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ABSTRACT
Denial of Service attacks are presenting an increasing threat to the
global inter-networking infrastructure. While TCP’s congestion
control algorithm is highly robust to diverse network conditions,
its implicit assumption of end-system cooperation results in a well-
known vulnerability to attack by high-rate non-responsive flows. In
this paper, we investigate a class oflow-rate denial of service at-
tacks which, unlike high-rate attacks, are difficult for routers and
counter-DoS mechanisms to detect. Using a combination of ana-
lytical modeling, simulations, and Internet experiments, we show
that maliciously chosen low-rate DoS traffic patterns that exploit
TCP’s retransmission time-out mechanism can throttle TCP flows
to a small fraction of their ideal rate while eluding detection. More-
over, as such attacks exploit protocol homogeneity, we study fun-
damental limits of the ability of a class of randomized time-out
mechanisms to thwart such low-rate DoS attacks.

Categories and Subject Descriptors
C.2.0 [Security and Protection]: Denial of Service;
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Performance, Security
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yA shrew is a small but aggressive mammal that ferociously attacks
and kills much larger animals with a venomous bite.
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1. INTRODUCTION
Denial of Service (DoS) attacks consume resources in networks,

server clusters, or end hosts, with the malicious objective of pre-
venting or severely degrading service to legitimate users. Resources
that are typically consumed in such attacks include network band-
width, server or router CPU cycles, server interrupt processing ca-
pacity, and specific protocol data structures. Example DoS attacks
include TCP SYN attacks that consume protocol data structures on
the server operating system; ICMP directed broadcasts that direct
a broadcast address to send a flood of ICMP replies to a target host
thereby overwhelming it; and DNS flood attacks that use specific
weaknesses in DNS protocols to generate high volumes of traffic
directed at a targeted victim.

Common to the above attacks is a large number of compromised
machines or agents involved in the attack and a “sledge-hammer”
approach of high-rate transmission of packets towards the attacked
node. While potentially quite harmful, the high-rate nature of such
attacks presents a statistical anomaly to network monitors such that
the attack can potentially be detected, the attacker identified, and
the effects of the attack mitigated (see for example, [6, 22, 30]).

In this paper, we study low-rate DoS attacks, which we term
“shrew attacks,” that attempt to deny bandwidth to TCP flows while
sending at sufficiently low average rate to elude detection by counter-
DoS mechanisms.

TCP congestion control operates on two timescales. On smaller
timescales of round trip times (RTT), typically 10’s to 100’s of
msec, TCP performs additive-increase multiplicative-decrease (AIMD)
control with the objective of having each flow transmit at the fair
rate of its bottleneck link. At times of severe congestion in which
multiple losses occur, TCP operates on longer timescales of Re-
transmission Time Out (RTO).1 In an attempt to avoid congestion
collapse, flows reduce their congestion window to one packet and
wait for a period of RTO after which the packet is resent. Upon fur-
ther loss, RTO doubles with each subsequent timeout. If a packet
is successfully received, TCP re-enters AIMD via slow start.

To explore low-rate DoS, we take a frequency-domain perspec-
tive and consider periodic on-off “square-wave” shrew attacks that
consist of short, maliciously-chosen-duration bursts that repeat with
a fixed, maliciously chosen, slow-timescale frequency. Consider-
ing first a single TCP flow, if the total traffic (DoS and TCP traffic)
during an RTT-timescale burst is sufficient to induce enough packet
losses, the TCP flow will enter a timeout and attempt to send a new
packet RTO seconds later. If the period of the DoS flow approxi-
mates the RTO of the TCP flow, the TCP flow will continually incur
loss as it tries to exit the timeout state, fail to exit timeout, and ob-
tain near zero throughput. Moreover, if the DoS period is near but

1recommended minimum value 1 sec [1]

75



outside the RTO range, significant, but not complete throughput
degradation will occur. Hence the foundation of the shrew attack is
a null frequency at the relatively slow timescale of approximately
RTO enabling a low average rate attack that is difficult to detect.

In a simplified model with heterogeneous-RTT aggregated flows
sharing a bottleneck link, we derive an expression for the through-
put of the attacked flows as a function of the timescale of the DoS
flow, and hence of the DoS flow’s average rate. Furthermore, we
derive the “optimal” DoS traffic pattern (a two-level periodic square
wave) that minimizes its average rate for a given level of TCP
throughput for the victim, including zero throughput.

Next, we use ns-2 simulations to explore the impact of aggrega-
tion and heterogeneity on the effectiveness of the shrew attack. We
show that even under aggregate flows with heterogeneous RTT’s,
heterogeneous file sizes, different TCP variants (New Reno, SACK,
etc.), and different buffer management schemes (drop tail, RED,
etc.), similar behavior occurs albeit with different severity for dif-
ferent flows and scenarios. The reason for this is that once the first
brief outage occurs, all flows will simultaneously timeout. If their
RTOs are nearly identical, they synchronize to the attacker’s pe-
riod and will enter a cycle identical to the single-flow case, even
with heterogeneous RTTs and aggregation. However, with highly
variable RTTs, the success of the shrew DoS attack is weighted
such that small RTT flows will degrade far worse than large RTT
flows, so that the attack has the effect of a high-RTT-pass filter.
We show that in all such cases, detection mechanisms for throttling
non-responsive flows such as RED-PD are not able to throttle the
DoS attacker.

We then perform a set of Internet experiments in both a local and
wide area environment. While necessarily small scale experiments
(given that the expected outcome is to reduce TCP throughput to
near zero), the experiments validate the basic findings and show
that even a remote attacker (across a WAN) can dramatically reduce
TCP throughput. For example, in the WAN experiments, a remote
909 kb/sec average-rate attack consisting of 100 ms bursts at the
victim’s RTO timescale reduced the victim’s throughput from 9.8
Mb/sec to 1.2 Mb/sec.

Finally, we explore potential solutions to low rate DoS attacks.
While it may appear attractive to remove the RTO mechanism all
together or choose very small RTO values, we do not pursue this av-
enue as timeout mechanisms are fundamentally required to achieve
high performance during periods of heavy congestion [1]. Instead,
we consider a class of randomization techniques in which flows
randomly select a value of minRTO such that they have random
null frequencies. We use a combination of analytical modeling and
simulation to show that such strategies can only distort and slightly
mitigate TCP’s frequency response to the shrew attack. Moreover,
we devise an optimal DoS attack given that flows are randomizing
their RTOs and show that such an attack is still quite severe.

