
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 6, DECEMBER 2002 721

Single-Packet IP Traceback
Alex C. Snoeren, Student Member, IEEE, Craig Partridge, Fellow, IEEE, Luis A. Sanchez,

Christine E. Jones, Fabrice Tchakountio, Member, IEEE, Beverly Schwartz, Stephen T. Kent, and
W. Timothy Strayer, Senior Member, IEEE

Abstract—The design of the IP protocol makes it difficult to
reliably identify the originator of an IP packet. Even in the ab-
sence of any deliberate attempt to disguise a packet’s origin, wide-
spread packet forwarding techniques such as NAT and encapsula-
tion may obscure the packet’s true source. Techniques have been
developed to determine the source of large packet flows, but, to
date, no system has been presented to track individual packets in
an efficient, scalable fashion. We present a hash-based technique
for IP traceback that generates audit trails for traffic within the
network, and can trace the origin of a single IP packet delivered
by the network in the recent past. We demonstrate that the system
is effective, space efficient (requiring approximately 0.5% of the
link capacity per unit time in storage), and implementable in cur-
rent or next-generation routing hardware. We present both ana-
lytic and simulation results showing the system’s effectiveness.

Index Terms—Computer network management, computer net-
work security, denial of service (DoS), IP traceback, network fault
diagnosis, wide-area networks (WANs).

I. INTRODUCTION

T ODAY’S Internet infrastructure is extremely vulnerable to
motivated and well-equipped attackers. Tools are readily

available, from covertly exchanged exploit programs to publicly
released vulnerability assessment software, to degrade perfor-
mance or even disable vital network services. The consequences
are serious and, increasingly, financially disastrous. While dis-
tributed denial-of-service (DDoS) attacks, typically conducted
by flooding network links with large amounts of traffic, are the
most widely reported, there are other forms of network attacks,
many of which require significantly smaller packet flows. In
fact, there are a number of widely deployed operating systems
and routers that can be disabled by a single well-targeted packet
(e.g., the Teardrop attack crashes versions of Microsoft Win-
dows with one packet [1]). To institute accountability for these
attacks, the source of individual packets must be identified.

Unfortunately, the anonymous nature of the IP protocol
makes it difficult to accurately identify the true source of an

Manuscript received September 29, 2001; approved by IEEE/ACM
TRANSACTIONS ONNETWORKING Editor V. Paxson. This work was supported
by the Defense Advanced Research Projects Agency (DARPA) under Contract
N66001-00-C-8038. A preliminary version of this paper was presented at ACM
SIGCOMM’01, San Diego, CA, August 2001.

A. C. Snoeren is with the MIT Laboratory for Computer Science, Cambridge,
MA 02139 USA, and with BBN Technologies, Cambridge, MA 02138 USA
(e-mail: snoeren@lcs.mit.edu).

C. Partridge, C. E. Jones, F. Tchakountio, B. Schwartz, S. T. Kent, and
W. T. Strayer are with BBN Technologies, Cambridge, MA 02138 USA (e-mail:
craig@bbn.com; cej@bbn.com; ftchakou@bbn.com; bschwart@bbn.com;
kent@bbn.com; strayer@bbn.com).

L. A. Sanchez is with Megisto Systems, Inc., Germantown, MD 20874 USA
(e-mail: lsanchez@megisto.com).

Digital Object Identifier 10.1109/TNET.2002.804827

IP datagram if the source wishes to conceal it. The network
routing infrastructure is stateless and based largely on des-
tination addresses; no entity in an IP network is officially
responsible for ensuring the source address is correct. Many
routers employ a technique calledingress filtering[2] to limit
source addresses of IP datagrams from a stub network to
addresses belonging to that network, but not all routers have
the resources necessary to examine the source address of each
incoming packet, and ingress filtering provides no protection
on transit networks. Furthermore, spoofed source addresses
are legitimately used by network address translators (NATs),
Mobile IP, and various unidirectional link technologies such as
hybrid satellite architectures.

Accordingly, a well-placed attacker can generate offending IP
packets that appear to have originated from almost anywhere.
While techniques such as ingress filtering, which suppresses
packets arriving from a given network with source addresses that
do not properly belong to that network, increase the difficulty of
mounting an attack, transit networks are dependent upon their
peers to perform the appropriate filtering. This interdependence
is clearly unacceptable from a liability perspective; each moti-
vated network must be able to secure itself independently.

Systems that can reliably trace individual packets back to
their sources are a first and important step in making attackers
(or, at least, the systems they use) accountable. There are a
number of significant challenges in the construction of such a
tracing system including determining which packets to trace,
maintaining privacy (a tracing system should not adversely im-
pact the privacy of legitimate users), and minimizing cost (both
in router time spent tracking rather than forwarding packets, and
in storage used to keep information).

We have developed aSource Path Isolation Engine(SPIE) to
enable IPtraceback, the ability to identify the source of a partic-
ular IP packet given a copy of the packet to be traced, its desti-
nation, and an approximate time of receipt. Historically, tracing
individual packets has required prohibitive amounts of memory;
one of SPIE’s key innovations is to reduce the memory require-
ment (down to 0.5% of link bandwidth per unit time) through
the use of Bloom filters [3]. By storing only packet digests, and
not the packets themselves, SPIE also does not increase a net-
work’s vulnerability to eavesdropping. SPIE therefore allows
routers to efficiently determine if they forwarded a particular
packet within a specified time interval while maintaining the
privacy of unrelated traffic.

The rest of this paper examines SPIE in detail. We begin by
defining the problem of IP traceback in Section II, and articu-
late the desired features of a traceback system. We survey pre-
vious work in Section III, relating their feature sets against our

1063-6692/02$17.00 © 2002 IEEE

722 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 6, DECEMBER 2002

requirements. Section IV describes the digesting process in de-
tail. Section V presents an overview of the SPIE architecture,
while Section VI offers a practical implementation of the con-
cepts. Section VII provides both analytic and simulation results
evaluating SPIE’s traceback success rates. We discuss the issues
involved in deploying SPIE in Section VIII before concluding
in Section IX with a brief look at future work.

II. IP TRACEBACK

The concept of IP traceback is not yet well defined. In an at-
tempt to clarify the context in which SPIE was developed, this
section presents a detailed and formal definition of traceback.
We hope that presenting a strawman definition of traceback
will also help the community better evaluate different traceback
schemes.

In order to remain consistent with the terminology in the lit-
erature, we will consider a packet of interest to be nefarious, and
term it anattack packet; similarly, the destination of the packet
is a victim. We note, however, that there are many reasons to
trace the source of a packet; many packets of interest are sent
with no ill intent whatsoever.

A. Assumptions

There are several important assumptions that a traceback
system should make about a network and the traffic it carries.

• Packets may be addressed to more than one physical host.
• Duplicate packets may exist in the network.
• Routers may be subverted, but not often.
• Attackers are aware they are being traced.
• The routing behavior of the network may be unstable.
• The packet size should not grow as a result of tracing.
• End hosts may be resource constrained.
• Traceback is an infrequent operation.

The first two assumptions are simply characteristics of the In-
ternet Protocol. IP packets may contain a multicast or broadcast
address as their destination, causing the routing infrastructure to
duplicate them internally. An attacker can also inject multiple
identical packets itself, possibly at multiple locations. A tracing
system must be prepared for a situation where there are mul-
tiple sources of the same (identical) packet, or a single source
of multiple (also typically identical) packets.

The next two assumptions speak to the capabilities of the at-
tacker(s). An attacker may gain access to routers along (or adja-
cent to) the path from attacker to victim by a variety of means.
Further, a sophisticated attacker is aware of the characteristics
of the network, including the possibility that the network is ca-
pable of tracing an attack. The traceback system must not be
confounded by a motivated attacker who subverts a router with
the intent to subvert the tracing system.

The instability of Internet routing is well known [4] and its
implications for tracing are important. Two packets sent by the
same host to the same destination may traverse wildly different
paths. As a result, any system that seeks to determine origins
using multipacket analysis techniques must be prepared to make
sense of divergent path information.

The assumption that the packet size should not grow is prob-
ably the most controversial. There are a number of protocols
today that cause the packet size to grow, for example technolo-
gies that rely on packet encapsulation, such as IPsec and mobile
IP. However, increasing the packet size causes MTU problems
and increases overhead sharply (each byte of additional over-
head reduces system bandwidth by about 1%, given the average
packet size of about 128 B). A recent study by the Cooperative
Association for Internet Data Analysis (CAIDA) [5] found that
packet encapsulation (and the resulting growth in packet size) is
the single largest cause of fragmentation on the Internet. It fol-
lows that an efficient traceback system should not cause packet
size to grow.

We assume that an end host, and in particular the victim of an
attack, may be resource poor and unable to maintain substan-
tial additional administrative state regarding the routing state or
the packets it has previously received. This assumption comes
from the observed rise in special purpose devices such as mi-
croscopes, cameras, and printers that are attached to the Internet
yet have few internal resources other than those devoted to per-
forming their primary task.

