
Protecting Web Servers from
Distributed Denial of Service Attacks

Frank Kargl
Department of Multimedia

Computing
University of Ulm

Germany

frank.kargl@

Joern Maier
Department of Multimedia

Computing
University of Ulm

Germany

joern.maier@
informatik.uni-ulm.de

Michael Weber
Department of Multimedia

Computing
University of Ulm

Germany

weber@

ABSTRACT
Recently many prominent web sites face so called Distributed
Denial of Service Attacks (DDoS). While former security
threats could be faced by a tight security policy and ac-
tive measures like using �rewalls, vendor patches etc. these
DDoS are new in such way that there is no completely sat-
isfying protection yet. In this paper we categorize di�erent
forms of attacks and give an overview over the most com-
mon DDoS tools. Furthermore we present a solution based
on Class Based Routing mechanisms in the Linux kernel that
will prevent the most severe impacts of DDoS on clusters of
web servers with a prepended load balancing server. The
goal is to keep the web servers under attack responding to
the normal client requests. Some performance tests and a
comparison to other approaches conclude our paper.

Categories and Subject Descriptors
C.2 [Computer-Networks]: General

General Terms
Security, Performance, Measurement

Keywords
Distributed Denial of Service Attacks, DDoS, Web Server
Security, Class Based Routing, Linux

1. INTRODUCTION

1.1 Motivation
Security threats are as old as the Internet itself. In fact

the �rst connection between computers in the ARPAnet be-
tween SRI and UCLA resulted in a crash of the receiving

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

system due to some bugs in the communication software: a
classical Denial-of-Service attack[1].
Another prominent story which 'DoS'-ed hundreds of ma-

chines is the Internet Worm[2][3][4]. But it was at the be-
ginning of 2000 when a complete new quality of DoS attacks
started to be used widely. So called Distributed Denial of
Service attacks stroke a huge number of prominent web sites
including Ebay, Amazon or Buy.com[5].
It is quite evident that as the attacking tools become more

and more available in the cracking community (we intention-
ally avoid the term hacker here) the threats to services in
the Internet become stronger. As the amount of monetary
transactions that are handled over the Internet increases,
this state cannot be accepted. Unfortunately we will see
that there is no complete solution for this kind of attacks
yet. The W3 Security FAQ[6] states that protection from
attack tools like TFN, TFN2K or stacheldraht is an active
�eld of current security research.

1.2 Attack scenario
Before going more into details on DoS attacks we will �rst

give an overview over the systems that are typically involved
in DoS attacks. As you can see in �gure 1.2 big web sites
usually use more than one system running their web server.
The clients access these servers via a load balancing server
which redirects the HTTP requests to one of the servers. To-
days web servers don't work as stand alone systems but need
the support of a number of backend systems (like database-
or �le-servers) to ful�ll their tasks. The whole LAN network
where the site is hosted is typically protected by a �rewall
system. On the way the IP datagrams have to pass a num-
ber of routers. On each of these systems there is at least the
hardware, the operating system and (as part of the OS) a
TCP/IP protocol stack that can fall victim to attacks like
the ones we will describe in the next chapter. For some at-
tacks the crackers use other hosts in the Internet as relays.

2. CLASSIFICATION OF DOS AND DDOS
ATTACKS

2.1 General attack classification
Before discussing details of DDoS attacks and defense

mechanisms it is useful to give a coarse grain overview and
classi�cation over security threats in general. After this we

514

Internet

Attacker

Attack Relays

Router

Firewall Router Load−−
Balancer

Web−−
Servers

Backend−−
Server

(e.g. Database)

Figure 1: Overview of attack scenario.

will provide de�nitions for DoS and DDoS attacks and a
more speci�c classi�cation scheme for DoS attacks.
A possible classi�cation of IT attacks according to the

intention of the cracker could be[7]:

Denial of Service (DoS) The main goal of the attack is
the disruption of service. This can be reached by a
variety of ways as we will see later.

Intrusion Here the intention is simply to get access to a
system and to circumvent certain barriers. People with
such an intention meet the classic image of the old style
hackers. Normally they try to reach their goal with-
out doing severe damage and they inform the system
administrator of the bugs found in the system.

Information Theft Main goal of this kind of attacks is
access to otherwise restricted, sensitive information.

Modi�cation Here the attacker actively tries to alter in-
formation. This kind of motivation is increasing lately
as you can see from the enormous number of hacked
and altered websites[8].

2.2 Definitions for DoS and DDoS
In the rest of the paper we will focus on attack forms

which are motivated by the Denial-of-Service intention. The
WWW Security FAQ[6] describes a DoS attack as:

... an attack designed to render a computer or
network incapable of providing normal services.
The most common DoS attacks will target the
computer's network bandwidth or connectivity.
Bandwidth attacks ood the network with such
a high volume of traÆc, that all available net-
work resources are consumed and legitimate user

requests can not get through. Connectivity at-
tacks ood a computer with such a high volume
of connection requests, that all available oper-
ating system resources are consumed, and the
computer can no longer process legitimate user
requests.

J.D. Howard de�nes DoS as[9]:

If computer hardware, software, and data are
not kept available, productivity can be degraded,
even if nothing has been damaged. Denial-of-
service can be conceived to include both inten-
tional and unintentional assaults on a system's
availability. The most comprehensive perspec-
tive would be that regardless of the cause, if a
service is supposed to be available and it is not,
then service has been denied.

An attack, however, is an intentional act. A
denial-of-service attack, therefore, is considered
to take place only when access to a computer
or network resource is intentionally blocked or
degraded as a result of malicious action taken
by another user. These attacks don't necessarily
damage data directly, or permanently (although
they could), but they intentionally compromise
the availability of the resources.

The kind of DoS attacks that we are interested in is usu-
ally carried out via networks and one of the main targets of
such attacks are high pro�le websites like the ones named in
the introduction. As these sites usually have a lot of hard-
ware at their disposal, they are much harder to attack than
ordinary hosts connected to the Internet. The web sites are
normally composed of several web-servers with a load bal-
ancing system in front and they have multi megabit network
connections.