In summary, vulnerability to low-rate DoS attacks is not a conse-
quence of poor or easily fixed TCP design, as TCP necessarily re-
quires congestion control mechanisms at both fast (RTT) and slow
(RTO) timescales to achieve high performance and robustness to
diverse network conditions. Consequently, it appears that such at-
tacks can only be mitigated and not prevented through randomiza-
tion. Development of prevention mechanisms that detect malicious
low-rate flows remains an important area for future research.

2. TCP’S TIMEOUT MECHANISM
Here, we present background on TCP’s retransmission timeout

(RTO) mechanism [28]. TCP Reno detects loss via either timeout
from non-receipt of ACKs, or by receipt of a triple-duplicate ACK.
If loss occurs and less than three duplicate ACKs are received, TCP

waits for a period of retransmission timeout to expire, reduces its
congestion window to one packet and resends the packet.2

Selection of the timeout value requires a balance among two ex-
tremes: if set too low, spurious retransmissions will occur when
packets are incorrectly assumed lost when in fact the data or ACKs
are merely delayed. Similarly, if set too high, flows will wait un-
necessarily long to infer and recover from congestion.

To address the former factor, Allman and Paxson experimentally
showed that TCP achieves near-maximal throughput if there exists
a lower bound for RTO of one second [1]. While potentially con-
servative for small-RTT flows, the study found thatall flowsshould
have a timeout value of at least 1 second in order to ensure that
congestion is cleared, thereby achieving the best performance.

To address the latter factor, a TCP sender maintains two state
variables, SRTT (smoothed round-trip time) and RTTVAR (round-
trip time variation). According to [28], the rules governing the
computation of SRTT, RTTVAR, and RTO are as follows. Until
a RTT measurement has been made for a packet sent between the
sender and receiver, the sender sets RTO to three seconds. When
the first RTT measurementR0 is made, the host sets SRTT= R0,
RTTVAR = R0=2 and RTO = SRTT+ max(G; 4RTTVAR),
whereG denotes the clock granularity (typically� 100 ms). When
a subsequent RTT measurementR0 is made, a host sets

RTTVAR = (1� �)RTTVAR+ � jSRTT�R0j

and

SRTT= (1 � �)SRTT+ �R0

where� = 1=8 and� = 1=4, as recommended in [15].
Thus, combining the two parts, a TCP sender sets its value of

RTO according to

RTO= max(minRTO;SRTT+max(G; 4RTTVAR)): (1)
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Figure 1: Behavior of the TCP retransmission timer

Finally, we illustrate RTO management via a retransmission-
timer timeline in Figure 1. Assume that a packet with sequence
number n is sent by a TCP sender at reference time t = 0, and that
a retransmission timer of 1 second is initiated upon its transmis-
sion. If packet n is lost and fewer than three duplicate ACKs are

2Conditions under which TCP enters retransmission timeout vary
slightly according to TCP version. We discuss this issue in Sec-
tion 5.
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received by the sender, the flow “ times out” when the timer expires
at t = 1 sec. At this moment, the sender enters the exponential
backoff phase: it reduces the congestion window to one, doubles
the RTO value to 2 seconds, retransmits the un-ACKed packet with
sequence number n, and resets the retransmission timer with this
new RTO value.

If the packet is lost again (not shown in Figure 1), exponential
backoff continues as the sender waits for the 2 sec-long retransmis-
sion timer to expire. At t = 3 sec, the sender doubles the RTO
value to 4 seconds and repeats the process.

Alternately, if packet n is successfully retransmitted at time t =
1 sec as illustrated in Figure 1, its ACK will arrive to the sender at
time t=1+RTT. At this time, the TCP sender exits the exponential
backoff phase and enters slow start, doubling the window size to
two, transmitting two new packets n+1 and n+2, and reseting the
retransmission timer with the current RTO value of 2 sec. If the two
packets are not lost, they are acknowledged at time t= 1+2*RTT,
and SRTT, RTTVAR and RTO are recomputed as described above.
Provided that minRTO > SRTT + max(G; 4RTTVAR), RTO is
again set to 1 sec. Thus, in this scenario in which timeouts occur
but exponential backoff does not, the value of RTO deviates by no
more than RTT from minRTO for t > minRTO + 2RTT.

3. DOS ORIGINS AND MODELING
In this section, we describe how an attacker can exploit TCP’s

timeout mechanism to perform a DoS attack. Next, we provide a
scenario and a system model of such an attack. Finally, we develop
a simple model for aggregate TCP throughput as a function of the
DoS traffic parameters.

3.1 Origins
The above timeout mechanism, while essential for robust con-

gestion control, provides an opportunity for low-rate DoS attacks
that exploit the slow-timescale dynamics of retransmission timers.
In particular, an attacker can provoke a TCP flow to repeatedly en-
ter a retransmission timeout state by sending high-rate, but short-
duration bursts having RTT-scale burst length, and repeating peri-
odically at slower RTO timescales. The victim will be throttled to
near-zero throughput while the attacker will have low average rate
making it difficult for counter-DoS mechanisms to detect.

We refer to the short durations of the attacker’s loss-inducing
bursts as outages, and present a simple but illustrative model relat-
ing the outage timescale (and hence attacker’s average rate) to the
victim’s throughput as follows.

First, consider a single TCP flow and a single DoS stream. As-
sume that an attacker creates an initial outage at time 0 via a short-
duration high-rate burst. As shown in Figure 1, the TCP sender will
wait for a retransmission timer of 1 sec to expire and will then dou-
ble its RTO. If the attacker creates a second outage between time 1
and 1+2RTT, it will force TCP to wait another 2 sec. By creating
similar outages at times 3, 7, 15, � � � , an attacker could deny service
to the TCP flow while transmitting at extremely low average rate.

While potentially effective for a single flow, a DoS attack on TCP
aggregates in which flows continually arrive and depart requires pe-
riodic (vs. exponentially spaced) outages at the minRTO timescale.
Moreover, if all flows have an identical minRTO parameter as rec-
ommended in RFC 2988 [28], the TCP flows can be forced into
continual timeouts if an attacker creates periodic outages.