The final assumption that traceback queries are infrequent has
important design implications. It implies queries can be handled
by a router’s control path, and need not be dealt with on the for-
warding path at line speed. While there may be auditing tasks as-
sociated with packet forwarding to support traceback that must
be executed while forwarding, the processing of the audit trails
is infrequent with respect to their generation.

B. Goal

Ideally, a traceback system should be able to identify the
source of any piece of data sent across the network. In an IP
framework, the packet is the smallest atomic unit of data. Any
smaller division of data (a byte, for instance) is contained within
a unique packet. Hence, an optimal IP traceback system would
precisely identify the source of an arbitrary IP packet. Any larger
data unit or stream can be isolated by searching for any partic-
ular packet containing data within the stream.1

As with any auditing system, a traceback system can only be
effective in networks in which it has been deployed. Hence, we
consider the source of a packet to be one of the following:

• the ingress point to the traceback-enabled network;
• the actual host or network of origin;
• one or more compromised routers within the enabled net-

work.
If one assumes that any router along the path may be co-opted

to assist in concealing a packet’s source, it becomes obvious that
one must attempt to discern not only the packet’s source, but its
entire path through the network. Because subverted routers can
fabricate trace information, the path can only be guaranteed to
be accurate on the portion from the victim to the a source or sub-
verted router, whichever comes first. While subverted routers
may attempt to conceal their identity by appending additional
sources further upstream, the subverted routers themselves must

1Indeed, we would argue that it is desirable to trace the individual packets
within a stream because the individual packets may have originated at different
sites (meeting only at the victim) and are likely to have followed different paths
through the network.

SNOERENet al.: SINGLE-PACKET IP TRACEBACK 723

still appear as a node in the trace. We consider subverted routers
that attempt to conceal the true source of a packet as co-conspir-
ator and, therefore, attack sources themselves.

Hence, we are interested in constructing anattack path,
where the path consists of each router traversed by the packet
on its journey from source to the victim. Each node in an attack
path either forwarded the packet or lies upstream of a subverted
router that did. Further, since multiple, indistinguishable
packets may be injected into the network from different sources
in the general case, a traceback system should construct an
attack graphcomposed of the attack paths for every instance of
the attack packet that arrived at the victim.

If routers are subverted, they may provide misinformation to
the traceback system, causing the attack graph to contain false
positives; that is, the attack graph may implicate sources that
did not actually emit the packet. We argue these false positives
are unavoidable consequence of admitting the possibility of sub-
verted routers. An ideal traceback system, however, produces no
falsenegativeswhile attempting to minimize false positives; it
must never exonerate an attacker by not including the attacker
in the attack graph.

Further, when a traceback system is deployed, it must not re-
duce the privacy of IP communications. In particular, entities
not involved in the generation, forwarding, or receipt of the orig-
inal packet should not be able to gain access to packet contents
by either utilizing or as part of participating in the IP traceback
system. An ideal IP traceback system must not expand the eaves-
dropping capabilities of a malicious party.

C. Transformations

It is important to note that packets may be modified during the
forwarding process. In addition to the standard decrementing
of the time to live (TTL) field and checksum recomputation,
IP packets may be further transformed by intermediate routers.
Packettransformationmay be the result of valid processing,
router error, or malicious intent. A traceback system need not
concern itself with packet transformations resulting from error
or malicious behavior. Packets resulting from such transforma-
tions only need be traced to the point of transformation, as the
transforming node either needs to be fixed or can be considered
a co-conspirator (source). A complete traceback system should
trace packets through valid transformations back to the source
of the original packet.

Valid packet transformations are defined as a change of
packet state that allows for or enhances network data delivery.
Transformations occur due to such reasons as hardware needs,
network management, protocol requirements, and source re-
quest. Based on the transform produced, packet transformations
are categorized as follows.

1) Packet Encapsulation: A new packet is generated in which
the original packet is encapsulated as the payload (e.g., IPsec).
The new packet is forwarded to an intermediate destination for
de-encapsulation. This is also known astunneling.

2) Packet Generation: One or more packets are generated as
a direct result of an action by the router on the original packet
(e.g., an ICMP Echo Reply sent in response to an ICMP Echo
Request, or packet duplication in IP Multicast). The new packets
are forwarded and processed independent of the original packet.

(A large number ofreflectorattacks utilize such transforms to
hide their source [6].)

Common packet transformations include those performed by
RFC 1812-compliant routers [7] such as packet fragmentation,
IP option processing, ICMP processing, and packet duplication.
Network address translation (NAT) and both IP-in-IP and IPsec
tunneling are also notable forms of packet transformation. Many
of these transformations result in a loss of the original packet
state due to the stateless nature of IP networks.

A recent CAIDA study of wide-area traffic patterns found
that less than 3% of IP traffic underwent common transforma-
tion and IP tunneling [8]. While this study did not encompass
all forms of transformation (NAT processing being a notable
omission), it seems safe to assume that packet transformations
account for a relatively small fraction of the overall IP traffic
traversing the Internet today. However, attackers may transmit
packets engineered to experience transformation. The ability to
trace packets that undergo transformation is, therefore, an es-
sential feature of any viable traceback system.

III. RELATED WORK

There are two approaches to the problem of determining the
route of a packet flow: one can audit the flow as it traverses
the network, or one can attempt to infer the route based upon
its impact on the state of the network. Both approaches become
increasingly difficult as the size of the flow decreases, but the
latter becomes infeasible when flow sizes approach a single
packet because small flows generally have no measurable im-
pact on the network state.

Route inference was pioneered by Burch and Cheswick [9]
who considered the problem of large packet flows and proposed
a novel technique that systematically floods candidate network
links. By watching for variations in the received packet flow
due to the restricted link bandwidth, they are able to infer the
flow’s route. This technique requires considerable knowledge of
network topology and the ability to generate large packet floods
on arbitrary network links.

One can categorize auditing techniques into two classes ac-
cording to the way in which they balance resource requirements
across the network components. Some techniques require re-
sources at both the end host and the routing infrastructure, others
require resources only within the network itself. Of those that
require only infrastructure support, some add packet processing
to the forwarding engine of the routers while others offload the
computation to the control path of the routers.

A. End-Host Storage

Some auditing approaches attempt to distribute the burden
by storing state and performing computation at the end hosts
rather than in the network. Routers notify the packet destination
of their presence on the route. Because IP packets cannot grow
arbitrarily large, schemes have been developed to reduce the
amount of space required to send such information. Recently
proposed techniques by Savageet al. [10] and Bellovin [11]
explore in-band and out-of-band signaling, respectively.

Because of the high overhead involved, neither Savageet
al. nor Bellovin attempt to provide audit information for every

724 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 6, DECEMBER 2002

packet. Instead, each employs probabilistic methods that allow
sufficiently large packet flows to be traced. By providing partial
information on a subset of packets in a flow, auditing routers en-
able an end host to reconstruct the entire path traversed by the
packet flow after receiving a sufficient number of packets be-
longing to the flow.

The two schemes diverge in the methods used to commu-
nicate the information to the end host. Savageet al. employ
a packet marking scheme that encodes the information in
rarely-used fields within the IP header itself. This approach
has been extended by Song and Perrig to improve the re-
construction of paths and authenticate the encodings [12]. In
order to avoid the backward compatibility issues and increased
computation required by the sophisticated encoding schemes
employed in the packet marking schemes, Bellovin’s scheme
(and later “intentional” extension [13]) simply sends the audit
information in an ICMP message.

B. Infrastructure Approaches

End-host schemes require the end hosts to log meta data in
case an incoming packet proves to be offensive. Alternatively,
the network itself can be charged with maintaining the audit
trails.

The obvious approach to auditing packet flow is simply to
log packets at various points throughout the network and then
use appropriate extraction techniques to discover the packet’s
path through the network. Logging requires no computation on
the router’s fast path and, thus, can be implemented efficiently
in today’s router architecture. Sager suggests such a monitoring
approach [14]. However, the effectiveness of the logs is limited
by the amount of space available to store them. Given today’s
link speeds, packet logs quickly grow to intractable sizes, even
over relatively short time frames. An OC-192 link is capable of
transferring 1.25 GB per second. If one allows 60 seconds to
conduct a query, a router with 16 links would require 1.2 TB of
high-speed storage.

These requirements can be reduced by sampling techniques
similar to those of the end-host schemes, but down-sampling
reduces the probability of detecting small flows and does not
alleviate the security issues raised by storing complete packets
in the router. The ability of an attacker to break into a router
and capture terrabytes of actual traffic has severe privacy
implications.