515

Consequently attackers have discovered new ways of bring-
ing these systems to its knees. They don't use single hosts
for their attacks but they also cluster several dozens or even
hundreds of computers to do a coordinated strike. The
WWW Security FAQ[6] on Distributed Denial of Service
(DDoS) attacks, as these form is called:

A Distributed Denial of Service (DDoS) at-
tack uses many computers to launch a coordi-
nated DoS attack against one or more targets.
Using client/server technology, the perpetrator
is able to multiply the e�ectiveness of the De-
nial of Service signi�cantly by harnessing the re-
sources of multiple unwitting accomplice com-
puters which serve as attack platforms. Typi-
cally a DDoS master program is installed on one
computer using a stolen account. The master
program, at a designated time, then communi-
cates to any number of "agent" programs, in-
stalled on computers anywhere on the Internet.
The agents, when they receive the command, ini-
tiate the attack. Using client/server technology,
the master program can initiate hundreds or even
thousands of agent programs within seconds.

The aggregated bandwidth of this large number of agent
programs is probably bigger than any website's uplink ca-
pacity. In fact one can even speculate on the e�ects of an
attack to major IP routers or global exchange points which
could render large parts of the Internet inaccessible. [10],
[11] and [12] o�er more information on the related technolo-
gies. We will also give some examples of common tools and
attacks in one of the next sections.

2.3 DoS attack classification
DoS and DDoS attacks usually use a limited number of

well known attacks with names like smurf, teardrop or SYN-
Flood. Some tools use combinations and DDoS tools like
TFN launch coordinated attacks from a big number of hosts.
Again we will try to provide a classi�cation in categories
according to speci�ed criteria. In subsection 2.3.4 we will
give examples of common DoS attacks and try to categorize
them.

2.3.1 System attacked
Our �rst category is the system under attack. According

to the scenario in section 1.2 we can identify a number of
attack points that would render the web server useless to
normal clients.
First of all we could attack the clients themselves, which

is kind of useless as a general DoS attack, because there
are just too many of them. A �rst reasonable attack point
for a cracker wanting to launch a DoS is the router that
connects the site hosting the webserver to its ISP. This would
e�ectively cut o� all access to the website.
Another possible target is the �rewall system, although

�rewalls usually tend to be (or at least should be) quite im-
mune to direct attacks. On the other hand, the �rewall is
usually a bottleneck as all in- and outbound traÆc needs
to pass through it. An attack form with a very high load
might stop the �rewall from working properly. As an exam-
ple: during our experiments some miscon�gured SYN-ood
attack overloaded our university's �rewall and blocked most
in- and outgoing traÆc.

The load-balancer is another attack target. As more and
more manufacturers of such systems will become aware of
this threat there is a good chance that this system will be one
of the main points of defending web sites from DoS attacks.
Next the individual webservers can be attacked. As there

are usually multiple servers, the e�ort to overload them all
is usually higher than to attack a single bottleneck like the
load-balancer. On the other hand, most webservers use of-
the-shelf hard- and software and are thus especially vulner-
able to known DoS attacks.
Finally there may be supporting services like database

servers etc. As foreign access to these servers should be
blocked at the �rewall, the chance of a direct DoS attack
on one of this systems is fairly small. Nevertheless a tricky
attack on the webserver may cause a ood of subsequent
requests to e.g. a database system so that normal requests
aren't processed anymore.

2.3.2 Part of the system attacked
Attack forms can be further divided by the part of the

system that is attacked. Some attacks may a�ect the hard-
ware of a given system although such incidents are very rare.
Theoretically, a network card or CPU could fail to work due
to some data in a network packet it receives or processes. On
the other hand, a simple overload of a 10 MBit/s Ethernet
link is an attack based on the limitation of the hardware.
Attacks targeting the operating system or the TCP/IP

stack of a host or router are more likely. Many attacks of
this type are known, some are bugs that can be �xed, some
are fundamental limitations of a protocol speci�cation etc.
On the application level there are web servers, database

servers, CGI scripts etc. These could be attacked as well.

2.3.3 Bug or Overload
In general one has to distinguish whether a DoS is a cause

of a speci�c bug or just an overload of components that func-
tion according to their speci�cation. Although bugs are of-
ten more severe in their e�ects, most of the time the vendors
quickly provide �xes. All the administrators have to do is to
apply them to their system in order to avoid further attacks.
Attacks that are based on an overload are typically harder
to cope with. Of course you can buy new hardware, but as
long as an attacker �nds enough resources to use as relays
in the Internet he will always bring your system to a halt.
Changing the speci�cation or protocols in order to �x the
hole that allows the DoS is nearly impossible as this would
often mean changing the software in millions of computers
worldwide.

2.3.4 Examples
The following examples give a little insight in di�erent

DoS attack forms. They show that our categorization is
suitable for distinguishing common DoS attacks.
Cisco 7xxx routers with IOS/700 Software Version 4.1(1)

or 4.1(2) have a bug where a long password given at a telnet
login session leads to a bu�er overow and a subsequent
reboot. According to our criteria the attacked system is a
router, the part of the system under attack is the operating
system and it is a bug which has been �xed in subsequent
releases[13].
Jolt2 is an attack targeting most Microsoft Windows sys-

tems (Win 98, NT4 SP5 and SP6, Win 2000). Jolt sends a
continuous stream of ICMP ECHO REPLY fragments with

516

specially tuned fragmentation parameters to the attacked
host. The exact cause of the following action is not known
as the code of Microsoft's Operating Systems isn't freely
available. What can be observed is that the consumption of
CPU and memory resources raises to 100% which renders
the system is unusable. This may be used as an attack on
webservers, load balancers or even �rewalls, if they run one
of the named operating systems. The attacks aim at the
network stack of the operating system and the reaction is
caused by a bug. Fixes are available from Microsoft[14].
Microsoft's Internet Information Server versions 4.0 and