Thus, we consider “square wave” shrew DoS attacks as shown in
Figure 3 in which the attacker transmits bursts of duration l and rate
R in a deterministic on-off pattern that has period T . As explored
below, a successful shrew attack will have rate R large enough to
induce loss (i.e., R aggregated with existing traffic must exceed

DoS
rate magnitude of

the peak R

period of the attack T

length of the peak l

Figure 3: Square-wave DoS stream

the link capacity), duration l of scale RTT (long enough to induce
timeout but short enough to avoid detection), and period T of scale
RTO (chosen such that when flows attempt to exit timeout, they are
faced with another loss).

3.2 Model
Consider a scenario of an attack shown in Figure 2(a). It consists

of a single bottleneck queue driven by n long-lived TCP flows with
heterogeneous RTTs and a single DoS flow. Denote RTTi as the
roundtrip time of the i-th TCP flow, i = 1; � � � ; n. The DoS flow
is a periodic square-wave DoS stream shown in Figure 3. The fol-
lowing result relates the throughput of the TCP flows to the period
of the attack.

DoS TCP Throughput Result. Consider a periodic DoS attack
with period T . If the outage duration satisfies

(C1) l0 � RTTi
and the minimum RTO satisfies

(C2) minRTO > SRTTi + 4 � RTTVARi
for all i = 1; � � � ; n, then the normalized throughput of the aggre-
gate TCP flows is approximately

�(T ) =
dminRTO

T
eT �minRTO

T
: (2)

This result is obtained as follows. As shown in Figure 2(b), the
periodic l-length bursts create short l0-length outages having high
packet loss.3 If l0 reaches the TCP flows’ RTT timescales, i.e., l0 �
RTTi, for all i = 1; � � � ; n, then the congestion caused by the DoS
burst lasts sufficiently long to force all TCP flows to simultaneously
enter timeout. Moreover, if minRTO > SRTTi+4�RTTVARi, for
i = 1; � � � ; n, all TCP flows will have identical values of RTO and
will thus timeout after minRTO seconds, which is the ideal moment
for an attacker to create a new outage. Thus, in this case, despite
their heterogeneous round-trip times, all TCP flows are forced to
“synchronize” to the attacker and enter timeout at (nearly) the same
time, and attempt to recover at (nearly) the same time. Thus, when
exposed to outages with period T , Equation (2) follows. Note also
that in Equation (2) we do not model throughput losses due to the
slow-start phase, but simply assume that TCP flows utilize all avail-
able bandwidth after exiting the timeout phase.

Moreover, in the model, the aggregate TCP traffic is assumed
to utilize the full link bandwidth after the end of each retrans-
mission timeout and the beginning of the following outage. Ob-
serve that if the period T is chosen such that T � 1 + 2RTTi,
all TCP flows will continually enter a retransmission timeout of
1 sec duration. Thus, because Equation (2) assumes that RTO =
minRTO for T > minRTO, while this is not the case in the period
(minRTO;minRTO + 2RTT), Equation (2) behaves as an upper
bound in practice. In other words, periodic DoS streams are not

3The relationship between l and l0 is explored in Section 4.
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Figure 2: DoS scenario and system model

utilizing TCP’s exponential backoff mechanism but rather exploit
repeated timeouts.

Next, we consider flows that do not satisfy conditions (C1) or
(C2).

DoS TCP Flow-Filtering Result. Consider a periodic DoS at-
tack with period T . If the outage duration l0 � RTTi and minRTO >
SRTTi + 4 � RTTVARi for i = 1; � � � ; k whereas l0 < RTTj or
minRTO � SRTTj + 4 � RTTVARj for j = k + 1; � � � ; n, then
Equation (2) holds for flows 1; � � � ; k.

This result, shown similarly to that above, states that Equation
(2) holds for any TCP sub-aggregate for which conditions (C1) and
(C2) hold. In other words, if a shrew DoS attack is launched on a
group of flows such that only a subset satisfies the two conditions,
that subset will obtain degraded throughput according to Equation
(2), whereas the remaining flows will not. We refer to this as “fl ow
filtering” in that such an attack will deny service to a subset of flows
while leaving the remainder unaffected, or even obtaining higher
throughput. We explore this issue in detail in Section 5.

3.3 Example
Here, we present a baseline set of experiments to explore TCP’s

“ frequency response” to shrew attacks. We first consider the ana-
lytical model and the scenario depicted in Figure 2 in which condi-
tions (C1) and (C2) are satisfied and minRTO = 1 sec. The curve
labeled “model” in Figure 4 depicts � vs. T as given by Equation
(2). Throughput is normalized to the link capacity, which under
high aggregation, is also the throughput that the TCP flows would
obtain if no DoS attack were present.
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Figure 4: DoS TCP throughput: model and simulation

Note that the average rate of the DoS attacker is decreasing with
increasing T as its average rate is given by Rl=T . However, as in-
dicated by Equation (2) and Figure 4, the effectiveness of the attack
is clearly not increasing with the attacker’s average rate. Most crit-
ically, observe that there are two “nulls” in the frequency response
in which TCP throughput becomes zero. In particular, �(T ) = 0
when T = minRTO and T = minRTO=2. The physical inter-

pretation is as follows: if the attacker creates the minRTO-periodic
outages, it will completely deny service to the TCP traffic. Once the
brief outage occurs, all flows will simultaneously timeout. When
their timeout expires after minRTO seconds and they again trans-
mit packets, the attacker creates another outage such that the flows
backoff again. Clearly, the most attractive period for a DoS attacker
is minRTO (vs. minRTO=2), since it is the null frequency that min-
imizes the DoS flow’s average rate. When T > minRTO, as the
period of the attack increases, the TCP flows obtain increasingly
higher throughput during durations between expiration of retrans-
mission timers and the subsequent DoS outage.

Next, we perform a set of ns-2 simulations to compare against
the model. In these experiments, we again consider the scenario
of Figure 2 but with a single TCP flow.4 The TCP Reno flow has
minRTO = 1 second and satisfies conditions (C1) and (C2). More
precisely, the propagation delay is 6 ms while the buffer size is set
such that the round-trip time may vary from 12 ms to 132 ms. The
link capacity is 1.5 Mb/s, while the DoS traffic is a square-wave
stream with the peak rate 1.5 Mb/s and burst length 150 ms.

The curve labeled “simulation” in Figure 4 depicts the measured
normalized throughput of the TCP flow. Figure 4 reveals that Equa-
tion (2) captures the basic frequency response of TCP to the shrew
DoS attack, characterizing the general trends and approximating
the location of the two null frequencies. Observe that the model
overestimates measured TCP throughput between the two nulls be-
cause the model assumes that TCP can utilize the full link capacity
between the end of an RTO and the occurrence of the new outage,
which is not the case due to slow-start.