Alternatively, routers can be tasked to perform more sophis-
ticated auditing in real time, extracting a smaller amount of
information as packets are forwarded. Many currently avail-
able routers supportinput debugging, a feature that identifies
on which incoming port a particular outgoing packet (or set of
packets) of interest arrived. Since no history is stored, however,
this process must be activated before an attack packet passes by.
Furthermore, due to the high overhead of this operation on many
popular router architectures, activating it may have adverse ef-
fects on the traffic currently being serviced by the router.

C. Specialized Routing

One of the main problems with the link testing or logging
methods above is the large amount of repetition required. A

trace is conducted in a hop-by-hop fashion, querying each router
along the way. Once the incoming link or links have been iden-
tified, the process must be repeated at the upstream router.

Several techniques have been developed to streamline and au-
tomate this process. Some ISPs have developed their own ad
hoc mechanisms for automatically conducting input debugging
across their networks. Schnackenberget al.[15] propose a more
general Intruder Detection and Isolation Protocol (IDIP) to fa-
cilitate interaction between routers involved in a traceback ef-
fort. IDIP does not specify how participating entities should
track packet traffic; it simply requires that they be able to de-
termine whether or not they have seen a component of an at-
tack matching a certain description. Even with automated tools,
however, each router in the ISP must support input debugging
or logging which are not common in today’s high-speed routers
for reasons discussed above.

In order to avoid this requirement, Stone [16] suggests con-
structing an overlay network connecting all the edge routers of
an ISP. By using a deliberately simple topology of specialized
routers, suspicious flows can be dynamically rerouted across the
special tracking network for analysis. This approach has two
major shortcomings. First, the attack must be sufficiently long
lived to allow the ISP to effect the rerouting before the relevant
flow terminates. Second, the routing change is perceptible by
the attacker, and an especially motivated attacker may be able to
escape detection by taking appropriate action. While techniques
exist to hide precisely what changed about the route, changes in
layer-three topology are hard to mask.

IV. PACKET DIGESTING

The Source Path Isolation Engine (SPIE) uses auditing tech-
niques to support the traceback of individual packets while re-
ducing the storage requirements by several orders of magni-
tude over current log-based techniques [14]. Traffic auditing is
accomplished by computing and storing packet digests rather
than storing the packets themselves. In addition to reducing
storage requirements, storing packet digests instead of the actual
packet contents preserves traffic confidentiality by preventing
SPIE from being used as a tool for eavesdropping.

A. Digest Input

The packet content used as input to the digesting function
must uniquely represent an IP packet and enable the identifi-
cation of the packet across hops in the forwarding path. At the
same time, it is desirable to limit the size of the digest input
both for performance and for reasons discussed below (c.f.
Section V-C). Duffield and Grossglauser encountered similar
requirements while sampling a subset of forwarded packets
in an attempt to measure traffic flows [17]. We use a similar
approach, masking variant packet content and selecting an
appropriate-length prefix of the packet to use as input to the
digesting function. Our choice of invariant fields and prefix
length is slightly different, however.2

2Because we sample a smaller portion of the packet (28 versus 40 B), we
include fields like header length and protocol that Duffield and Grossglauser
eschewed due to their lower entropy.

SNOERENet al.: SINGLE-PACKET IP TRACEBACK 725

Fig. 1. Fields of an IP packet. Fields in gray are masked out before digesting,
including the Type of Service, TTL, IP checksum, and IP options fields.

Fig. 2. Fraction of packets that collide (with ToS, TTL, and checksum fields
masked out) as a function of prefix length. The WAN trace represents 985 150
packets (with 5801 duplicates removed) between 6031 host pairs collected
on July 20, 2000 at the University of Florida OC-3 gateway. The LAN trace
consists of 1 000 000 packets (317 duplicates removed) between 2879 host
pairs observed on an Ethernet segment at the MIT Laboratory for Computer
Science.

Fig. 1 shows an IP packet and the fields included by the SPIE di-
gesting function. SPIE computes digests over the invariant por-
tion of the IP header and the first 8 B of the payload. Frequently
modified header fields are masked prior to digesting. Note that
beyond the obvious fields (TTL, TOS, and checksum), certain
IP options cause routers to rewrite the option field at various in-
tervals. To ensure a packet appears identical at all steps along its
route, SPIE masks or compensates for these fields when com-
puting the packet digests. It is important to note that the invariant
IP fields used for SPIE digesting may occasionally be modified
by a packet transform (c.f. Section V-C).

Our research indicates that the first 24invariant bytes of a
packet (20-B IP header with 4 B masked out plus the first 8 B
of payload) are sufficient to differentiate almost all nonidentical
packets. Fig. 2 presents the rate of packet collisions for an in-
creasing prefix length for two representative traces: a WAN trace
from an OC-3 gateway router, and a LAN trace from an ac-
tive 100-Mb Ethernet segment. (Results were similar for traces

across a number of sites.) Two unique packets which are iden-
tical up to the specified prefix length are termed a collision. A
28-B prefix (only 24 nonmasked bytes) results in a collision rate
of approximately 0.000 92% in the wide area and 0.139% on the
LAN.

Unlike similar results reported by Duffield and Grossglauser
[17, Fig. 4], our results include only unique packets; exact du-
plicates were removed from the packet trace. Close inspection
of packets in the wide area with identical prefixes indicates that
packets with matching prefix lengths of 22 and 23 B are ICMP
Time Exceeded error packets with the IP identification field
set to zero. Similarly, packets with matching prefixes between
24–31 B in length are TCP packets with IP identifications also
set to zero which are first differentiated by the TCP sequence
number or acknowledgment fields.3

The markedly higher collision rate in the local area is due
to the lack of address and traffic diversity. This expected re-
sult does not significantly impact SPIE’s performance, how-
ever. LANs are likely to exist at only two points in an attack
graph: immediately surrounding the victim and the attacker(s).
False positives on the victim’s local network can be easily elimi-
nated from the attack graph—they likely share the same gateway
router in any event. False positives at the source are unlikely if
the attacker is using spoofed source addresses, as this provides
the missing diversity in attack traffic, and remain in the imme-
diate vicinity of the true attacker by definition. Hence, for the
purposes of SPIE, IP packets are effectively distinguished by the
first 24 invariant bytes of the packet.

B. Bloom Filters

Constructing a digest table containing packet digests corre-
sponding to the traffic forwarded by a router for a given time
interval is a challenging task. A naive technique that simply
stored the digests themselves would require massive amounts
of storage. Instead, SPIE implements digest tables using space-
efficient data structures known as Bloom filters [3]. A Bloom
filter computes distinct packet digests for each packet using
independent uniform hash functions, and uses the-bit results
to index into a -sized bit array. The array is initialized to all
zeros, and bits are set to one as packets are received. Fig. 3 de-
picts a Bloom filter with hash functions.

Membership tests can be conducted simply by computing the
digests on the packet in question and checking the indicated bit

positions. If any one of them is zero, the packet was not stored
in the table. If, however, all the bits are one, it is highly likely the
packet was stored. It is possible that some set of other insertions
caused all the bits to be set, creating afalse positive, but the
rate of such false positives can be controlled by only allowing
an individual Bloom filter to store a limited number of digests
[18]. Saturated filters can be swapped out for a new, empty filter,
and archived for later querying.

C. Hash Functions

SPIE places three major restrictions on the family of hash
functions, , used as digesting functions in its Bloom filters.

3Further investigation indicates a number of current operating systems, in-
cluding recent versions of Linux, frequently set the IP ID to zero.

726 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 6, DECEMBER 2002

Fig. 3. For each packet received, SPIE computesk independentn-bit digests,
and sets the corresponding bits in the2 -bit digest table.

First, each member function must distribute a highly correlated
set of input values (IP packet prefixes),, as uniformly as pos-
sible over the hash’s result value space. That is, for a hash func-
tion in , and distinct packets ,

. This is a standard property of good
hash functions.

SPIE further requires that the event that two packets collide
in one hash function [for some] be inde-
pendent of collision events in any other functions [

]. Intuitively, this implies false positives at one
router are independent of false positives at neighboring routers.
Formally, for any function chosen at random indepen-
dently of the input packets and ,
with high probability. Such hash families, calleduniversal hash
families, were first defined by Carter and Wegman [19] and can
be implemented in a variety of fashions [20]–[22].

Finally, member functions must be straightforward to com-
pute at high link speeds. This requirement is not impractical
because SPIE hash functions do not require any cryptographic
“hardness” properties. That is, it does not have to be difficult
to generate a valid input packet given a particular hash value.
Being able to create a packet with a particular hash value en-
ables three classes of attacks, each of which is fairly benign. One
attack would ensure that all attack packets have the same finger-
print in the Bloom filter at some router (which is very difficult
since there are multiple, independent hashes at each router), but
this achievement is of little use, as the packet fingerprints would
be distinct at neighboring routers (due to the independent hash
functions at each router). Another attack is to ensure all attack
packets have different fingerprints, but that is the common case
already. The third, and most difficult attack, is to create an attack
packet with the same fingerprint as another, nonattack packet.
In general, this attack simply adds one additional false-positive
node (where the two packets are indistinguishable) to the attack
graph of both packets.