5.0 su�ered from a so called server URL parsing bug. The
decoding of escape sequences in URL strings was imple-
mented very ineÆciently. Submitting long strings with large
amounts of escape characters e�ectively stopped the web
server from working for a signi�cant time. This attack is an
attack against the webserver application. It is based on an
implementation bug. A �x is available from Microsoft[15].
Smurf attacks use so-called ampli�er sites in order to mul-

tiply the amount of traÆc that hits the destination. These
attacks send ICMP ECHO REQUEST packets with a spoo-
fed sender address to one or several subnet broadcast ad-
dresses. The packets are received and replied by as many
stations as are connected to the subnet. The replies are sent
directly to the spoofed address of the attack destination.
Normally this leads to congestion in the target's local net-
work connection. Often even the lines of the ISP to which
the target is connected become overloaded. This attack class
strikes all kinds of targets, no matter if routers or hosts.
Most of the time it is used against webservers. The e�ects
of the attack typically put a huge stress on the network and
the system (both software and hardware) that has to parse
and discard the incoming packets. It is not based on a bug,
although many people today think that subnets that allow
a broadcast ping are a faulty con�guration[16][17][18].
The main principle of SYN ood attacks is to generate

many half-open TCP connections by sending SYN packets
to the target without replying to the following SYN-ACK
packet. Most of the time the SYN packets also have spoofed
source addresses of non-existent or currently inactive hosts.
As today's hosts can typically handle only a limited number
of half-open connections per port and discard new connec-
tion requests as long as the so called backlog queue is full,
this e�ectively stops ordinary clients from connecting to the
(web-) server. This attack form falls in the category of at-
tacks to webservers or load-balancers which have a weak-
ness in their TCP implementations. Part of the problem is
the unlucky connection establishment procedure of the TCP
protocol so it is not totally clear, weather it is an implemen-
tation bug or design aw[19][20][21].
There had been a number of attacks on apache webservers

like Apache MIME ooding[22] or Apache Sioux Attack[23].
With specially formatted HTTP requests it was possible to
make the webserver use up huge amounts of memory. As
soon as the system started swapping out server processes
or used up the whole system memory, the server was e�ec-
tively dead. These attacks both target a speci�c webserver
software on the webserver systems. They exploit implemen-
tation bugs.
This concludes our list of DoS examples. Of course this is

only a small selection, online archives[24] provide huge lists
of bugs and exploits in former and current software versions.
Many of these exploits were packaged into attack tools and

some of them are used by DDoS tools in order to attack a
site from many locations at once.

2.4 From DoS to DDoS
Major Internet websites like amazon or Yahoo tend to

have Internet connections with very large bandwidth and
server farms with lots of components. Furthermore they
are typically protected by �rewall systems that block the
known attacks that are based on malformed packets like
jolt2 does. In the second half of 1999 DDoS tools matured
to a point where a wide spread use was foreseeable. In
November the CERT/CC invited a number of accredited se-
curity experts to a workshop on distributed-systems intruder
tools[12]. Their fears about large-scale attacks were proved
soon later in February 2000 when major Internet sites where
under attack[5]. There are currently a few popular DDoS at-
tack tools, which we will describe in the following sections:
Trinoo, Tribe Flood Network (TFN), it's successor TFN2K
and a tool called 'stacheldraht'.
The architecture of these tools is very similar and in fact

some tools are modi�cations of others. The actual attack is
carried out by so called daemons. A number of daemons is
controlled by a handler and �nally these handlers are acti-
vated by the attacker using client tools. Figure 2.4 displays
the architecture of such a system.
The intrusion into computers onto which handlers and

daemons are to be installed usually follows a simple pat-
tern[25]:

1. A stolen account is set up as a repository for pre-
compiled versions of scanning tools, attack (i.e. bu�er
overrun exploit) tools, root kits and sni�ers, DDoS
handler and daemon programs, lists of vulnerable and
previously compromised hosts, etc.

2. A scan is performed on large ranges of network blocks
to identify potential targets. Targets would include
systems running various services known to have re-
motely exploitable bu�er overow security bugs, such
as wu-ftpd, RPC services for "cmsd", "statd", "ttdb-
serverd", "amd", etc.

3. A list of vulnerable systems is then used to create a
script that performs the exploit, sets up a command
shell running under the root account that listens on
a TCP port and connects to this port to con�rm the
success of the exploit.

4. From this list of compromised systems, subsets with
the desired architecture are chosen for the Trinoo net-
work. Pre-compiled binaries of the DDoS daemons and
handlers programs are created and stored on a stolen
account somewhere on the Internet.

5. A script is then run which takes this list of "owned"
systems and produces yet another script to automate
the installation process, running each installation in
the background for maximummultitasking. The result
of this automation is the ability for attackers to set up
the denial of service network in a very short time frame
and on widely dispersed systems whose true owners
often don't even realize the attack.

6. Optionally, a "root kit" is installed on the system to
hide the presence of programs, �les, and network con-

517

Client Client

Handlers

Daemons

Figure 2: Architecture of DDoS tools

nections. This is more important on the handler sys-
tem, since these systems are the keys to the DDoS
attack network.

2.4.1 Trinoo
Trinoo was the �rst DDoS Tool widely known. It uses

UDP ooding as attack strategy. Access to the handlers
is simply done via a remote TCP connection to the master
host. The master communicates with the daemons using
plain UDP packets[25].

2.4.2 Tribe Flood Network
TFN was written in 1999 by someone using the pseudonym

'Mixter'. In addition to Trinoo's UDP ooding it allows also
TCP SYN and ICMP ood as well as smurf attacks. Han-
dlers are accessed using standard TCP connections like tel-
net or ssh. Other alternatives are ICMP tunneling tools like
LOKI[26][27]. Communication between the handler and the
daemons is accomplished with ICMP ECHO REPLY pack-
ets which are harder to detect than UDP packets and can
often pass �rewall systems[28].