4. CREATING DOS OUTAGES
In this section, we explore the traffic patterns that attackers can

use in order to create temporary outages that induce recurring TCP
timeouts. First, we study the instantaneous bottleneck-queue be-
havior in periods when an attacker bursts packets into the network.
Next, we develop the DoS stream which minimizes the attacker’s
average rate while ensuring outages of a particular length. Finally,
we study square-wave DoS streams and identify the conditions in
which they accurately approximate the optimal double-rate DoS
streams.

4.1 Instantaneous Queue Behavior
Consider a bottleneck queue shared by a TCP flow and a DoS

flow which every T seconds bursts at a constant rate RDoS for
duration l. Denote RTCP as the instantaneous rate of the TCP
flow, B as the queue size, and B0 as the queue size at the onset of

4Recall that Equation (2) holds for any number of flows. We simu-
late TCP aggregates in Section 5.
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an attack, assumed to occur at t = 0.
Denote l1 as the time that the queue becomes full such that

l1 =
(B �B0)

RDoS +RTCP �C
: (3)

After l1 seconds, the queue remains full for l2 = l � l1 seconds
if RDoS + RTCP � C. Moreover, if RDoS � C during the
same period, this will create an outage to the TCP flow whose loss
probability will instantaneously increase significantly and force the
TCP flow to enter a retransmission timeout with high probability
(see also Figure 2).

4.2 Minimum Rate DoS Streams
Suppose the attacker is limited to a peak rate of Rmax due to

a secondary bottleneck or the attacker’s access link rate. To avoid
router-based mechanisms that detect high rate flows, e.g., [22], DoS
attackers are interested in ways to minimally expose their streams
to detection mechanisms. To minimize the number of bytes trans-
mitted while ensuring outages of a particular length, an attacker
should transmit a double-rate DoS stream as depicted in Figure 5.
To fill the buffer without help from background traffic or the at-
tacked flow requires l1 = B=(Rmax � C) seconds. Observe that
sending at the maximum possible rate Rmax minimizes l1 and con-
sequently the number of required bytes. Once the buffer fills, the
attacker should reduce its rate to the bottleneck rate C to ensure
continued loss using the lowest possible rate.

DoS
rate

Bottleneck
capacity C

period of the attack T

l1

l2 Rmax

Figure 5: Double-rate DoS stream

Thus, double-rate streams minimize the number of packets that
need to be transmitted (for a given bottleneck queue size B, bot-
tleneck capacity C, and range of sending rates from 0 to Rmax)
among all possible sending streams that are able to ensure periodic
outages with period T and length l2.

To generate double-rate DoS streams in real networks, an at-
tacker can use a number of existing techniques to estimate the bot-
tleneck link capacity [3, 4, 16, 19, 27], bottleneck-bandwidth queue
size [21] and secondary bottleneck rate [26].

Regardless of the optimality of double-rate DoS streams, we
consider the simpler square-wave DoS attack shown in Figure 3 as
an approximation. First, these streams do not require prior knowl-
edge about the network except the bottleneck rate. Second, they
isolate the effect of a single timescale periodic attack.

To study the effectiveness of the square-wave, we perform simu-
lation experiments to compare the two attacks’ frequency responses.
As an example, we consider a square-wave DoS stream with peak
rate 3.75 Mb/s and burst length l = 50 ms and a double-rate stream
with Rmax = 10 Mb/s. For the double-rate stream, l1 is computed
as B=(Rmax � C), while l2 is determined such that the number
of packets sent into the network is the same for both streams. The
simulation parameters are the same as previously.

The resulting frequency responses in this example and others
(not shown) are nearly identical. Consequently, since square-wave

DoS streams accurately approximate the double-rate DoS stream
and do not require knowledge of network parameters, we use square-
wave DoS streams henceforth in both simulations and Internet ex-
periments.

5. AGGREGATION AND HETEROGENEITY
In this section, we explore the impact of TCP flow aggregation

and heterogeneity on the effectiveness of the shrew DoS attack.
First, we experiment with long-lived homogeneous-RTT TCP traf-
fic and explore the DoS stream’s ability to synchronize flows. Sec-
ond, we perform experiments in a heterogeneous RTT environment
and explore the effect of RTT-based filtering. Third, we study the
impact of DoS streams on links dominated by web traffic. Finally,
we evaluate several TCP variants’ vulnerability to the shrew DoS
attacks.

As a baseline topology (and unless otherwise indicated) we con-
sider many flows sharing a single congested link with capacity
1.5 Mb/s as in Figure 2. The one-way propagation delay is 6 ms
and the buffer size is set such that the round-trip time varies from
12 ms to 132 ms. The DoS traffic is a square-wave stream with peak
rate 1.5 Mb/s, burst duration 100 ms, and packet size 50 bytes. In
all experiments, we generate a FTP/TCP flow in the reverse direc-
tion, whose ACK packets multiplex with TCP and DoS packets in
the forward direction. For each data point in the figures below, we
perform five simulation runs and report averages. Each simulation
run lasts 1000 sec.

5.1 Aggregation and Flow Synchronization
The experiments of Section 3 illustrate that a DoS square wave

can severely degrade the throughput of a single TCP flow. Here, we
investigate the effectiveness of low bit-rate DoS streams on TCP
aggregates with homogeneous RTTs for five long-lived TCP flows
sharing the bottleneck.
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Figure 6: DoS and aggregated TCP flows

Figure 6 depicts the normalized aggregate TCP throughput under
the shrew DoS attack for different values of the period T . Observe
that similar to the one-flow case, the attack is highly successful so
that Equation (2) can also model attacks on aggregates. However,
we note that compared to the single-flow case, the throughput at
the null 1/RTO frequency is slightly larger in this case because the
maximum RTT of 132 ms is greater than the DoS burst length of
100 ms such that a micro-flow may survive an outage. Also observe
that an attack at frequency 2/minRTO nearly completely eliminates
the TCP traffic.