V. SOURCEPATH ISOLATION ENGINE

SPIE-enhanced routers maintain a cache of packet digests for
recently forwarded traffic. If a packet is determined to be offen-

Fig. 4. SPIE network infrastructure, consisting of Data Generation Agents
(DGAs), SPIE Collection and Reduction Agents (SCARs), and a SPIE
Traceback Manager (STM).

sive by some intrusion detection system (or judged interesting
by some other metric), a query is dispatched to SPIE which
in turn queries routers for packet digests of the relevant time
periods. The results of this query are used in a simulated re-
verse-path flooding algorithm to build an attack graph that indi-
cates the packet’s source(s).

A. Architecture

The tasks of packet auditing, query processing, and attack
graph generation are dispersed among separate components in
the SPIE system. Fig. 4 shows the three major architectural com-
ponents of the SPIE system. Each SPIE-enhanced router has a
Data Generation Agent (DGA) associated with it. Depending
upon the type of router in question, the DGA can be imple-
mented and deployed as a software agent, an interface card plug
to the switching background bus, or a separate auxiliary box
connected to the router through some auxiliary interface.

The DGA produces packet digests of each packet as it departs
the router, and stores the digests in time-stamped digest tables.
The tables are paged every so often, and represent the set of
traffic forwarded by the router for a particular interval of time.
Each table is annotated with the time interval and the set of hash
functions used to compute the packet digests over that interval.
The digest tables are stored locally at the DGA for some period
of time, depending on the resource constraints of the router.

SCARs are responsible for a particular region of the network,
serving as data concentration points for several routers and fa-
cilitating traceback of any packets that traverse the region. Due
to the complex topologies of today’s ISP’s, there will typically
be several SCAR’s distributed over an entire network. Upon re-
quest, each SCAR produces an attack graph for its particular re-
gion. The attack graphs from each SCAR are grafted together to
form a complete attack graph by the SPIE Traceback Manager
(STM).

The STM controls the whole SPIE system. The STM is the
interface to the intrusion detection system or other entity re-
questing a packet trace. When a request is presented to the STM,
it verifies the authenticity of the request, dispatches the request
to the appropriate SCARs, gathers the resulting attack graphs,
and assembles them into a complete attack graph. Upon comple-

SNOERENet al.: SINGLE-PACKET IP TRACEBACK 727

tion of the traceback process, the STM replies to the intrusion
detection system with the final attack graph.

B. Traceback Processing

Before the traceback process can begin, an attack packet must
be identified. Most likely, an intrusion detection system will de-
termine that an exceptional event has occurred and provide the
STM with a packet , victim , and time of attack . SPIE
places two constraints on the intrusion detection system: the
victim must be expressed in terms of the last-hop router, not
the end host itself, and the attack packet must be identified in a
timely fashion. The first requirement provides the query process
with a starting point; the latter stems from the fact that traceback
must be initiated before the appropriate digest tables are over-
written by the DGAs. This time constraint is directly related to
the amount of resources dedicated to the storage of traffic di-
gests. (We discuss timing and resource tradeoffs in Section VII.)

Upon receipt of traceback request, the STM cryptographi-
cally verifies its authenticity and integrity. Any entity wishing
to employ SPIE to perform a traceback operation must be prop-
erly authorized in order to prevent DDoS attacks. Upon suc-
cessful verification, the STM dispatches the query to the rele-
vant SCARs for processing. Beginning at the SCAR responsible
for the victim’s region of the network, the STM sends a query
message containing, , and as provided by the intrusion
detection system. The SCAR polls its DGAs and responds with
a partial attack graph, the time the packet entered the region,
and the entering packet itself (it may have been transformed,
possibly multiple times, within the region).

The attack graph either terminates within the region managed
by the SCAR, in which case a source has been identified, or it
contains nodes at the edge of the SCAR’s network region. In
the latter case the STM sends a new query for the transformed
packet to the SCAR for the abutting network region. This
query uses the border router between the two network regions as
its victim and as the time of attack. This process continues
until all branches of the attack graph terminate, either at a source
within the network, or at the edge of the SPIE system. The STM
then constructs a composite attack graph which it returns to the
intrusion detection system.

C. Transformation Processing

IP packets may undergo valid transformation while traversing
the network, and SPIE must be capable of tracing through such
transformations. In particular, SPIE must be able to reconstruct
the original packet from the transformed packet. Unfortunately,
many transformations are not invertible without additional in-
formation due to the stateless nature of IP networks. Conse-
quently, SPIE must record sufficient packet data at the time of
transformation to allow the original packet to be reconstructed.

The packet data chosen as input to the digesting function
determines the set of packet transformations SPIE must
handle—SPIE need only consider transformations that modify
fields used as input to the digest function. SPIE computes
digests over the IP header and the first 8 B of the packet pay-
load but masks out (or omits in the case of IP options) several
frequently updated fields before digesting, as shown in Fig. 1
of Section IV. Masking hides most hop-by-hop transformations

Fig. 5. Transform Lookup Table (TLT) stores sufficient information to invert
packet transformations at SPIE routers. The table is indexed by packet digest,
specifies the type of transformation, and stores any irrecoverable packet data.

from the digesting function, but forces SPIE to explicitly handle
each of the following transformations: fragmentation, network
address translation (NAT), ICMP messages, IP-in-IP tunneling,
and IP security (IPsec).

Recording the information necessary to reconstruct the
original packet from a transformed packet requires additional
resources. Fortunately for SPIE, the circumstances that cause
a packet to undergo a transformation will generally take that
packet off of the fast path of the router and put it onto the control
path, relaxing the timing requirements. The router’s memory
constraints remain unchanged, however; hence, transformation
information must be stored in a scalable and space-efficient
manner.

1) Transform Lookup Table:Along with each packet digest
table collected at a DGA, SPIE maintains a corresponding
transform table for the same interval of time called atransform
lookup table, or TLT. Each entry in the TLT contains three
fields, shown in Fig. 5. The first field stores a digest of the
transformed packet. The second field specifies the type of
transformation—three bits are sufficient to uniquely identify
the transformation type among those supported by SPIE. The
last field contains a variable amount of packet data the length of
which depends upon the type of transformation being recorded.

For space efficiency, the data field is limited to 32 b. Some
transformations, such as network address translation, may re-
quire more space. These transformations utilize a level of indi-
rection—one bit of the transformation type field is reserved as
an indirect flag. If the indirect, or I, flag is set, the third field of
the TLT is treated as a pointer to an external data structure which
contains the information necessary to reconstruct the packet.

The indirect flag can also be used for flow caching. In many
cases (e.g., tunneling or NAT), packets undergoing a particular
transformation are related. In such cases, it is possible to reduce
the storage requirements by suppressing duplicate packet data,
instead referencing a single copy of the required data that can
be used to reconstruct any packet in the flow. Such a scheme
requires, however, that the SPIE-enabled router itself be capable
of flow caching, or at least identification, so that the packets
within the flow can be correlated and stored appropriately.

In order to preserve alignment, it is likely efficient implemen-
tations would store only 29 b of the packet digest resulting in
64-b-wide TLT entries. This width implies eight distinct packet
digests will map to the same TLT entry. The relative rarity of
packet transformations [8], the sparsity of the digest table, and
the uniformity of the digesting function combine to make col-
lisions extremely rare in practice. Assuming a digest table ca-
pacity of roughly 3.2 Mpkts (16-Mb SRAM, see Section VII-B)
and a transformation rate of 3%, the expected collision rate is
approximately 1 : 5333 packets. Even if a collision occurs, it
simply results in an additional possible transformation of the

728 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 6, DECEMBER 2002

queried packet. Each transformation is computed (including the
null transformation) and traceback continues. Incorrectly trans-
formed packets likely will not exist at neighboring routers and,
thus, will not contribute any false nodes to the attack graph.

2) Special-Purpose Gateways:Some classes of packet
transformations, notably NAT and tunneling, are often per-
formed on a large fraction of packets passing through a
particular gateway. The transform lookup table would quickly
grow to an unmanageable size in such instances; hence, SPIE
considers the security gateway or NAT functionality of routers
as a separate entity. Standard routing transformations are
handled as above, but special purpose gateway transformations
require a different approach to transformation handling. Trans-
formations in these types of gateways are generally computed
in a stateful way (usually based on a static rule set); hence,
they can be inverted in a similar fashion. While the details
are implementation specific, inverting such transformations is
straightforward; we do not consider it here.