2.4.3 TFN2K
TFN2K is the successor to TFN and was also written

by Mixter. It incorporates a number of improvements like
encrypted communication between the components which
makes it much harder to detect TFN2K by scanning the
network. Handlers and daemons can now communicate us-
ing either ICMP, UDP or TCP. The protocol can change for
each command and is usually selected randomly. There is
one additional attack form called TARGA attack. TARGA
works by sending malformed IP packets known to slow down
or hangup many TCP/IP network stacks. Another option
is the so called MIX attack which mixes UDP, SYN and
ICMP ECHO REPLY ooding[29].

2.4.4 stacheldraht
stacheldraht is supposed to be based on early TFN ver-

sions and is the e�ort to eliminate some of its weak points.

Communication between handlers and daemons is done via
ICMP or TCP. Remote control of a stacheldraht network is
accomplished using a simple client that uses symmetric key
encryption for communication between itself and the han-
dler. Similar to TFN, stacheldraht provides three attack
forms: ICMP, UDP and TCP SYN ooding. A characteris-
tic feature of stacheldraht is its ability to perform daemon
updates automatically[30].

2.4.5 What will be next
The future will surely bring more elaborate DDoS tools

which will simply improve the given features by better en-
cryption and more attack forms. It can also be expected that
future tools will have better and easier (graphical) user in-
terfaces allowing an application even by novice users. Even-
tually we will even see an integration of the distribution
phase of handler and daemon programs into the user inter-
face. Such a development will surely increase the number of
attacks by an order of magnitude.
Even more frightening might be a scenario where the tools

don't stop at DDoS attacks but automate the process of
intruding hosts with daemons which again spread themselves
to other hosts. This way automated hacking into hundreds
of thousands of computers might be possible.

3. PROTECTION FROM DDOS

3.1 General Protection
To provide protection from DoS or DDoS attacks, basic

security measures are mandatory. If a running system is
hacked into, no more network attacks are necessary, since
local attacks (like processes consuming lots of memory or
CPU time, or simply shutting down the system) are far more
e�ective. A set of �rewalls should be used to separate the
interior net (and probably a demilitarized zone) from the
Internet. Intrusion Detection Systems should be used to
notify the system administrators of unusual activities.
The �rewall rules should include some sanity checks for

source and destination addresses: Packets arriving from the

518

Internet must not have a source address originating from the
interior net, and vice versa. By rejecting packets from the
interior net with a non-local source address, packet spoo�ng
becomes impossible. This technique is known as ingress and
egress �ltering[31]. Even if a host is invaded by a hacker,
these rules make it impossible to use that host as a platform
for further attacks requiring spoofed packets (e. g. SYN-
Floods[20], Smurf-Attacks[15][17], etc.).
As explained in section 2, there are several well-known

kinds of DoS attacks that exploit implementation bugs and
for many of them there are known countermeasures. Of
course, it is highly recommended to take these measures by
installing the appropriate security patches, enabling SYN
cookies[32], etc.
In contrast to attacks focusing on implementation or pro-

tocol errors, it is rather diÆcult to defend against DoS or
DDoS attacks which overload the systems network connec-
tion or local resources. These attacks usually put a heavy
load on the target by making regular requests very rapidly.
It is hard to distinguish if a web server is stormed by thou-
sands of clients, or if there is a DoS attack in progress.
A simple way to force the problem of heavy load is to use

a server farm together with a load balancer. This will help
against small attacks, but not against a DDoS started from
several hundred hosts. Furthermore, increasing the number
of servers is rather expensive.
Many experts think that the only durable solution to this

problem is to globally improve the security on all hosts in
the Internet to take attackers the possibility to use other
hosts for running daemons. This includes securing the local
operating system, applying ingress- and egress �lters and
protecting sites with �rewall systems[12][33][34].
We don't think that the global state of Internet security

will become any better in the foreseeable future. While
many companies will start improving their security, taking
measures like the ones detailed above, the growth of the In-
ternet will simply absorb these e�ects. Many new companies
and even more individuals with permanent connections will
storm the net and many of them won't have the time, bud-
get or will to secure their systems. Some people think about
incentives to force people to care for security. One example
of such an action is the abolishment of atrates and the net-
work wide use of usage-based fees[33]. We don't think that
users and industry will follow these propositions, so solu-
tions to protect the Internet sites under attack need to be
found. There are already a small number of propositions
how to deal with certain attack forms.
A simple response to SYN oods is the "�rst packet re-

ject" method: The �rst packet sent by every host is dis-
carded. This renders the common SYN ood attack ine�ec-
tive, but all normal connection requests are delayed to the
�rst retransmit of the SYN packet. Thus, all requests will
be considerably slower. On the other hand, the SYN ood
attack may be simply adapted by sending each SYN packet
twice.
Another technique is the so called moving target defense.

Here the host under attack changes its IP address to avoid
being attacked. The problem here is that the legitimate
users of the system need to be informed that the IP address
has changed which usually is done by updating the DNS sys-
tem. Due to caching it can take up to a number of days until
all clients are informed of the update. This is clearly unac-
ceptable as the e�ects are as severe as any DoS attack can

be. Furthermore attackers only need to incorporate DNS
lookups into their tools in order to evade this protection.
We developed a solution that tries to enhance the protec-

tion from DoS and DDoS attacks to webservers. It uses a
combination of publically available protection tools and aug-
ments them with a load monitoring tool that stops clients
(or attackers) from consuming too much bandwidth.

3.2 Our DDoS Protection Environment
Our system consists of several webservers that are ac-

cessed via a load balancing tool. All systems are running
Linux and all other software is either freely available or self-
written. Figure 3.2 shows an overview of the components.
We use a number of readily available security options in
the kernel to provide basic protection. The Linux Virtual
Server is used for high speed load balancing. ipchains �re-
wall mechanisms protect the load balancer from unwanted
traÆc. The web servers are running the popular apache
server software. Our TraÆc Shaping Monitor scans the net-
work and reports unusual activity to the central monitor on
the load balancer. This component can manipulate traÆc
using either the Class Based Queuing or ipchains �ltering of
the kernel.