The key reasons for this behavior are twofold. First, RTO ho-
mogeneity (via minRTO) introduces a single vulnerable timescale,
even if flows have different RTTs (as explored below). Second,
DoS-induced synchronization occurs when the DoS outage event
causes all flows to enter timeout nearly simultaneously. Together
with RTO homogeneity, flows will also attempt to exit timeout
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nearly simultaneously when they are re-attacked.
Synchronization of TCP flows was extensively explored in [10,

31] and was one of the main motivations for RED [11], whose goal
is the avoidance of synchronization of many TCP flows decreasing
their window at the same time. In contrast, the approach and sce-
nario here are quite different, as an external malicious source (and
not TCP itself) is the source of synchronization. Consequently,
mechanisms like RED are unable to prevent DoS-initiated synchro-
nization (see also Section 7).

5.2 RTT Heterogeneity

5.2.1 RTT-based Filtering
The above experiment shows that a DoS stream can significantly

degrade throughput of a TCP aggregate, provided that the outage
length is long enough to force all TCP flows to enter a retransmis-
sion timeout simultaneously. Here, we explore a heterogeneous-
RTT environment with the objective of showing that a flow’s vul-
nerability to low-rate DoS attacks fundamentally depends on its
RTT, with shorter-RTT flows having increased vulnerability.

We perform experiments with 20 long-lived TCP flows on a 10 Mb/s
link. The range of round-trip times is 20 to 460 ms [12], obtained
from representative Internet measurements [18]. We use these mea-
surements to guide our setting of link propagation delays for differ-
ent TCP flows.5
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Figure 7 depicts the normalized TCP throughput for each of the
20 TCP flows. The curve labeled “no DoS” shows each flow’s
throughput in the absence of an attack. Observe that the flows re-
distribute the bandwidth proportionally to 1/RTT such that shorter-
RTT flows utilize more bandwidth than the longer ones. The curve
labeled “DoS” shows each TCP flow’s throughput when they are
multiplexed with a DoS square-wave stream with peak rate 10 Mb/s,
burst length 100 ms and period 1.1 sec. Observe that this DoS
stream filters shorter-RTT flows up to a timescale of approximately
180 ms, beyond which higher RTT flows are less adversely af-
fected. Also, observe that despite the excess capacity available due
to the shrew DoS attack, longer-RTT flows do not manage to im-
prove their throughput.

However, in a regime with many TCP flows with heterogeneous
RTTs, the number of non-filtered flows with high RTT will in-
crease, and they will eventually be of sufficient number to utilize all
available bandwidth left unused by the filtered smaller-RTT flows.
Thus, the total TCP throughput will increase with the aggregation
level for highly heterogeneous-RTT flows as illustrated in Figure
8. Unfortunately, the high throughput and high link utilization with
many flows (e.g., greater than 90% in the 80-flow scenario) is quite

5We did not fit the actual CDF of this data, but have uniformly
distributed round-trip times in the above range.
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Figure 8: High aggregation with heterogeneous RTT

misleading, as the shorter-RTT flows have been dramatically rate-
limited by the attack as in Figure 7. Hence, one can simultaneously
have high utilization and an effective DoS attack against small- to
moderate-RTT flows.

5.2.2 DoS Burst Length
The above experiments showed that DoS streams behave as a

high-RTT-pass filter, in which the burst length is related to the filter
cut-off timescale. Here, we directly investigate the impact of burst
length.
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Figure 10: Impact of DoS burst length

For the same parameters as above, Figure 10 depicts aggregate
TCP throughput as a function of the DoS burst length. The fig-
ure shows that as the burst length increases, the DoS mean rate
increases, yet the aggregate TCP throughput decreases much more
significantly. Indeed, as the burst length increases, the RTT-cut-
off timescale increases. In this way, flows with longer and longer
RTTs are filtered. Consequently, the number of non-filtered flows
decreases such that aggregate TCP throughput decreases. In other
words, as the burst length increases, the sub-aggregate for which
condition (C1) holds enlarges. With a fixed number of flows, the
longer-RTT flows are unable to utilize the available bandwidth, and
the aggregate TCP throughput decreases.

5.2.3 Peak Rate
Recall that the minimal-rate DoS streams studied in Section 4

induce outages without any help from background traffic and under
the assumption that the initial buffer size B0 is zero. However, in
practice, the buffer will also be occupied by packets from reverse
ACK traffic, UDP flows, etc. Consequently, in the presence of such
background traffic, the DoS source can potentially lower its peak
rate and yet maintain an effective attack.

Consider a scenario with five flows, a DoS flow and four long-
lived TCP flows. We set the link propagation delays in the sim-
ulator such that one TCP flow experiences shorter RTT (fluctu-
ates from 12 ms to 134 ms) while the other three have longer RTTs
(from 108 ms to 230 ms). Figure 11 depicts the throughput of the
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Figure 9: Impact on HTTP flows

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Peak Rate / Link Capacity

Figure 11: Impact of DoS peak rate

short-RTT flow as a function of the normalized DoS peak rate var-
ied from 0 to 1. Observe that relatively low peak rates are suf-
ficient to filter the short-RTT flow. For example, a peak rate of
one third of the link capacity and hence an average rate of 3.3%
of the link capacity significantly degrades the short-RTT flows’
throughput at the null timescale. As hypothesized above, longer
RTT flows here play the role of background traffic and increase
both B0 and the burst rate in periods of outages which enables
lower-than-bottleneck peak DoS rates to cause outages. This fur-
ther implies that very low rate periodic flows that operate at one of
the null TCP timescales (minRTO

j
, j = 1; � � � ) are highly prob-

lematic for TCP traffic. For example, some probing schemes peri-
odically burst for short time intervals at high rates in an attempt to
estimate the available bandwidth on an end-to-end path [17].

5.3 HTTP Traffic
Thus far, we have considered long-lived TCP flows. Here, we

study a scenario with flow arrival and departure dynamics and highly
variable file sizes as incurred with HTTP traffic.

We adopt the model of [8] in which clients initiate sessions from
randomly chosen web sites with several web pages downloaded
from each site. Each page contains several objects, each of which
requires a TCP connection for delivery (i.e., HTTP 1.0). The inter-
page and inter-object time distributions are exponential with re-
spective means of 9 sec and 1 msec. Each page consists of ten
objects and the object size is distributed according to a Pareto dis-
tribution with shape parameter 1.2. For the web transactions, we
measure and average the response times for different sized objects.

Figure 9 depicts web-file response times normalized by the re-
sponse times obtained when the DoS flow is not present in the sys-
tem. Because of this normalization, the curve labeled “no DoS” in
Figure 9 is a straight line with a value of one. The flows’ mean
HTTP request arrival rate is selected such that the offered HTTP
load is 50% and near 100% for Figures 9(a) and 9(b) respectively.

