
...

...
...

h 2h+1 4h+1 2 · 3h 6h+1 2bh (2b)h+1

h m 2h+1m m 3 · 2h m (b2h)m



Flash memory vs Hard Drives

SSD (Solid State Drive) technology competes with HDD.

Pro HDD: capacity, price.
Pro SSD speed, power consumption, mechanical durability.

Flash Drive access time is circa 0.1ms. Compare with vs circa
10ms for HDD. It is at least 100 times faster than the competing
HDD under consideration.
There are debates about relative reliability of SSD and HDD.
Because of larger capacity HDD is more likely to be in use for an
out-of-core SSet application (b-tree application)..



b-tree code sketch

/* DRAFT pseudocode sketch of b_Tree.h, containing

the b-tree implementation of SSet operations.

*/

template <class T> struct INPair { // item-node pair

T item;

Node* child; //

INPair(Node* n, T i) { item = i; node = n; }

}

/* a basic node that could work for B-tree */

template <class T>

struct Node {

INPair<T>* a;

int k; // current size.

Node() { a= new INPair<T>[2*b], n = 0; }

INPair& operator[](int i) { return a[i]; }

};

//Nodes have permanent length = 2*b,

// but n (the current size()) varies from b to 2b.

// Items in each node are maintained in sorted order.

/* Example Node<int> N;

N.k = 2

N[0] = (null,u), N[1] = (4,v), N[2] = (9, w).

represents

[null, 4, 9]

\ \ \

u v w

*/

template<class T> b_Tree {

Node* root;

Node* nil;

T null;

/* bTree member functions */

/////////// find (x) /////////

T find(T x) { return find(x, root); }

/* Search for item x in the b-tree rooted at node u */

T find(T x, Node* u) {

int i = findInNode(u, x); // u[i].item <= x

if (u[i].item == x) return u[i].item;

else return find(x, u[i].child);

}

int i = findInNode(Node* u, T x) {

//find index i such that u[i].item <= x.item < u[i+1].item

//Note: we require u[0].item == null < x.item.

//binary search

int a = 0, b = u->size(), m = (a+b)/2;

while (a < b){ //invariant u[a] <= x < u[b]

if (x < u[m].item) b = m;

if (x >= u[m].item) a = m;

m = (a+b)/2;

}

return m;

}

/////////// add (x) /////////

void add(T a) {

INPair x(a, nil);

INPair y = add(x, root);

if (y.item != null or y.node != nil){ // y is result of split root

Node* z = new Node;

(*z)[0] = (*root)[0]

(*z)[1] = y;

root = z;

}

}

INPair add(INPair x, Node* u) {

/* y = S.add(x, u) inserts x in subtree rooted at u

IF u gets split,

y.item is the removed item,

u becomes the child node to left of y.item,

y.node is the new child node to right of y.item

Othewise y is set to (null,nil)

*/

INPair w(null, nil), y;

int i = findInNode(x.item, u);

// if x is in u

if (x.item == u[i].item)

return w;

if (u is a non-full leaf) {

u.add(x, i); // local add

return w;

}

if (u is a full leaf) {

y = split(u); // u keeps low part, y gets high part.

if (x.item < y.item) add(x, u); // local add

else add(x, y.node); // local add

return y;

}

if (u is not a leaf) {

y = add(x, u[i].node);

if (y.item != null or y.node != nil) // y is result of split below

if (u is not full)

u[i].add(y);

else {

w = split(u);

if (y.item < w.item) add(y, u);

else add(y, w.node);

}

return w;

}

}

INPair split(Node* u) { // split a full node in the middle

Node* w = new Node(2*b);

item y = u[b];

// u keeps 0 .. b-1 and w gets b..2b-1

copy u[b .. 2b-1] to w[0 .. b-1].

w[0].item = null; // overwrite y there

set u.size() = w.size() = b.

return INPair(y,w);

}

/////////// remove (x) /////////

...

}; // class b_Tree



b-tree applications and variants

b-trees work well with the memory hierarchy of fast RAM memory
and large, permanent, but slow access hard drive memory, and
fairly large b (such as 100 < b < 1000).
To reduce cost of insertions and deletions, A single node could
itself be a balanced binary tree such as a 2-3-4-Tree or Treap, but
with all the nodes allocated within the node’s block of memory.
But this is often not done because the speedup is negligible
relative to the cost of the disk reads.
There are many variants,

I a) some aimed at insuring a large root node: vary the min and
max number of items per node, for instance put only items,
no child pointers in leaf nodes.

I b) maximize keys per node and hence minimize depth by
storing all items in leaves only. In this variant, keys in internal
nodes are copies of the keys only out of the items in leaves.



b-tree clicker question 1

In a b-tree what is the minimal number of items in the root node?

A. 1

B. b-1

C. 2b-1

D. 2n



b-tree clicker question 2

In a b-tree what is the minimal number of items in a non-root
node?

A. 1

B. b-1

C. 2b-1

D. 2n



b-tree clicker question 3

In a b-tree what is the maximal number of items in any node?

A. 1

B. b-1

C. 2b-1

D. 2n



b-tree activity

Let A be a b-tree of characters, with b = 3. Nodes contain a
maximum of 6 child links and 5 keys.

A. Determine the b-tree that results from adding a thru e in
order.

B. Determine the b-tree that results from adding a thru f in
order.

C. Determine the b-tree that results from adding a thru h in
order.

D. Determine the b-tree that results from adding a thru i in order.

E. Determine the b-tree that results from adding a thru z in
order. What is it’s height?

F. Is there an order of insertion of 26 items that would result in a
height 1 tree? (b = 3, still.) If so, find such an order.



b-tree clicker question 4

As a function of b, a b-tree of height 2 has how about many nodes
at minimum? (choose closest answer)

A. 1

B. b

C. b2

D. b3



b-tree clicker question 5

As a function of b, a b-tree of height 2 has how about many nodes
at maximum? (choose closest answer)

A. 1

B. b

C. b2

D. b3