3.2.1 Linux Kernel
We have carefully chosen Linux Kernel Version 2.2.16 as

base for all our systems as this is known to be immune
to most poisoned traÆc attacks like teardrop or TARGA.
The backlog queue of the system defaults to 128 entries and
tcp syn cookies is enabled. This makes the system very ro-
bust against SYN ood attacks.

3.2.2 Linux Virtual Server
The load balancer we use is the Linux Virtual Server

(LVS)[35]. LVS inserts itself directly into the kernel which
provides a maximum performance again stabilizing the sys-
tem against overload attacks. LVS has two load balancing
algorithms: round robin and least connection. We are using
'least connection' as this provides generally a fairer load dis-
tribution between the webservers. There are three di�erent
modes to access the webservers.
Network address translation (NAT) transcripts every in-

coming packet and changes the destination IP from the load
balancer's to the web server's IP. All outgoing traÆc is tran-
scripted alike. As all in- and outgoing traÆc has to pass the
load balancer, this is not an ideal solution for our purposes,
as the load balancer may easily become a bottle neck.
Direct Routing Request Dispatching (DR) changes the layer

2 MAC addresses of incoming packets to the MAC address
of the web server and forwards the packets. Web servers
may answer directly, bypassing the load balancer. All Web-
servers must reside in one IP subnet for this to work.
IP Tunneling (IPIP) is a solution where incoming packets

are wrapped in an IPIP encapsulation and are tunneled to
the webserver. At the tunnel end packets get unwrapped
and are delivered to the webserver application.
We have chosen to use IPIP mode as this has no restric-

tions on subnets and showed to work very eÆciently.

3.2.3 ipchains Firewall
All systems protect themselves from unauthorized access

by �ltering incoming packets according to a number of se-
curity rules. In brief the rules state that only port 80 is

519

Web Server

Security Options in Kernel
(SYN cookies, ...) turned on

Class Based Queueing (CBQ)

Webserver
((Apache Webserver)

Traffic Shaping Monitor

Load Balancer

Security Options in Kernel
(SYN cookies, ...) turned on

Class Based Queueing (CBQ)

Firewall ((ipchains))

Load Balancer
((Linux Virtual Server)

Traffic Shaping Monitor

Figure 3: Overview of protection environment

reachable directly and only ICMP host unreachable mes-
sages are accepted. Another set of rules allows communica-
tion between the load balancer and the webservers as well as
access to some important local services (DNS server etc.).
This con�guration may later be modi�ed dynamically by
the TraÆc Shaping Monitor to totally block all traÆc from
attacking hosts. All these measures provide a pretty stable
environment which should block all common attacks to the
systems and leave only the web server reachable. The only
two potential security holes that are not covered here are
bugs in the webserver (or CGI scripts etc.) and overload at-
tacks which generate a large amount of HTTP traÆc. The
�rst aspect is not covered here and needs to be considered by
a careful webmaster who regularly checks security forums for
bug alerts in the apache webserver and who carefully checks
all active components deployed (like CGI scripts, servlets
etc.)

3.2.4 Class Based Queuing and the Traffic Monitor
Class Based Queuing (CBQ) is a function of the Linux

kernel. It allows the setup of di�erent traÆc queues and
of rules that determine what packets to put in what queue.
Furthermore you can assign a certain amount of the available
bandwidth to each of the queues. If a queue is full packets
get discarded. There are di�erent queuing disciplines from
which we have chosen Stochastic Fairness Queuing (SFQ)
because it consumes only few memory and computing power.
On the other side it is not fully deterministic in what packets
end up in what queues. For our purposes this is no problem.
Other available disciplines include Token Bucket Filtering or
Random Early Detect. For more information refer to[36].
In our system there is a con�gurable number of input

queues on the load balancer and output queues on the web-
servers. There is a default input queue which can consume
as much bandwidth as available. If the TraÆc Monitor in

the load balancer detects a possible DoS attack it gradually
slows down all incoming traÆc from the origination IP ad-
dress by assigning it to more and more slower queues with
e.g. 1000 kBit/s, 600 kBit/s, 300 kBit/s and �nally to a
queue with only 100 kBit/s. If even this does not stop the
attack, the IP address is blocked in a �rewall list for a con-
�gurable amount of time. At the same time it directs the
webservers to slow down the outgoing traÆc to the attacker's
IP address gradually.
The TraÆc Monitor consists of a manager and a monitor

program. The monitor is running on the load balancer and
all webservers. It is implemented as 3 separate threads.
Thread 1 monitors the network for packets destined to or
originating from the virtual web servers address. The source
IP address, the length and the time of occurrence are noted
in a hashtable (with the IP address as key). Thread 2 checks
the hash table every 3 seconds. If it �nds that a certain IP
address is emitting or receiving too many traÆc or if the
packet/size ratio falls under a certain amount it marks the
IP address as a potential attacker. Thread 3 is a server
thread which listens for commands from the manager. The
manager polls all the monitors in regular intervals for a list
of potential attackers. It analyzes the supplied data and
decides whether a potential attacker is indeed categorized as
malicious. In this case the manager instructs the monitors
to downgrade the attackers IP address to a lower queue or
block it at all. After a certain interval of normal activity,
IPs can be upgraded to better queues.
The manager sorts the IPs in one of several classes based

on the data it receives from the monitors. Class 1 IPs have
produced too much traÆc with very small packets. As this
is very likely a DoS attack, new packets from that source
are totally blocked at the ipchains �lter. Class 2 IPs use too
much bandwidth over a long time. They get downgraded
into a lower queue. Class 3 IPs use too much bandwidth

520

Backbone
Switch

Load
Balancer

Web
Server 3

Web
Server 2

Web
Server 1

Workgroup
Switch

Attack
Host

Attack
Host...