On average, the file response times increased by a factor of 3.5

under 50% load and a factor of 5 under 100% load. Figures 9(a) and
(b) both indicate that larger files (greater than 100 packets in this
scenario) become increasingly and highly vulnerable to the shrew
DoS attacks with the response times of files increasing by orders
of magnitude. However, observe that some flows benefit from the
shrew attack and significantly decrease their response times. This
occurs when a flow arrives into the system between two outages
and is able to transmit its entire file before the next outage occurs.

Next, observe that the deviation from the reference (no DoS) sce-
nario is larger in Figure 9(a) than 9(b). This is because the response
times are approximately 100 times lower for the no-DoS scenario
when the offered load is 50% as compared to the no-DoS scenario
when the system is fully utilized.

Finally, we performed experiments where DoS stream attack mix-
tures of long- (FTP) and short-lived (HTTP) TCP flows. The results
(not shown) indicate that the conclusions obtained separately for
FTP and HTTP traffic hold for FTP/HTTP aggregates.

5.4 TCP Variants
The effectiveness of low-rate DoS attacks depends critically on

the attacker’s ability to create correlated packet losses in the sys-
tem and force TCP flows to enter retransmission timeout. While
we have studied TCP Reno thus far, a large body of work has been
done to help TCP flows survive multiple packet losses within a sin-
gle round trip time without incurring a retransmission timeout. For
example, New Reno [14] changes the sender’s behavior during Fast
Recovery upon receipt of a partial ACK that acknowledges some
but not all packets that were outstanding at the start of the Fast Re-
covery period. Further improvements are obtained by TCP SACK
[13] when a large number of packets are dropped from a window
of data [7] because when a SACK receiver holds non-contiguous
data, it sends duplicate ACKs bearing the SACK option to inform
the sender of the segments that have been correctly received. A
thorough analysis of the packet drops required to force flows of a
particular TCP version to enter timeout is given in [7].

Here, we evaluate the performance of TCP Reno, New Reno,
Tahoe and SACK under the shrew DoS attack. Figures 12 (a)-(d)
show TCP throughput for burst lengths of 30, 50, 70 and 90 ms,
respectively. Figure 12(a) confirms that TCP Reno is indeed the
most fragile TCP variant, while the other three versions have bet-
ter robustness to DoS. However, when the peak length increases
to 50 ms, all TCP variants obtain near zero throughput at the null
frequency as shown in Figure 12(b). The Figure also indicates that
TCP is the most vulnerable to DoS in the 1 - 1.2 sec timescale re-
gion. During this period, TCP flows are in slow-start and have
small window sizes such that a smaller number of packet losses
are needed to force them to enter retransmission timeout. Finally,
Figures (c)-(d) indicate that all TCP variations obtain a throughput
profile similar to Equation (2) when the outage duration increases,
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Figure 12: TCP Reno, New Reno, Tahoe and SACK under shrew DoS attacks

such that more packets are lost from the window of data. Indeed, if
all packets from the window are lost, TCP has no alternative but to
wait for a retransmission timer to expire.

6. INTERNET EXPERIMENTS
In this section, we describe several DoS experiments performed

on the Internet. The scenario is depicted in Figure 13 and con-
sists of a large file downloaded from a TCP SACK sender (TCP-
S) to a TCP SACK receiver (TCP-R). We configured the TCP-S
host to have minRTO=1 sec according to [28] and measured TCP
throughput using iperf. The shrew DoS attack was launched from
three different hosts using UDP-based active probing software from
[25] in order to send high-precision DoS streams. All experiments
are performed three times and averages are reported.

WAN LAN1

LAN2

LAN3

TCP-S

DoS-A

DoS-B

DoS-C

TCP-R

Figure 13: DoS attack scenario

Intra-LAN Scenario. In this scenario, both the TCP sender
(TCP-S) and DoS (DoS-A) hosts are on the same 10 Mb/s Ether-
net LAN on Rice University, while the attacked host (TCP-R) is
on a different 10 Mb/s Ethernet LAN, two hops away from both
TCP-S and DoS-A. The peak rate of the square-wave DoS stream
is 10 Mb/s while the burst length is 200 ms. The curve labeled
“DoS-A (Intra-LAN)” in Figure 14 depicts the results of these ex-
periments. The figure indicates that a null frequency exists at a

timescale of approximately 1.2 sec. When the attacker transmits
at this period, it has an average rate of 1.67 Mb/s. Without the
DoS stream, the TCP flow obtains 6.6 Mb/s throughput. With it, it
obtains 780 kb/s throughput. Thus, the DoS attacker can severely
throttle the victim’s throughput by nearly an order of magnitude.
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Figure 14: Internet experiments

Inter-LAN Scenario. In this, the TCP sender (TCP-S), DoS
source (DoS-B) and attacked host (TCP-R) are on three different
LANs of the ETH (Zurich, Switzerland) campus network. The
route between the two traverses two routers and two Ethernet switches,
with simple TCP measurements revealing that the TCP and DoS
LANs are 100 Mb/s Ethernet LANs, while the attacked host is on
a 10 Mb/s Ethernet LAN. The peak rate of the square-wave DoS
stream is again 10 Mb/s while its duration is reduced as compared
to the Intra-LAN Scenario to 100 ms. The curve labeled “DoS-B
inter-LAN” in Figure 14 depicts the frequency response of this at-
tack. In this case, a DoS timescale of T = 1.1 sec is the most dam-
aging to TCP, since here the TCP flow achieves 800 kb/s through-
put, only 8.1% of the throughput it achieves without DoS flow
(9.8 Mb/s). At this timescale, the attacker has an average rate of
909 kb/s.

WAN Scenario. Finally, for the same TCP source/destination
pair as in the Inter-LAN Scenario, source DoS-C initiates a shrew
DoS attack from a LAN at EPFL (Lausanne, Switzerland), located
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Figure 15: Impact of RED and RED-PD routers

eight hops away from the destination. The DoS stream has a peak
rate of 10 Mb/s and a burst duration of 100 ms. The curve labeled
“DoS-C (WAN)” shows the frequency response of these experi-
ments and indicates a nearly identical null located at T = 1.1
sec. For this attack, the TCP flow’s throughput is degraded to 1.2
Mb/s from 9.8 Mb/s whereas the attacker has average rate of 909
kb/s. This experiment illustrates the feasibility of remote attacks.
Namely, in the WAN Scenario, the DoS attacker has traversed the
local provider’s network and multiple routers and Ethernet switches
before reaching its victim’s LAN. Thus, despite potential traffic dis-
tortion that deviates the attacker’s traffic pattern from the square
wave, the attack is highly effective.