3) Sample Transformations:A good example of transfor-
mation is packet fragmentation. To avoid needing to store any
of the packet payload, SPIE supports inversion of only the first
packet fragment, i.e., only the first fragment may be traced back
beyond the point of fragmentation. The remaining fragments
may be traced to the point of fragmentation, but no further. Note
that for most fragment-based attacks [1], the attacker inserts
fragments directly into the network (i.e., the attacker is the point
of fragmentation) so the traceback is complete. (If only a subset
of the fragments is received by the victim the packet cannot be
reassembled; hence, the only viable attack is a DoS attack on
the victim’s reassembly engine. But, if the fragmentation oc-
curs within the network itself, an attacker cannot control which
fragments are received by the victim so the victim will even-
tually receive a first fragment to use in traceback.) Packet data
to be recorded includes the total length, fragment offset, and
more fragments (MF) field. Since properly behaving IP routers
cannot create fragments with less than 8 B of payload informa-
tion [23], when given the first fragment, SPIE is always able
to invert fragmentation and reconstruct the header and at least
64 b of payload of the prefragmented packet which is sufficient
to continue traceback.

Observe that SPIE never needs to record any packet pay-
load information. ICMP transformations can be inverted be-
cause ICMP error messages always include at least the first 64 b
of the offending packet [24]. Careful readers may be concerned
that encapsulation cannot be inverted if the encapsulated packet
is subsequently fragmented and the fragments containing the
encapsulated IP header and first 64 b of payload are not avail-
able. While this is strictly true, such transformations need to
be inverted only in extreme cases as it takes a very sophisti-
cated attacker to cause a packet to be first encapsulated, then
fragmented, and then ensure fragment loss. If all the fragments
are received, the original header can be extracted from the re-
assembled payload. It seems quite difficult for an attacker to
ensure that packet fragments are lost. It can cause packet loss
by flooding the link, but to do so requires sending such a large
number of packets that it is very likely that all the fragments for
at least one packet will be successfully received by the de-en-
capsulator for use in traceback.

Fig. 6. Reverse path flooding, starting at the victim’s routerV and proceeding
backward toward the attackerA. Solid arrows represent the attack path; dashed
arrows are SPIE queries. Queries are dropped by routers that did not forward
the packet in question.

D. Graph Construction

Each SCAR constructs a subgraph using topology informa-
tion about its particular region of the network. After querying
each of the DGAs in its region, a SCAR simulates reverse-path
flooding by examining the results in the order they would be
queried if an actual reverse path flood was conducted on the
topology that existed at the time the packet was forwarded. (The
topology information itself is collected and stored indepen-
dently at each DGA along with the digest tables, and returned
to the SCAR as part of the query response.) Fig. 6 shows how
reverse-path flooding would discover the attack path from
to , querying routers and
along the way. It is important to note that the routers need
not actually be queried sequentially—the SCAR proactively
queries each DGA and caches the results locally.

In order to respond to a SCAR’s query, a DGA computes the
appropriate set of digests and consults the digest table for the
indicated time period. If an entry exists for the packet in ques-
tion, the router is considered to have forwarded the packet. If,
however, the digest is not found in the indicated table, it may
be necessary to search the digest table corresponding to the im-
mediately preceding time period. Depending on the link latency
between routers, DGAs may need to search multiple digest ta-
bles in order to assure they have examined an appropriate time
frame (which is determined by the link latency and maximum
queuing delay at that router). Once a digest is located, the packet
arrival time is always considered to be the latest possible time
in the interval. This ensures the packet must have been seen at
an earlier time at adjacent routers.

Along with the digest tables, each DGA also consults its TLTs
for the same time intervals. If the packet was transformed, the
DGA informs the SCAR, which then reissues queries to the
other DGAs in the region containing the transformed packet and
an updated arrival time. If the packet is not found in any of the
digest tables or TLTs for the relevant time period, a negative re-
sult is returned by the DGA, and the SCAR considers that par-
ticular branch of the search tree to be terminated.

The result of this procedure is a connected graph containing
the set of nodes believed to have forwarded the packet toward

SNOERENet al.: SINGLE-PACKET IP TRACEBACK 729

Fig. 7. Sample SPIE DGA hardware implementation for high-speed routers.

the victim. Assuming correct operation of the routers, this graph
is guaranteed to be a superset of the actual attack graph. But
due to digest collisions, there may be nodes in the attack graph
that are not in the actual attack graph. We call these nodesfalse
positivesand base the success of SPIE on its ability to limit the
number of false positives contained in a returned attack graph.

VI. PRACTICAL IMPLEMENTATION

For our PC-based SPIE prototype, we simulate a universal
hash family using MD5 [25]. A random member is defined
by selecting a random input vector to prepend to each packet.
The properties of MD5 ensure that the digests of identical
packets with different input vectors are independent. The 128-b
output of MD5 is then considered as four independent 32-b
digests which can support Bloom filters of dimension up to
four. Router implementations requiring higher performance
are likely to prefer other universal hash families specifically
tailored to hardware implementation [22]. A simple family
amenable to fast hardware implementation could be constructed
by computing a CRC modulo a random member of the set of
indivisible polynomials over .

In order to ensure hash independence, each router periodi-
cally generates a set of independent input vectors and uses
them to select digest functions needed for the Bloom filter
from the family of universal hashes. These input vectors are
computed using a pseudo-random number generator which is
independently seeded at each router. For increased robustness
against adversarial traffic, the input vectors are changed each
time the digest table is paged, resulting in independence not only
across routers but also across time periods.

The size of the digest bit vector, ordigest table, varies with
the total traffic capacity of the router; faster routers need larger
vectors for the same time period. Similarly, the optimum number
of hash functions varies with the size of the bit vector. Routers
with tight memory constraints can compute additional digest
functions and provide the same false-positive rates as those who
compute fewer digests but provide a larger bit vector.

Fig. 7 depicts a possible implementation of a SPIE Data Gen-
eration Agent in hardware for use on high-speed routers. A full
discussion of the details of the architecture and an analysis of

its performance were presented previously [26]. Briefly, each
interface card in the router is outfitted with an Interface Tap
which computes multiple independent digests of each packet as
it is forwarded. These digests are passed to a separate SPIE pro-
cessor (implemented either in a line card form factor or as an
external unit) which stores them as described above in digest ta-
bles for specific time periods.

As time passes, the forwarded traffic will begin to fill the di-
gest tables and they must be paged out before they become over-
saturated, resulting in unacceptable false-positive rates. The ta-
bles are stored in a history buffer implemented as a large ring
buffer. Digest tables can then be queried or archived by a sepa-
rate control processor while they are stored in the ring buffer.

VII. A NALYSIS

There are several tradeoffs involved when determining the
optimum amount of resources to dedicate to SPIE on an indi-
vidual router or the network as a whole. SPIE’s resource require-
ments can be expressed in terms of two quantities: the number of
packet digest functions used by the Bloom filter, and the amount
of memory used to store packet digests. Similarly, SPIE’s per-
formance can be characterized in two orthogonal dimensions.
The first is the length of time for which packet digests are kept.
Queries can only be issued while the digests are cached; un-
less archived to some external storage device within a reason-
able amount of time, the DGAs will discard the digest tables in
order to make room for more recent ones. The second is the ac-
curacy of the candidate attack graphs which can be measured in
the number of false positives in the graph returned by SPIE.

Both of these metrics can be controlled by adjusting oper-
ational parameters. In particular, the more memory available
for storing packet digests, the longer the time queries can be
issued. Similarly, digest tables with lower false-positive rates
yield more accurate attack graphs. Hence, we wish to charac-
terize the performance of SPIE in terms of the amount of avail-
able memory and digest table performance.

A. False Positives

We first relate the rate of false positives in an attack graph
to the rate of false positives in an individual digest table. This
relationship depends on the actual network topology and traffic
being forwarded at the time. We can, however, make some
simplifying assumptions in order to derive an upper bound
on the number of false positives as a function of digest table
performance.

1) Analytic Bounds:Suppose, for example, each router
whose neighbors have degree at mostensures its digest
tables have a false-positive rate of at most , where

(is an arbitrary tuning factor). It is easy to
show that for any true attack graphwith nodes, the attack
graph returned by SPIE will have at most extra
nodes in expectation. In other words, an average traceback will
result in an attack graph with no more than false
positives. We say “no more than” because the digest tables will
typically not be at full capacity when queried, resulting in a
lower false-positive rate than predicted.

730 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 6, DECEMBER 2002

The false-positive rate of a digest table varies over time, de-
pending on the traffic load at the router and the amount of time
since it was paged. Similarly, if the tables are paged on a strict
schedule based on maximum link capacity, and the actual traffic
load is less, digest tables will never reach their rated capacity.
Hence, the analytic result is a worst case bound since the di-
gest table performs strictly better while it is only partially full. It
represents the expected number of false positives returned if the
query was conducted at the worst possible moment, i.e., when
all digest tables were at maximum capacity. Furthermore, our
analysis assumes the set of neighbors at each node is disjoint
which is not true in real networks. It seems reasonable to ex-
pect, therefore, that the false-positive rate over real topologies
with actual utilization rates would be substantially lower.