Figure 4: Test scenario

but only for a short time. This may as well be a peak from
an ordinary client. These IPs are now under suspicion. A
timer is started and if the behavior of this IP persists it is
put into class 2. Finally there is class 4. IPs in this class
don't produce or consume much bandwidth but they send
lots of very small packets. Again there is a timer and if this
behavior is shown for a certain amount of time, a ipchains
�lter blocks traÆc from that IP.
All �lters and queues have associated expiration timers.

After expiration the �lter is deleted and the queue is up-
graded to the next higher class.

4. PERFORMANCE TESTS
We have conducted a number of experiments where we

targeted our webserver system with di�erent DDoS attacks.
The testing environment is as shown in �gure 4. All sys-
tems used run SuSE Linux (Kernel 2.2.16) on a 800 MHz
Athlon CPU and 256MByte RAM. All network connections
are switched and full-duplex 100 Mbit/s Ethernet (100 Base
TX). The LBS consists of three web-servers and one load
balancer.
For our test we use 8 attack hosts and one 'normal' client

which has a normal browsing behavior. With this test we
want to show that the 'normal' client is not e�ected by the
attack but can access the website without disturbance. As
you can see, the attack hosts can in theory produce about
8 times the input capacity of the load balancer. So even
a higher number of attack hosts would not be able to put
more stress on the load balancer.
Normal attacks like TCP SYN oods did not show any

signi�cant degradation of system performance but where
handled e�ectively by the Linux SYN Cookie mechanism.
UDP oods were blocked by the ipchains �lters. Of course
it is still possible to overload the network connection at some
point in front of our system. The normal consequence would
be to install the �lters as early in the traÆc ow as possible
blocking everything except HTTP traÆc (tcp/80).
We use the following tools for attacks. http load written

by Jef Poskanzer[37] which runs multiple HTTP fetches in
parallel to test the throughput of a web server. It runs as
a single process so it doesn't take to much CPU time. In

our test the program reads 100 URLs from a �le and tries
to fetch them from the webserver randomly over a speci�ed
period of time. http load uses 64 threads in parallel which
try to fetch as many pages as possible in 210 seconds of
time. We use three di�erent URL sets: set one consists of
100 static html pages, set two consists of 100 URLs which
access a CGI script with di�erent parameters. Finally set 3
consists of 34 URLs accessing the CGI script and 66 static
html pages.
The other test tools are TFN2K (see section 2.4.3) and

SYN Flooder from a hacker called Zakath. SYN Flooder
performs a heavy SYN-ood attack. We slightly modi�ed
it so we can do SYN-ood attacks with randomly generated
IP addresses.
For simulating an ordinary web client, we decided to run

http load with a single thread and the mixed URL database.
As a reference we ran this tool several times without any

attack to the web site. Then we ran the tool while the sys-
tem was under attack with and without the traÆc shaping
monitor tool active. In a �rst run, all attack hosts use the
same attack at a time. We tested the following cases

� http-attack using http load and static html database

� http-attack using http load and the CGI database

� http-attack using http load and the mixed database

� SYN - ooding attack using TFN2K

� ICMP - ooding attack using TFN2K

� TARGA-ooding attack using TFN2K

� mixed attack (SYN-ICMP-TARGA) using TFN2K

� SYN-ooding attack with single IP address using SYN
Flooder

� SYN-ooding attack with spoofed IP addresses using
SYN Flooder

Next we ran mixed attacks, where

� 3 computers running a http-attack with the mixed
database and 5 computers doing a TFN2K mixed at-
tack

� 5 computers running a http-attack with the mixed
database and 3 computers doing a TFN2K mixed at-
tack

� 3 computers running a http-attack with the mixed
database and 5 computers doing a TFN2K SYN-ood
attack

� 5 computers running a http-attack with the mixed
database and 3 computers doing a mixed TFN2K SYN-
ood attack

TraÆc measuring was done by inserting a hub at di�er-
ent locations in the test network. There we connected a
notebook running the Linux network analyzers ethereal and
tcpdump. Before starting the tests we did some measure-
ments to ensure that the system is really capable of snooping
a fully loaded 100 MBit/s Ethernet. We had to reduce the
snap length to 64 byte to achieve this, but this has no neg-
ative inuence on the measurements as this is enough to

521

11

10

100

1000

10000

100000

1000000

10000000

100000000

11 55 99 13 17 21 25 29 33 37 41 45 49 53 57 61

time [sec]

d
at

a
se

n
t

[[b
yt

es
/s

ec
]

client attacker

Figure 5: Test 1 without traÆc monitor

11

10

100

1000

10000

100000

1000000

10000000

100000000

11 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

time [sec]

d
at

a
se

n
t

[[b
yt

es
/s

ec
]

client attacker

Figure 6: Test 1 with traÆc monitor

determine the source and destination IP as well as the size
of a packet.
The sni�er is inserted at 3 positions:

BP1 (break point 1): Between the backbone switch and
the load balancer. Here all incoming traÆc can be
gathered. This is important because not all traÆc is
passed to the webservers.

BP2 (break point 2): Between the load balancer and the
workgroup switch. Here all data can be gathered that
is forwarded to the webservers. This way we can de-
termine how much traÆc has already been blocked by
the load balancer.

BP3 (break point 3): Between the backbone and the work-
group switch. Here all outgoing traÆc can be mea-
sured. This is all the traÆc produced by the web-
servers.

Due to limited space, we will present here the results of
only two of the tests, namely the http-attacks with a static

11

10

100

1000

10000

100000

1000000

10000000

11 55 99 13 17 21 25 29 33 37 41 45 49 53 57 61

time [sec]

d
at

a
se

n
t

[[b
yt

es
/ s

ec
]

client attacker

Figure 7: Test 2 without traÆc monitor

11

10

100

1000

10000

100000

1000000

11 55 99 13 17 21 25 29 33 37 41 45 49 53 57 61

time [sec]

d
at

a
se

n
t

[[b
yt

es
/s

ec
]

client attacker

Figure 8: Test 2 with traÆc monitor

and a CGI database. These tests show how our traÆc mon-
itor reacts to http overload attacks under di�erent condi-
tions.