Thus, while necessarily small scale due to their (intended) ad-
verse effects, the experiments support the findings of the analytical
model and simulation experiments. The results indicate that effec-
tive shrew attacks can come from remote sites as well as nearby
LANs.

7. COUNTER-DOS TECHNIQUES
Here, we explore two classes of candidate counter-DoS mech-

anisms intended to mitigate the effects of shrew attacks: router-
assisted detection and throttling, and endpoint-based randomiza-
tion.

7.1 Router-Assisted Mechanisms
As described above, DoS flows have low average rate, yet do

send relatively high-rate bursts for short time intervals. Here, we
investigate if such traffic patterns can be identified as a DoS attack
by router-based algorithms.

Mechanisms for per-flow treatment at the router can be classified
as scheduling or preferential dropping. Due to implementation sim-
plicity and other advantages of preferential dropping over schedul-
ing (see reference [22]), we concentrate on dropping algorithms for
detection of DoS flows and/or achieving fairness among adaptive
and non-adaptive flows. Candidate algorithms include Flow Ran-
dom Early Detection (FRED) [20], CHOKe [24], Stochastic Fair
Blue (SFB) [9], the scheme of reference [2], ERUF [29], Stabi-
lized RED (SRED) [23], dynamic buffer-limiting scheme from [5]
and RED with Preferential Dropping (RED-PD) [22]. Of these, we
study RED-PD as it uses the packet drop history at the router to
detect high-bandwidth flows with high confidence. Flows above a
configured target bandwidth are identified and monitored by RED-
PD. Packets from the monitored flows are dropped with a proba-
bility dependent on the excess sending rate of the flow. RED-PD
suspends preferential dropping when there is insufficient demand
from other traffic in the output queue, for example, when RED’s
average queue size is less than the minimum threshold.

We perform simulation experiments with one and nine TCP SACK

flows, RED-PD routers, and the topology of Figure 2. For one TCP
flow, Figure 15(a) indicates that RED-PD is not able to detect nor
throttle the DoS stream. For aggregated flows depicted in Figure
15(b), RED-PD only affects the system if the attack occurs at a
timescale of less than 0.5 sec, i.e., only unnecessarily high-rate at-
tacks can be addressed. Most critically, at the null timescale of
1.2 sec, RED-PD has no noticeable effect on throughput as com-
pared to RED. Thus, while RED and RED-PD’s randomization has
lessened the severity of the null, the shrew attack remains effective
overall.

Next, in the above scenario with nine TCP SACK flows, we
vary the DoS peak rate and burst length to study the conditions
under which the DoS flows will become detectable by RED-PD.
We first set the burst duration to 200 ms and then change the peak
rate from 0.5 Mb/s to 5 Mb/s. Figure 16(a) indicates that RED-PD
starts detecting and throttling the square-wave stream at a peak rate
of 4 Mb/s, which is more than twice than the bottleneck rate of
1.5 Mb/s. Recall that in Section 5.2.3 we showed that a peak rate of
one third the bottleneck capacity and a burst length of 100 ms can
be quite dangerous for short-RTT TCP flows.

Further, we fix the DoS peak rate to 2 Mb/s and vary the burst
length from 50 ms to 450 ms. Figure 16(b) shows that RED-PD
begins detecting the DoS flow at 300 ms timescales in this sce-
nario. Recall again that much shorter burst timescales are sufficient
to throttle not only short-RTT flows, but the entire aggregates of
heterogeneous-RTT TCP traffic.

Thus, Figure 16(b) captures the fundamental issue of timescales:
RED-PD detects high rate flows on longer timescales, while DoS
streams operate at very short timescales. If these shorter timescales
are used to detect malicious flows in the Internet, many legitimate
bursty TCP flows would be incorrectly detected as malicious. This
issue is studied in depth in reference [22], which concludes that
long timescale detection mechanisms are needed to avoid exces-
sively high false positives. Therefore, while short timescale mech-
anisms such as [24, 20, 9, 5] may indeed be more effective at mit-
igating shrew attacks, [22] indicates that the penalty for their use
may be quite high.

In summary, relatively long-timescale measurements are required
to determine with confidence that a flow is transmitting at exces-
sively high rate and should be dropped. Because DoS attacks can
be of short RTT-scale duration, detection of low-rate DoS attacks
is a fundamentally difficult task.

7.2 End-point minRTO Randomization
Since low-rate attacks exploit minRTO homogeneity, we ex-

plore a counter-DoS mechanism in which endpoints randomize their
minRTO parameter in order to randomize their null frequencies.
Here, we develop a simple, yet illustrative model of TCP through-
put under such a scenario. In particular, we consider a counter-DoS
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Figure 16: Detecting DoS streams

strategy in which TCP senders randomize their minRTO parameters
according to a uniform distribution in the range [a; b]. Our objec-
tive is to compute the TCP frequency response for a single flow
with a uniformly distributed minRTO. Moreover, some operating
systems use a simple periodic timer interrupt of 500 ms to check
for timed-out connections. This implies that while the TCP flows
enter timeout at the same time, they recover uniformly over the
[1; 1:5] sec range. Thus, the following analysis applies equally to
such scenarios.

We have three cases according to the value of T as compared
to a and b. First, if T � b. Then �(T ) = T�E(RTO)

T
, where

E(RTO) = (a+ b)=2 so that

�(T ) =
T � a+b

2

T
; for T � b: (4)

Second, for T 2 [a; b), denote k as b b
T
c. Then,

�(T ) =
T � a

b� a

T � T+a
2

T
+

k�1X
i=1

T

b� a

T
2

(i+ 1)T

+
b� kT

b� a

(k + 1)T � kT+b
2

(k + 1)T
: (5)

Equation (5) is derived as follows. Since only one outage at a
time can cause a TCP flow to enter retransmission timeout, we first
determine the probability for each outage to cause a retransmission
timeout and then multiply it by the corresponding conditional ex-
pectation for the TCP throughput. In Equation (5), the first term
denotes TCP throughput in the scenario when the retransmission
timeout is caused by the next outage after the initial one. The term
T�a
b�a

denotes the probability that the initial RTO period has ex-
pired, which further means that the first outage after time a will
cause another RTO. The conditional expectation for TCP through-

put in this scenario is
T�T+a

2

T
, where T+a

2
denotes the expected

value of the end of the initial RTO, given that it happened between
a and T . The second term of Equation (5) denotes TCP throughput
for outages i = 2; � � � ; k � 1. The probability for them to occur is
T
b�a

, and the conditional expectation of TCP throughput is T=2
(i+1)T

.
Finally, the third term in Equation (5) denotes TCP throughput for
the (k + 1)th outage.