For the purposes of this discussion, we arbitrarily select a
false-positive rate of , resulting in no more than 5 additional
nodes in expectation for a path length of over 35 nodes (ap-
proaching the diameter of the Internet) according to our theo-
retical model. Using the bound above, is then a reason-
able starting point and we turn to considering its effectiveness
in practice.

2) Simulation Results:In order to relate false-positive rate
to digest table performance in real topologies, we have run ex-
tensive simulations using the actual network topology of a na-
tional tier-one ISP made up of roughly 70 backbone routers with
links ranging from T-1 to OC-3. We obtained a topology snap-
shot and average link utilization data for the ISP’s network back-
bone for a week-long period toward the end of 2000, sampled
using periodic SNMP queries, and averaged over the week.

We simulated an attack by randomly selecting a source and
victim, and sending 1000 attack packets at a constant rate
between them. Each packet is recorded by every intermediate
router along the path from source to destination. A traceback is
then simulated starting at the victim router and (hopefully) pro-
ceeding toward the source. Uniformly distributed background
traffic is simulated by selecting a fixed maximum false-positive
rate, , for the digest table at each off-path router. (Real
background traffic is not uniform, which would result in slight
dependencies in the false-positive rates between routers, but
we believe that this represents a reasonable starting point.) In
order to accurately model performance with real traffic loads,
the effective false-positive rate is scaled by the observed traffic
load at each router.

For clarity, we consider a nontransformed packet with only
one source and one destination. Preliminary experiments with
multiple sources (as might be expected in a DDoS attack) in-
dicate false positives scale linearly with respect to the size of
the attack graph, which is the union of the attack paths for each
copy of the packet. We do not, however, consider this case in the
experiments presented here. (A DDoS attack sending identical
packets from multiple sources only aids SPIE in its task. A wise
attacker would instead senddistinctpackets from each source,
forcing the victim to trace each packet individually.)

In order to validate our analytic bound, we have plotted the
expected number of false positives as a function of attack path
length and digest table performance, as computed
above, and show that in comparison to the results of three simu-
lations on our ISP backbone topology in Fig. 8. In the first sim-

Fig. 8. Number of false positives in a SPIE-generated attack graph as a
function of the attack path length, forp = 1=8. The analytic bound assuming
random topology and 100% link utilization is plotted against three simulation
results, two with false-positive rates conditioned on router degree, one without.
For the two degree-dependent runs, one considered observed link utilization,
while the other assumed full utilization. Each simulation represents the average
of 5000 runs using topology and utilization data from a national tier-one ISP.

ulation, we set the maximum digest table false-positive prob-
ability to , as prescribed above. This setting results
false-positive rate significantly lower than the analytic bound.
A significant portion of the disparity results from the relatively
low link utilizations maintained by operational backbones (77%
of the links in our data set had utilization rates of less than 25%),
as can be seen by comparing the results to a second simulation
on the ISP topology assuming full link utilization. There re-
mains, however, a considerable gap between the analytic bound
and simulated performance in network backbones.

The nonlinearity of the simulation results indicates there is
a strong damping factor due to the topological structure of the
network. Intuitively, routers with many neighbors are found at
the core of the network (or at peering points), and routers with
fewer neighbors are found toward the edge of the network. This
suggests false positives induced by core routers may quickly
die out as the attack graph proceeds toward less well-connected
routers at the edge.

To examine the dependence upon vertex degree, we con-
ducted a third simulation in the ISP topology. This time, we
removed the false-positive rate’s dependence upon the degree
of the router’s neighbors, setting the digest table performance to
simply (and returning to actual utilization data). While
there is a marked increase in the number of false positives, it re-
mains well below the analytic bound. This somewhat surprising
result indicates that despite the analytic bound’s dependence on
router degree, the hierarchical structure of ISP backbones may
permit a relaxation of the coupling, allowing the false positive
rate of the digest tables to be set independently of the degree
, resulting in significant space savings.

B. Time and Memory Utilization

The amount of time during which queries can be supported is
directly dependent on the amount of memory dedicated to SPIE.
The appropriate amount of time varies depending upon the re-
sponsiveness of the method used to identify attack packets. For

SNOERENet al.: SINGLE-PACKET IP TRACEBACK 731

the purposes of discussion, however, we will assume one minute
is a reasonable amount of time in which to identify an attack
packet and initiate a traceback. As discussed in Section V-A,
once the appropriate digest tables have been queried by the
SCARs the actual traceback process can be delayed arbitrarily.

1) Memory Size:Given a particular length of time, the
amount of memory required varies linearly with the total link
capacity at the router and can be dramatically affected by the
dimension of the Bloom filter in use. Bloom filters are typically
described in terms of the number of digesting functions. The
effective false-positive rate for a Bloom filter that usesdigest
functions to store packets in bits of memory can be
expressed as

(1)

The performance of a Bloom filter can be quantified in terms
of its memory efficiency factor and false-positive rate

. For example, a Bloom filter with memory efficiency of
would need bits in order to store packets while delivering
its expected false-positive rate. By solving (1) for and
differentiating with respect to, it is easy to check that optimal
memory efficiency is reached when . That is, a
Bloom filter with either or hash functions
has the maximum memory efficiency for a given false-positive
rate . The memory requirement of such a table can easily be
determined by substituting back into (1) (observe

)

(2)

Tables providing the effective false-positive rates for various
memory efficiencies and digesting functions are readily avail-
able [18]. For the purposes of discussion, we will consider using
a Bloom filter with three digesting functions and a
memory efficiency factor of . Such a filter provides
an effective false-positive rate of when full.

While this is well below the value of or 0.125 used in our
degree-independent simulations, it is high if digest tables are
calibrated with respect to router degree. Luckily, by increasing
the number of digesting functions, Bloom filters are able to
achieve significantly lower false-positive rates with slight de-
creases in memory efficiency. For instance, a false-positive rate
of , which corresponds to our degree-dependent
simulation, , with for routers with as many
as 40 neighbors, can be achieved using 8 digesting functions,
with a memory efficiency factor of only —slightly less
than half what we suggest.

SPIE’s memory needs are determined by the number of
packets processed. Hence, we consider an average-sized packet
of approximately 1000 b,4 and describe link speeds in terms
of packets per second. We combine this with the Bloom filter
efficiency factor of 0.2 from above to compute a rule of thumb:

4This may in fact be a significant underestimate. Recent studies have found
the mean packet size has grown to over 400 B in many instances [8], [27]. The
corresponding decrease in packet arrival rate eases the load on SPIE’s digest
tables.

SPIE requires roughly 0.5% of the total link capacity in digest
table storage. For a typical low-end router with four OC-3
links, this results in roughly 23 MB of storage. On the very
high end, a core router with 32 OC-192 links has a maximum
capacity of about 320 Mpkts/s which would require roughly
1.6 Gb/s of digest table memory or 12 GB for one minute’s
worth of storage. In practice, however, the size of a digest table
will be limited by the type of memory required.

2) Access Rates:Size is not the only memory considera-
tion, however; access times turn out to be equally important.
Packets must be recorded in the digest table at a rate commen-
surate with their arrival. Even given an optimistic DRAM cycle
time of 50 ns per read–modify–write cycle, routers processing
more than 20 Mpkts/s (roughly 2 OC-192 links, or 8 OC-48 s)
require an SRAM digest table. Current technology places prag-
matic limits on SRAM size when operating at very high access
rates. The increased power consumption, heat, and cost make
it impractical to spread digest tables across more than a few
SRAM chips. Hence, an entire minute’s worth of traffic can only
be stored in one digest table at low link speeds. Higher speed
routers must page digest tables to SDRAM in order to store
a minute’s worth of digests as described in Section VI. Given
the unavoidable need for a two-tier digest architecture, the best
choice of digest table size is likely dictated by pragmatic con-
cerns, and using a single 16-Mb SRAM avoids the timing prob-
lems inherent in grouping chips into one memory bank.

One way to decrease the update rate is to maintain separate
digest tables for each input port. Unfortunately, since the input
and output ports for an arbitrary packet are uncorrelated in gen-
eral, this can complicate the query process. It may be especially
problematic if the digest tables are not time synchronized across
ports. In certain situations, however, the ability to isolate a spe-
cific input port may provide an additional benefit of reducing the
number of upstream neighbors that need to be queried. Unfor-
tunately, the ring and bus topologies common at many peering
points force routers to have many neighbors on the same input
port. The benefits of input port isolation are significantly re-
duced in such configurations, and are likely not worth the ad-
ditional complexity.