4.1 Test 1: http-attack using http load and
static html database

Figure 4 shows the result at BP3 without the traÆc shap-
ing monitor. The client http load started before the attack
took place. 10 seconds later started to collect data from the
webservers, the eight computers running http load with 64
threads in parallel started to attack the system. The client's
performance is constantly decreasing, �nally only sporadic
packets are sent. Obviously the system is nearly unreach-
able for a normal user. Using the traÆc shaping monitor we
get a di�erent result as shown in �gure 4. Again the attack
starts after 10 seconds. The system realized that it was un-
der attack and degraded the attackers hosts in bandwidth
restricted queues. So the attackers get only a limited amount
of incoming and outgoing bandwidth and the normal client
can access the webserver in an almost normal manner.

522

4.2 Test 2: http-attack using http load and
CGI-database

In this test, we don't serve static html documents to the
client but instead they are generated via a CGI script. Fig-
ures 4.1 and 4.1 show the system under attack at BP3 with-
out and with the traÆc shaping monitor. As we can see, the
overall traÆc is much lower than in the previous test sce-
nario. The reason for this is that the CGI scripts are very
CPU intensive. As a single attacker produced only around
10000 Bytes/s of traÆc and this is less than the threshold at
which the traÆc shaping monitor classi�ed a host as an at-
tacker, the attackers aren't recognized by the traÆc shaping
monitor and no countermeasures are taken.
It is pretty obvious, why our traÆc shaping monitor is of

no use in this scenario. As there is no sensor for CPU load
in the system and the used bandwidth is well within the
allowed range, the traÆc monitor can't react accordingly.
Again this shows a general problem of DoS defense. You can
only react to attacks that you can distinguish from normal
behavior. In this special case one could install an additional
CPU monitor on the web servers that monitors the execution
of CGI scripts. The monitor needs a way to relate the CPU
time used by a CGI script to the IP address of the client that
triggered the script. It could then transmit the calculated
resource usage to the central load monitor which could in
turn activate countermeasures.

5. RELATED WORK
Most manufacturers have realized the importance of de-

fense measures against DoS attacks. Since �rewalls, routers,
and switches are highly specialized devices, highly optimized
defenses may be implemented at several points. Almost all
�rewalls are able to hold half-open states for several thou-
sand connections; incoming packets are checked against sig-
natures of known DoS attacks. Firewalls are even capable
of stateful processing of packets: This allows dropping of
packets which make no sense in the current state of a TCP
connection.
ArrowPoint[38] is producing switches with load-balancing

capabilities. These switches have been extended to provide
some security against DoS attacks. Fragmented packets or
packets being too short are dropped. Further, some checks
on the IP addresses are done (e. g. source and destination
address must be di�erent, loopback or multicast addresses
are not allowed). TCP connections are parsed, too. The
3-way handshake must be completed within 16 seconds, oth-
erwise these packets are dropped. Another useful feature is
the possibility to block packets directed to special ports, or
originating from certain IP address ranges. Network address
translation (NAT) is provided, too.
F5 is the manufacturer of BigIP, a load balancer switch

with several security-relevant features. First, BigIP provides
a monitor tool to watch the network traÆc. Attack attempts
will be noted in a log �le. BigIP provides port mapping
(i.e. packets for a special port are transparently redirected
to a di�erent host) and NAT. Further, packet �ltering is
provided. Packets belonging to several kinds of attack (e.g.
Teardrop, Land, Ping of Death) are recognized and will be
discarded[39].
Both manufacturers provide �rewall load balancing: The

traÆc is equally shared on several �rewalls; the switch makes
sure that all packets belonging to the same stream will be

routed through the same �rewall. This allows both load
balancing and the possibility to set up a redundant backup
�rewall.

6. CONCLUSION
As we have shown, DDoS attacks are a substantial threat

to todays Internet infrastructure. We don't believe that a
global security standard can be reached in a foreseeable time
that would prevent attackers from �nding and using lots of
relay hosts. Our solution to the problem of handling mas-
sive http overload requests is based on class based routing
and active traÆc monitoring. Attacking hosts are detected
and assigned to low bandwidth queues or even blocked com-
pletely. Tests have shown that systems protected in such a
way can deliver regular service to their clients while under
attack. We think that automatic traÆc monitoring and au-
tomatic traÆc shaping are promising ways of dealing with
high bandwidth DoS attacks and should be implemented in
future commercial products.

7. ADDITIONAL AUTHORS
Additional authors: Stefan Schlott

email: stefan.schlott@informatik.uni-ulm.de

8. REFERENCES
[1] K. Hafner, M.Lyon. Where Wizards Stay Up Late.

Simon & Schuster, New York, 1996.

[2] E.H. Spa�ord. The internet worm program: An
analysis. Purdue Technical Report CSD-TR-823,
Deoartment of Computer Sciences Purdue University,
West Lafayette, IN. 1988.

[3] D. Seeley. A tour of the worm. Department of
Computer Science, University of Utah, 1988.

[4] M. Eichin, J. Rochlis. With microscope and tweezers:
An analysis of the internet virus of november 1988.
Massachusetts Institute of Technology, 1988.

[5] M. Williams. Ebay, amazon, buy.com hit by attacks,
02/09/00. IDG News Service, 02/09/00,
http://www.nwfusion.com/news/2000/0209attack.html
- visited 18.10.2000.

[6] L. Stein. The world wide web security faq, version
2.0.1. http://www.w3.org/Security/Faq/ - visited
04.10.2000.

[7] S.M Bellovin, W.R. Cheswick. Firewalls and Internet
Security. Addison Wesley Longman, 1994.

[8] Attrition mirrored sites.
http://Attrition.org/mirror/attrition/ - visited
03.11.2000.

[9] Dr. J.D. Howard. An analysis of security incidents on
the internet 1989 - 1995. Carnegie Mellon University,
Carnegie Institute of Technology,
http://www.cert.org/research/JHThesis/ - visited
02.11.2000.