Finally, when T < a, it can be similarly shown that

�(T ) =
d a
T
eT � a+b

2

d a
T
eT

; for k = 1; (6)

and

�(T ) =
d a
T
eT � a

b� a

d a
T
eT �

a+d a
T
eT

2

d a
T
eT

+

k�1X
i=d a

T
e

T

b� a

T
2

(i+ 1)T

+
b� kT

b� a

(k + 1)T � kT+b
2

(k + 1)T
; for k � 2: (7)

Figure 17 shows that the above model matches well with simu-
lations for minRTO = uniform(1; 1:2). Observe that randomizing
the minRTO parameter shifts both null time scales and amplitudes
of TCP throughput on these timescales as a function of a and b. The
longest most vulnerable timescale now becomes T = b. Thus, in
order to minimize the TCP throughput, an attacker should wait for
the retransmission timer to expire, and then create an outage. Oth-
erwise, if the outage is performed prior to b, there is a probability
that some flows’ retransmission timers have not yet expired. In this
scenario, those flows survive the outage and utilize the available
bandwidth until they are throttled by the next outage.
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Figure 17: DoS under randomized RTO

Because an attacker’s ideal period is T = b under minRTO ran-
domization, we present the following relationship between aggre-
gate TCP throughput and the DoS timescale.

Counter-DoS Randomization Result. Consider n long-lived
TCP flows that experience b-periodic outages. The normalized ag-
gregate throughput of the n flows is approximately

�(T = b) =
b� (a+ b�a

n+1
)

b
(8)

The derivation is given in the appendix.
Equation (8) indicates that as the number of flows n increases,

the normalized aggregate TCP throughput in the presence of T = b
timescale DoS attacks converges towards b�a

b
. Indeed, consider the

case that all flows experience an outage at the same reference time
zero. When the number of flows in the system is high, a fraction
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of flows’ retransmission timers will expire sufficiently near time
a such that those flows can partially recover and utilize the avail-
able bandwidth in the period from time a to time b, when all flows
will again experience an outage. For the scenario of operating sys-
tems that use a 500 ms periodic timeout interrupt, such that a flow
“ times out” uniformly in a [1,1.5] range, Equation (8) indicates that
the TCP throughput degrades from 0.17 (single TCP flow) to 0.34
(TCP aggregate with many flows) under the 1.5 sec periodic attack.

There are two apparent strategies for increasing throughput on
T = b timescales. First, it appears attractive to decrease a which
would significantly increase TCP throughput. However, recall that
conservative timeout mechanisms are fundamentally required to
achieve high performance during periods of heavy congestion [1].
Second, while increasing b also increases TCP throughput, it does
so only in higher aggregation regimes (when n is sufficiently large)
and in scenarios with long-lived TCP flows. On the other hand, in-
creasing b is not a good option for low aggregation regimes (when
n is small) since the TCP throughput can become too low since
we have �(T = b) = n

n+1
b�a
b

. Moreover, excessively large
b could significantly degrade the throughput of short-lived HTTP
flows which form the majority traffic in today’s Internet. In sum-
mary, minRTO randomization indeed shifts and smoothes TCP’s
null frequencies. However, as a consequence of RTT heterogene-
ity, the fundamental tradeoff between TCP performance and vul-
nerability to low-rate DoS attacks remains.

8. CONCLUSIONS
This paper presents denial of service attacks that are able to throt-

tle TCP flows to a small fraction of their ideal rate while transmit-
ting at sufficiently low average rate to elude detection. We showed
that by exploiting TCP’s retransmission timeout mechanism, TCP
exhibits null frequencies when multiplexed with a maliciously cho-
sen periodic DoS stream. We developed several DoS traffic patterns
(including the minimum rate one) and through a combination of an-
alytical modeling, an extensive set of simulations, and Internet ex-
periments we showed that (1) low-rate DoS attacks are successful
against both short- and long-lived TCP aggregates and thus repre-
sent a realistic threat to today’s Internet; (2) in a heterogeneous-
RTT environment, the success of the attack is weighted towards
shorter-RTT flows; (3) low-rate periodic open-loop streams, even
if not maliciously generated, can be very harmful to short-RTT
TCP traffic if their period matches one of the null TCP frequen-
cies; and (4) both network-router (RED-PD) and end-point-based
mechanisms can only mitigate, but not eliminate the effectiveness
of the attack.

The underlying vulnerability is not due to poor design of DoS
detection or TCP timeout mechanisms, but rather to an inherent
tradeoff induced by a mismatch of defense and attack timescales.
Consequently, to completely defend the system in the presence of
such attacks, one would necessarily have to significantly sacrifice
system performance in their absence.
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APPENDIX
Computing the throughput of a TCP aggregate on the T = b time-
scale.

Assume that an initial outage causes all TCP flows to enter the
retransmission timeout and assume that T = b. Then, the through-
put of the TCP aggregate can be computed as

�(T = b) =
b�E(x)

b
; (9)

where E(X) denotes expected value of a random variable X which
corresponds to an event that at least one TCP flow’s timeout expired
at time x, x 2 [a; b]. Assuming that each TCP flow’s minRTO is
uniformly distributed between a and b, the CDF of X becomes

P (X � x) = 1� (
b� x

b� a
)n: (10)

Denoting the corresponding pdf of random variable X as p(x),
we have

p(x) =
@P (X � x)

@x
= n

(b� x)n�1

(b� a)n
: (11)

The expected value of X , E(X) can be computed as

E(X) =

Z b

a

xn
(b� x)n�1

(b� a)n
dx: (12)

The integral from Equation (12) can be solved by using integra-

tion by parts with the substitutes n (b�x)n�1

(b�a)n
= dv and x = u. The

solution is E(X) = a + b�a
n+1

. Thus, based on Equation (9), we
have that Equation (8) holds.
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