
Project 2
CISC 471 Compiler Design

A Syntax-directed Translator for a Small Imperative Language (SIL-K)

Deliverables and Deadlines: April 30 first deliverable.

 May 6 second deliverable. See below for more details.

You may work by yourself or in pairs.

Project Objectives: To gain experience writing a syntax-directed translator and
learn how to read and modify someone else’s software.

Procedure:

Write an SDT (syntax-directed translator) to generate code for the simple imperative
language shown below, called SIL-K. The SIL-K language does not contain any
procedures, but only a single main program. Base types are limited to integer only.
Arrays are one-dimensional (or 2-dimensional for extra credit!) with the integer type as
its component and index type. The following statements are included: for-do, if-then, if-
then-else, assignment, write, and compound statement. Operators are restricted to
arithmetic and relational. The grammar that we are using for the SIL-K language is as
follows:

start ::= program ID ; block .

block ::= variables cmpdstmt

variables ::= var vardcls | empty string

vardcls ::= vardcls vardcl ; | vardcl ;

vardcl ::= IDlist : type

type ::= integer | array[ICONST] of integer | array[ICONST, ICONST] of
integer

IDlist ::= IDlist , ID | ID

stmtlist ::= stmtlist ; stmt | stmt

stmt ::= ifstmt | fstmt | astmt | writestmt | cmpdstmt

cmpdstmt ::= begin stmtlist end

writestmt ::= writeln (exp)

ifstmt ::= ifhead then stmt else stmt | ifhead then stmt

ifhead ::= if condexp

fstmt ::= for ctrlexp do stmt

ctrlexp ::= ID := ICONST, ICONST

astmt ::= lhs := exp

lhs ::= ID | ID [exp] | ID [exp, exp]

exp ::= exp + exp | exp - exp | exp * exp | ID | ID [exp] | ID [exp, exp] |
ICONST

condexp ::= exp != exp | exp == exp | exp < exp | exp <= exp

You may assume that the SIL-K programs are correct in terms of static semantics, i.e., no
semantic analysis (type checking) is required.

You will write a syntax-directed translation scheme that will generate ILOC code for the
above language. ILOC is an intermediate language that is similar to assembly code. You
may test the correctness of your generated ILOC code by running it on the ILOC
simulator sim provided in directory /usa/Pollock/cis471/project2 on orioles. This
directory also contains the source code of the ILOC simulator if you want to compile it
on another machine for testing.

Code Shape Requirements

 * Your code should use the register-register model that exposes the maximal
opportunities for register allocation. In other words, each new value should reside in a
separate virtual register. The function NextRegister will return a new (fresh) register
number each time it is called.

 * The first element of an array a is a[0] (one-dimensional) or a[0,0] (two-
dimensional). All addresses are byte addresses and an integer value is stored in a 4 byte
word. The data layout for two-dimensional arrays should be column-major order. The
overall available memory is set to 20,000 bytes. For instance, if you specify array
x[100,100] of integer , the simulator will complain! Again, 2-dimensional array
translation is extra credit, and not required.

 * All variables are statically allocated, i.e., there is no need for activation records on a
runtime stack. The static area starts at memory location 1024. Addresses above are
reserved for register spilling. The register r0 should contain the starting address (namely
1024) of the static area during program execution.

 * You may only use the following ILOC instructions. All these instructions are
implemented in sim , our ILOC simulator. A table of ILOC instructions and their
semantics is given at the end of this document.

 - no operation: nop .

 - arithmetic: addI, add, subI, sub, mult .

 - memory load, loadI, loadAO, loadAI, store, storeAO, storeAI .

 - control flow: br, cbr, cmp_LT, cmp_LE, cmp_EQ, cmp_NE, cmp_GT, cmp_GE .

 - I/O: output .

 Please see files instrutil.h and instrutil.c for the definitions of procedures/functions
emit, emitComment, NextRegister, and NextLabel.

 * You may want to generate nop instructions as targets of branches and conditional
branches, e.g., L1: nop .

 * The evaluation of an exp will always result in an integer value, while the evaluation
of a condexp will always result in a boolean (0 or 1) value. An ILOC cmp_ instruction
writes a boolean value into its target register.

 * The function NextLabel will generate a new (fresh) label each time it is called.

How To Get Started

The following code is provided as a starting point for your project. You can copy the files
from the directory /usa/Pollock/cis471/project2 on orioles.

 1. Scanner: scan.l (flex) *** DO NOT MODIFY ***

 2. Parser/Code Generator: parse.y (bison). Here is where most of your code will go. It
contains an example of how to use procedure emit to generate code. You will need to
remove this in your final version, i.e., it has only be inserted as an illustration example.

 3. attr.h and attr.c . You will need to define new attribute(s) for recording information
as you parse to use it later in parsing for generating code.

 4. symtab.h and symtab.c . May need to be modified.

 5. instrutil.h and instrutil.c . Need not modify.

 6. Makefile Need not modify.

In order to get started on testing your compiler, you can use the following test cases. This
is just a tentative list of source codes and their generated sample ILOC code using our
code generator sample solution (codegen found in /usa/pollock/cis471/project2 on
orioles). We will use many more test cases to grade your project . There are many ways
of generating correct code, so our codegen compiler gives you only an overall idea what
needs to be done.

 1. Basic straight line (no conditionals or loops) code:

 * demo1 (demo1.out)

 2. Basic code with control flow:

 * demo2 (demo2.out)

 * demo3 (demo3.out)

 3. Basic code with control flow and array references:

 * demo4 (demo4.out)

 * demo5 (demo5.out)

 * demo6 (demo6.out)

 4. More code with control flow and array references:

 * demo7 (demo7.out)

 * demo8 (demo8.out)

You can generate an executable called codegen by typing make. The parser/code
generator expects the input on stdin, i.e., you can call the parser on an input program as
follows: codegen < demo1. The parser/code generator writes the resulting ILOC code
into file iloc.out.

Submission Procedure

You can either tar all of your files and email them to the ta by the deadline, or let the ta
know what subdirectory of your svn has your files and that it is ready for grading. If you
email the files, please tar all your source files, including the ReadMe file. Your ReadMe
file may contain comments that you want the grader to know about. Do a "make clean"
before tar-ing your files. Do not submit your compiler as an executable. Do not submit
the simulator or the provided sample solution.

Grading Criteria

The project will be mainly graded on functionality. You will receive no credit for the
entire project if we cannot recreate (make) your compiler or your compiler does not run
on any of our test codes.

Grading rubric: 65 points
25 points: Basic points for basic code generation for the following features: due April 30

 5 points: Start, block, integer variables

 5 points: arithmetic expressions

 5 points: assignment

 5 points: write statement

 5 points: sequences of statements

Control features: complete code generator due May 6

10 points: Conditional expressions, if statements (then and then/else)

8 points: For (loop) statement

7 points: Single dimensional array

5 points: nested if statements

5 points: nested loops

5 points: nested loops and if statements combined

Extra Credit: 10 points 2-dimensional arrays due May 6

Credits: This project was created by Uli Kremer, an Assistant Professor at Rutgers
University. He has given permission for this project to be used in this compiler course.