[10] J. Elliot. Distributed denial of service attacks and the
zombie ant e�ect. IT Professional, Mar./Apr. 2000,
pp55-57.

[11] K.T. Fithen. em Internet Denial of Service Attacks
and the Federal Response. Testimony before the
Subcommittee on Crime of the House Committee on
the Judiciary and the Subcommittee on Criminal
Justice Oversight of the Senate Committee on the

523

Judiciary, February 29, 2000,
http://www.cert.org/congressional testimony/
Fithen testimony Feb29.html - visited 10.11.2000.

[12] Results of the Distributed-Systems Intruder Tools
Workshop Pittsburgh, Pensilvania USA, November 2-4
1999, CERT Coordination Center, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh,
http://www.cert.org/reports/dsit workshop.pdf -
visited 12.11.2000.

[13] Field Notice: 7xx Router Password Bu�er Overow
Revision 1: December 15 1997,
http://www.cisco.com/warp/public/770/pwbuf-
pub.shtml - visited
18.10.2000.

[14] Microsoft Security Bulletin (MS00-029): Patch
available for 'IP Fragment Reassembly' Vulnerability.
May 19, 2000,
http://www.microsoft.com/technet/security/bulletin/
ms00-029.asp - visited 18.10.2000.

[15] Microsoft Security Bulletin (MS00-23): Patch
available for 'Myriad Escaped Characters'
Vulnerability. April 12, 2000,
http://www.microsoft.com/technet/security/bulletin/
ms00-023.asp - visited 18.10.2000.

[16] K. Wooding. Magni�cation Attacks - Smurf, Fraggle,
and Others.
http://www.codetalker.com/whitepapers/dos-
smurf.html - visited
19.10.2000.

[17] C.A. Huegen. The Latest in Denial of Service Attacks:
'Smur�ng'; Description and Information to Minimize
E�ects. http://www.pentics.net/denial-of-
service/white-papers/smurf.cgi - visited
19.10.2000.

[18] CERT Advisory CA-98.01 'smurf' IP
Denial-of-Service-Attacks. January 5, 1998,
http://www.cert.org/advisories/CA-1998-01.html -
visited 23.10.2000.

[19] daemon9. route in�nity, TCP SYN Flooding Attacks.
Phrack magazine, Vol. 7, Issue 48, File 13 of 18, July
1996.

[20] C.L.Schuba et.al. Analysis of a Denial of Service
Attack on TCP. Coast Laboratory, Department of
Computer Science, Purdue University.

[21] CERT Advisory CA-96.21, TCP SYN Flooding and IP
Spoo�ng Attacks. September 19, 1996,
http://www.cert.org/advisories/CA-1996-21.html -
visited 23.10.2000.

[22] Web servers / possible DOS Attack / mime header
ooding (archive).
http://www.securityfocus.com/archive/1/
f10516|10520|10521|10525|10526g - visited
23.10.2000.

[23] YA Apache DoS attack (archive).
http://www.securityfocus.com/archive/1/10228 -
visited 23.10.2000.

[24] Rootshell.com. http://www.rootshell.com/ - visited
08.02.2001.

[25] D. Dittrich. The DoS Project's "trinoo" distributed
denial of service attack tool. October 21, 1999,
http://sta�.washington.edu/dittrich/misc/
trinoo.analysis.txt - visited 13.11.2000.

[26] Project Loki. Phrack Magazine, Volume Seven, Issue
Forty-Nine, File 06 of 16,
http://www.phrack.com/search.phtml?view
&article=p49-6 - visited 23.10.2000.

[27] L O K I 2 (the implementation). Phrack Magazine
Volume 7, Issue 51 September 01, 1997, article 06 of
17, http://www.phrack.com/search.phtml?view
&article=p51-6 - visisted 23.10.2000.

[28] D. Dittrich. The 'Tribe Flood Network' distributed
denial of service attack tool. October 21, 1999,
http://sta�.washington.edu/dittrich/misc/
tfn.analysis.txt - visited 13.11.2000.

[29] J. Barlow, W. Thrower. TFN2K - An Analysis.
AXENT Security Team, February 10, 2000 (Updated
March 7, 2000) Revision: 1.3,
http://packetstorm.securify.com/distributed/
TFN2k Analysis-1.3.txt - visited 13.11.2000.

[30] D. Dittrich. The 'stacheldraht' distributed denial of
service attack tool. December 31, 1999,
http://sta�.washington.edu/dittrich/misc/
tfn.analysis.txt - visited 13.11.2000.

[31] P. Ferguson, D. Senie. RFC 2267, Network Ingress
Filtering: Defeating Denial of Service Attacks which
employ IP Source Address Spoo�ng. Cisco Systems
Inc., BlazeNet Inc., January 1998.

[32] D.J. Bernstein. SYN Cookies.
ftp://koobera.math.uic.edu/syncookies.html - visited
13.11.2000.

[33] X. Geng, A.B. Whinston. Defeating Distributed Denial
of Service Attacks. IEEE IT-Pro, July/Aug. 2000.

[34] Submissions to the Paketstorm DDOS paper constest.
http://packetstorm.securify.com/papers/contest/ -
visited 13.11.2000.

[35] Linux Virtual Server.
http://www.linuxvirtualserver.org/ - visisted
13.11.2000.

[36] Linux Advanced Routing HOWTO.
http://www.linuxdoc.org/ - visited 14.02.2001.

[37] Jef Poskanzer. http load.
http://www.acme.com/software/ - visited 10.02.2001.

[38] Arrowpoint. Whitepaper: Web Site Security and
Denial of Service Protection.
http://www.arrowpoint.com/solutions/white papers/
printer/Web Site Security.html - visited 12.11.2000.

[39] F5. Whitepaper: A Defense To Denial of Service
Attacks and Other Cyber Threats.
http://secure.f5.com/solutions/whitepapers/
defense.html - visited 12.11.2000.

524