In some border cases, it may be more practical to use a larger
amount of slower memory and reduce the number of memory
accesses required per packet, allowing DRAM to be used in-
stead of SRAM, for example. This is especially true when con-
sidering cached-based memory architectures where access lo-
cality becomes an issue. In such cases, packet digests could be
recorded in a hash table of-bit values and collisions managed
with open-addressed linear probing. If this table is never allowed
to fill up, then it admits only false positives, and no false neg-
atives, just like a Bloom filter. The false-positive rate of such a
data structure is given by [28]

(3)

Consider constructing a hash table intended to record
packet digests using -bit entries, requiring
bits. Such a table is less than 70% full, hence, each packet
insertion takes only 2 memory accesses in expectation [28,
Sec. 6.4, Table 4]. Solving (3) for, and substituting into the

732 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 6, DECEMBER 2002

above equation, we see the memory required for a particular
false-positive rate while storing packets is given by

When is much smaller than 1, is approximated by
. Hence,

(4)

Combining (2) and (4), the additional cost of using a hash
table instead of a Bloom filter, in terms of increased memory
consumption, is a factor of (for small values of)

(5)

For slower routers with many neighbors (and, therefore, small
), the decrease in number and improved locality of memory

accesses may outweigh the additional storage requirements of a
hash table.

C. Timing Uncertainties

For routers with a single OC-192 link, a 16-Mb SRAM
would hold roughly 10 ms of traffic data; hence, the history
buffer would store 6000 individual digest tables. This obser-
vation gives rise to another important issue: imperfect timing
may cause SPIE to need to examine multiple packet digests at
a particular router. The more digests that must be considered,
the greater the chance of false positives, so it is advantageous
to make the digest tables as large as possible (within practical
hardware limits). For reasonable link speeds, the memory
access time becomes slow enough that SDRAM can be used
which, using current technology, would allow 256-Mb digest
tables, with a capacity of roughly 50 Mpkts.

It may be the case that the approximate packet service time
cannot be confined to an interval covered by one digest table. In
that case, we expect the false-positive rate to increase linearly
with the number of digest tables examined. For high-speed
routers, it is especially important to maintain precise timing
synchronization between adjacent routers. We have not yet
examined the impact of typical NTP clock skew on SPIE’s
performance, but believe synchronization can be maintained to
within a small number of digesting intervals, not significantly
impacting our false-positive rate.

VIII. D ISCUSSION

We believe there are three main areas that affect the practi-
cality of SPIE. We examine several issues relating to deploy-
ment, vulnerability, and transform handling below.

A. Deployment

SPIE’s usefulness increases greatly with widespread deploy-
ment because SPIE can only construct an attack graph for that
portion of the packet’s path within the SPIE domain. Within a
particular ISP, however, it is likely that DGAs need not be de-
ployed at every router. If a particular region of the network can
be identified as transit-only, meaning no traffic originates within
the region, and further, that no transforms are computed in the
region, then the region need only be instrumented at the edges.

Since all packets leaving the region are guaranteed to have en-
tered the region, a traceback can consider the entire region as a
single router without any loss of precision or reliability. When
considering the network topology, the SCAR could simply col-
lapse all the region’s edge routers into one virtual router, and
consider the virtual router’s neighbors to be the set of all routers
bordering the region.

Between ISPs, however, the situation is significantly more
complicated. It is likely that independent ISPs may lack suf-
ficient levels of technical or political cooperation to unite their
SPIE infrastructures. Hence, regardless of the degree of deploy-
ment within adjacent ISPs, many ISPs will prefer to have their
own STM responsible for all queries within their network. In
such a case, one ISP’s STM must be granted the authority to
issue queries to adjacent ISPs’ STMs in order to complete the
traceback.

B. Vulnerabilities

SPIE’s vulnerabilities can be divided into three distinct
classes; we discuss each separately below.

1) DDoS: Traceback operations will often be requested
when the network is unstable (likely due to the attack that
triggered the traceback); SPIE communications must succeed
in a timely fashion even in the face of network congestion and
instability. If SPIE traffic is not properly insulated from normal
network traffic, SPIE may be unable to complete a traceback
during periods of network congestion or routing failures. The
best solution is to provide SPIE with an out-of-band channel,
possibly through either physically or logically separate (e.g.,
ATM VC) links. Even without private channels, it is still pos-
sible to ensure successful transmission by granting sufficient
priority and configuring static routes for SPIE traffic.

2) Flow Amplification: SPIE is designed to trace any dis-
tinct IP packet to its source(s). It does not, however, concern it-
self with the multiplicity of any particular packet. It is possible
to exploit this fact to launch an “amplification” DDoS attack
that SPIE alone is not able to isolate. Specifically, a router or
host cannot surreptitiously insert a new, distinct packet into a
SPIE-enabled network. It may, however, duplicate packets al-
ready in the network without detection, effectively amplifying
the size of a traffic flow. In particular, a router on the path be-
tween two hosts and may duplicate all packets going from

to in an attempt to overwhelm downstream resources, in-
cluding any routers and network links on the path fromto ,
and even itself.

The usefulness of such an attack is limited by the requirement
that lie on the path between and . Furthermore, dupli-
cate packets are only undetectable if they fall within the same
digest table page. Duplicate packets inserted significantly after
the original packet will likely fall into a later digest table page
on some downstream router, and therefore be detected as a dis-
tinct, later packet. Similarly, large numbers of duplicate packets
would become apparent even to extremely simplistic network
monitoring tools. Hence, an attacker likely can only increase
the size of an individual flow by a small factor.

A naive attacker might attempt to increase the attack’s effec-
tiveness by amplifying a large number of flows destined to the
same destination. This serves only to help isolate the attacker’s

SNOERENet al.: SINGLE-PACKET IP TRACEBACK 733

location, however. If packets from several of the amplified flows
are traced using SPIE, and their attack paths compared, the at-
tacker must lie on the shared portion of the paths. As the number
of flows amplified by the attacker grows, the portion of the path
shared by all attack paths will converge to the path between the
attacker and the destination, effectively identifying the rogue
source .

3) Information Leakage:In the normal course of operation,
SPIE requires a querying intrusion detection system to submit
the packet it wishes to trace. This obviously provides informa-
tion to the entity administering SPIE about traffic a particular
party finds interesting. In some rare cases, a querying party may
not wish to leak such information by exposing the content of the
packet, yet still wish to employ SPIE. In such a case, it might
be possible to support call-backs from SCARs which would pro-
vide the querying intrusion detection system with the applicable
digesting function and transformation information and ask it to
do actual digesting. This is an expensive operation, but the ex-
istence of such a case implies the querying intrusion detection
system has grave cause for concern in the first place and is likely
willing to dedicate a great deal of resources to the traceback.

C. Transformations

Finally, transformations raise several additional issues, some
related to performance, others to policy. In particular, assuming
that packet transformations represent a small percentage of the
overall IP traffic traversing a router, an efficient SPIE imple-
mentation can easily handle the resource requirements of log-
ging transformation information. Attackers, though, may view
packet transformations as a method of DoS attack on SPIE.
The number of transformations that are recorded during a given
time interval is bounded by the rate at which the router is able
to process the packet transformations. Therefore, SPIE aims to
handle packet transformations at a rate equal or greater than the
router. As a result, the router rather than SPIE is the bottleneck
in processing packet transformations. This task is made easier
when one realizes that the vast majority of transformations occur
only at low-to-medium speed routers. Sophisticated transforma-
tions such as tunneling, NAT, and the like are typically done at
customer premises equipment. Further, many ISPs turn off stan-
dard transformation handing, often even ICMP processing, at
their core routers.

IX. CONCLUSION AND FUTURE WORK

Developing a traceback system that can trace a single packet
has long been viewed as impractical due to the tremendous
storage requirements of saving packet data and the increased
eavesdropping risks the packet logs posed. We believe that
SPIE’s key contribution is to demonstrate that single packet
tracing is feasible. SPIE has low storage requirements and does
not aid in eavesdropping. Furthermore, SPIE is a complete,
practical system. It deals with the complex problem of transfor-
mations and can be implemented in high-speed routers (often
a problem for proposed tracing schemes).

The most pressing challenges for SPIE are increasing the
window of time in which a packet may be successfully traced

and reducing the amount of information that must be stored for
transformation handling. One possible way to extend the length
of time queries can be conducted without linearly increasing
the memory requirements is by relaxing the set of packets that
can be traced. In particular, SPIE can support traceback of large
packet flows for longer periods of time in a fashion similar to
probabilistic marking schemes—rather than discard packet di-
gests as they expire, discard them probabilistically as they age.
For large packet flows, odds are quite high some constituent
packet will remain traceable for longer periods of time.

ACKNOWLEDGMENT

G. Patz assisted with the UNIX DGA prototype, and
A. Colvin helped design the SPIE messaging protocols.
C. Blake pointed out the advantages of linear probing at high
speeds. SPIE’s vulnerability to traffic amplification was first
noted by D. Katabi. The authors thank H. Balakrishnan and the
anonymous reviewers for helpful feedback on earlier drafts.

REFERENCES

[1] Microsoft Corporation. Stop 0A in tcpip.sys when receiving out of band
(OOB) data. [Online]. Available: http://support.microsoft.com/sup-
port/kb/articles/Q143/4/78.asp

[2] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial
of service attacks which employ IP source address spoofing,” IETF, RFC
2267, Jan. 1998.

[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable er-
rors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, July 1970.

[4] V. Paxson, “End-to-end Internet path dynamics,”IEEE/ACM Trans. Net-
working, vol. 7, pp. 277–292, June 1999.

[5] C. Shannon, D. Moore, and K. Claffy, “Characteristics of fragmented IP
traffic on Internet links,” presented at the RIPE Workshop Passive and
Active Measurements, Amsterdam, The Netherlands, Apr. 2001.

[6] V. Paxson, “An analysis of using reflectors for distributed denial-of-ser-
vice attacks,”ACM Comput. Commun. Rev., vol. 31, no. 3, pp. 38–47,
2001.

[7] F. Baker, “Requirements for IP version 4 routers,” IETF, RFC 1812, June
1995.

[8] S. McCreary and K. Claffy, “Trends in wide area IP traffic patterns: A
view from Ames Internet exchange,” presented at the ITC Specialist
Seminar IP Traffic Modeling, Measurement and Management, Mon-
terey, CA, Sept. 2000.

[9] H. Burch and B. Cheswick, “Tracing anonymous packets to their ap-
proximate source,” inProc. USENIX LISA’00, Dec. 2000, pp. 319–322.

[10] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network support
for IP traceback,”IEEE/ACM Trans. Networking, vol. 9, pp. 226–239,
June 2001.

[11] S. M. Bellovin, M. Leech, and T. Taylor, “ICMP traceback messages,”
IETF, Internet Draft, draft-ietf-itrace-01.txt (work in progress), Oct.
2001.

[12] D. X. Song and A. Perrig, “Advanced and authenticated marking
schemes for IP traceback,” inProc. IEEE Infocom’01, Apr. 2001, pp.
878–886.

[13] A. Mankin, D. Massey, C.-L. Wu, S. F. Wu, and L. Zhang, “On design
and evaluation of ‘intention-driven’ ICMP traceback,” inProc. IEEE
Int. Conf. Computer Communications and Networks, Oct. 2001, pp.
159–165.

[14] G. Sager. “Security fun with OCxmon and cflowd”. presented
at Internet 2 Working Group Meeting. [Online]. Available:
http://www.caida.org/projects/NGI/content/security/1198.

[15] D. Schnackenberg, K. Djahandari, and D. Sterne, “Infrastructure for in-
trusion detection and response,” inProc. First DARPA Information Sur-
vivability Conf. Exposition, vol. 2, Jan. 2000, pp. 1003–1011.

[16] R. Stone, “CenterTrack: An IP overlay network for tracking DoS
floods,” in Proc. USENIX Security Symp., July 2000, pp. 199–212.

[17] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct
traffic observation,” inProc. ACM SIGCOMM’00, Aug. 2000, pp.
271–282.

734 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 6, DECEMBER 2002

[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area web cache sharing protocol,”IEEE/ACM Trans. Net-
working, vol. 8, pp. 281–293, June 2000.

[19] L. Carter and M. Wegman, “Universal classes of hash functions,”J.
Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154, 1979.

[20] J. Black, S. Halevi, J. Krawczyk, T. Krovetz, and P. Rogaway, “UMAC:
Fast and secure message authentication,” inProc. Advances in Cryp-
tology—CRYPTO’99, Aug. 1999, pp. 216–233.

[21] S. Halevi and H. Krawczyk, “MMH: Software message authentication in
the Gbit/second rates,” inProc. 4th Workshop Fast Software Encryption,
1997, pp. 172–189.

[22] H. Krawczyk, “LFSR-based hashing and authentication,” inProc. Ad-
vances in Cryptology—CRYPTO’94, Aug. 1994, pp. 129–139.

[23] J. Postel, “Internet protocol,” IETF, RFC 791, Sept. 1981.
[24] , “Internet control message protocol,” IETF, RFC 792, Sept. 1981.
[25] R. Rivest, “The MD5 message-digest algorithm,” IETF, RFC 1321, Apr.

1992.
[26] L. A. Sanchez, W. C. Milliken, A. C. Snoeren, F. Tchakountio, C. E.

Jones, S. T. Kent, C. Partridge, and W. T. Strayer, “Hardware support
for a hash-based IP traceback,” inProc. Second DARPA Information
Survivability Conf. Exposition, vol. 2, June 2001, pp. 146–152.

[27] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki,
and F. Tobagi, “Design and deployment of a passive monitoring infra-
structure,” presented at the RIPE Workshop Passive and Active Mea-
surements, Amsterdam, The Netherlands, Apr. 2001.

[28] D. E. Knuth,The Art of Computer Programming, 2nd ed. Reading,
MA: Addison-Wesley, 1998, vol. 3.

Alex C. Snoeren(S’00) received the B.S. degrees in
computer science and applied mathematics in 1996
and 1997, respectively, and the M.S. degree in com-
puter science in 1997 from the Georgia Institute of
Technology, Atlanta. He is currently working toward
the Ph.D. degree in computer science at the Massa-
chusetts Institute of Technology, Cambridge.

He is also a Scientist with the Internetworking Re-
search Department, BBN Technologies, Cambridge,
MA. His research interests include networking, dis-
tributed systems, and mobile computing.

Craig Partridge (M’88–SM’91–F’99) received the
A.B., S.M., and Ph.D. degrees from Harvard Univer-
sity, Cambridge, MA.

He is a Chief Scientist with BBN Technologies,
Cambridge, MA, where he does research on
various aspects of internetworking. He is chair of
ACM SIGCOMM and the former Editor-in-Chief
of ACM Computer Communication Review. He
is co- consulting editor of the Addison-Wesley
Professional Computing Series.

Dr. Partridge is the former Editor-in-Chief of
IEEE Network.

Luis A. Sanchezreceived the B.S. degree in elec-
trical engineering from the University of Puerto Rico,
Mayaguez, in 1989. and the M.S. degree in electrical
engineering from Boston University, Boston, MA, in
1994.

He was the lead architect of Site Patrol v3.0,
BBN Planet’s first managed VPN service, before
moving from BBN Planet to BBN Technologies.
He left BBN in 2001 to join Megisto Systems, Inc.,
Germantown, MD, as their Director of Security and
Policy architecture. He co-chairs the IPsec Policy

Working Group of the IETF.

Christine E. Jones received the B.S. degree in
computer science from Whitworth College, Spokane,
WA, in 1998, and the M.S. degree in computer
science from Washington State University, Pullman,
in 2000.

In 2000, she joined BBN Technologies, Cam-
bridge, MA, as a Scientist in the Internetworking
Research Department. Her research interests include
network security and wireless networks.

Fabrice Tchakountio (M’00) received the B.S
degree in computer science from the Swiss Federal
Institute of Technology, Lausanne, Switzerland in
1997, and the M.S degree in computer science from
Eurecom Institute, Sophia Antipolis, France, in
1998.

He is a Scientist at BBN Technologies, Cam-
bridge, MA, where he has been involved in the
design and implementation of clustering algorithms
for very large networks and predictive techniques
for highly mobile network systems.

Beverly Schwartz received the B.S. degree in elec-
trical engineering from Tufts University, Somerville,
MA, in 1985, and the S.M. degree in computer sci-
ence from Harvard University, Cambridge, MA, in
1989.

She is a Scientist in the Internetworking Research
Department, BBN Technologies, Cambridge, MA,
where she works on software solutions for IP
traceback.

Stephen T. Kent received the B.S. degree in
mathematics from Loyola University, New Orleans,
LA, and the S.M., E.E., and Ph.D. degrees in
computer science from the Massachusetts Institute
of Technology, Cambridge.

He is the Chief Scientist for Information Security
for BBN Technologies, Cambridge, MA, where he
has engaged in information security R&D for over 20
years. His most recent work focuses on public-key
certification infrastructures for government and
commercial applications, security for Internet

routing, and high-assurance cryptographic modules. He has served on the
Internet Architecture Board and chaired the Privacy and Security Research
Group of the IRTF, both for over a decade. He currently co-chairs the Public
Key Infrastructure Working Group of the IETF and is a member of the editorial
board of theJournal of Computer Security.

Dr. Kent is a Fellow of the Association of Computing Machinery.

W. Timothy Strayer (S’88–M’91–SM’98) received
the B.S. degree in mathematics and computer science
from Emory University, Atlanta, GA, in 1985, and the
M.S. and Ph.D. degrees in computer science from the
University of Virginia, Charlottesville, in 1988 and
1992, respectively.

In 1997, he joined BBN Technologies, Cambridge,
MA, where he is a Division Scientist in the Inter-
networking Research Department. His research in-
terests include transport protocols, active networks,
satellite packet switching, virtual private networks,

and routing systems. He is an author ofVirtual Private Networks: Technolo-
gies and Solutions(Reading, MA: Addison-Wesley, 2001).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

