
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CCS’03, October 27-31, 2003, Washington, DC, USA.
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
1-58113-738-9/03/0010...$5.00.

DoS Protection for UDP-Based Protocols

Charlie Kaufman
IBM

ckaufman@us.ibm.com

Radia Perlman
Sun Microsystems Laboratories

radia.perlman@sun.com

Bill Sommerfeld
Sun Microsystems

sommerfeld@east.sun.com

ABSTRACT

Since IP packet reassembly requires resources, a denial of service
attack can be mounted by swamping a receiver with IP fragments.
In this paper we argue how this attack need not affect protocols
that do not rely on IP fragmentation, and argue how most
protocols, e.g., those that run on top of TCP, can avoid the need for
fragmentation. However, protocols such as IPsec’s IKE protocol,
which both runs on top of UDP and requires sending large packets,
depend on IP packet reassembly. Photuris, an early proposal for
IKE, introduced the concept of a stateless cookie, intended for
DoS protection. However, the stateless cookie mechanism cannot
protect against a DoS attack unless the receiver can successfully
receive the cookie, which it will not be able to do if reassembly
resources are exhausted. Thus, without additional design and/or
implementation defenses, an attacker can successfully, through a
fragmentation attack, prevent legitimate IKE handshakes from
completing. Defense against this attack requires both protocol
design and implementation defenses. The IKEv2 protocol was
designed to make it easy to design a defensive implementation.
This paper explains the defense strategy designed into the IKEv2
protocol, along with the additional needed implementation
mechanisms. It also describes and contrasts several other potential
strategies that could work for similar UDP-based protocols.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General---
Security and Protection.

General Terms

Algorithms, Performance, Design, Security, Reliability.

Keywords

DoS, IPsec, IKE, fragmentation, protocol design, network
security, denial of service, buffer exhaustion.

1. INTRODUCTION
One of the major concerns in the design of IPsec key
management protocols has been to make them resistant to
denial of service (DoS) attacks. Since IPsec implementations
are deployed in environments that are assumed to be hostile,
they must be able to establish security associations even while
under attack.

The concept of stateless cookies as a protection against certain
classes of DoS (denial of service) attacks originated with
Photuris [8], an early key management protocol for IPsec. The
purpose of stateless cookies is to defend against attackers that
send traffic from fake source addresses, exhausting state
and/or computation resources at the victim node. The reason
for the attacker sending from forged IP addresses is twofold: to
avoid prosecution for mounting a denial of service attack, and
to make it difficult for a firewall to screen out traffic from the
attacker. In the stateless cookie design, when a node “Bob”
receives a connection initiation request from a node “Alice”,
Bob creates a number (called the “cookie”), unpredictable to
Alice, returns that cookie to the IP address in the source
address field in the IP header of the received packet, and keeps
no state and does no additional computation. If the cookie is
stateless, it must be recomputable by Bob, and is typically a
function of the source IP address from the received packet and
a secret known only to Bob. If Bob asks Alice to return a
cookie before he is willing to consume significant resources,
Alice must try again, this time returning the cookie. When Bob
receives a connect initiate request with a cookie, Bob
computes whether that is the cookie he would have sent to that
IP address. If so, he is willing to devote state and computation
to the connection from that IP address.

2. FRAGMENTATION ATTACKS IN UDP-
BASED PROTOCOLS

Although in theory stateless cookies allow Bob not to devote
state or significant computation until he is assured that Alice
can receive at the address she claims to be coming from, in
practice there is a DoS threat that a straightforward
implementation of a UDP-based protocol will be vulnerable to,
if (like IKE) it sends large packets and depends on IP
fragmentation. An attacker can take advantage of the fact that
IP fragment reassembly requires storing packet fragments of
partially reassembled IP packets, which consumes memory
resources on the victim. Since the kernel reassembly queue is
limited in size this sort of flooding will prevent legitimate
packets from being reassembled.

It was a decision in the design of IKE [3] to run on top of UDP,
to avoid the DoS attacks on TCP. Another decision was to
keep IKE simple and rely on IP fragmentation in order to send
a large message. IKE messages can be large because they

2

contain structures such as certificates. The proposed
successors to IKE, including JFK [1], and IKEv2 [4], also have
made the decision to run on UDP and rely on IP fragmentation
for delivery of large messages.

Protocols that run on top of TCP are not as vulnerable to the
fragmentation attack, because TCP can avoid IP-level
fragmentation. TCP can do this because it is connection-
oriented, and because it is designed so that it can send data in
chunk sizes independent of the size of application messages.
However TCP itself is prone to various DoS attacks, and the
decision to run on top of UDP was made with the intention to
make the protocol more robust against DoS attacks.

But IKE’s decision to send large messages, and use UDP,
make it particularly vulnerable to the fragmentation attack
described in this paper. This paper explains various strategies
that a redesigned IKE, together with a DoS-resistant
implementation of the IP stack, can employ to defend against
such attacks. These strategies would be applicable to protocols
similar to IKE which send large messages on UDP.

The attack has not been addressed in the literature (except for the
IKEv2-related internet drafts). In [7] many types of DoS attacks
are discussed, but the attack in this paper is not included. Without a
defense against this attack it is easy for an attacker to send IP
fragments, overwhelm the IP reassembly resources, and prevent an
IKE exchange from ever completing. It can appear on paper that a
protocol has been defensive against DoS, for instance by using
stateless cookies, but still be vulnerable to this fragmentation
attack, and therefore, in practice remain vulnerable to DoS. IKEv2,
from the beginning [4], was designed to enable a defense against
this attack, but it was not explicitly explained in the document.
Description of the attack and proposed defense was described in
[5] and [6]. After the attack and a particular defense strategy was
described in [5] and [6], an alternative defense against the attack
was proposed in [2]. In this paper, we will describe and contrast
the defenses described in the various internet drafts, along with
several alternate potential defenses.

2.1 IP Fragmentation
IP is designed to work over a variety of link types.
Unfortunately, different link types have different maximum
packet sizes. For instance, Ethernets have a maximum packet
size of 1500 bytes. Also even if the link itself did not have a
maximum packet size, routers on the link might have limited
buffer sizes.

A few years ago, it was considered safe to assume that all links
(and routers) could handle packet sizes of 576 bytes. If links
(such as ATM, with cell sizes of 48 bytes) could not handle
576 bytes, hop-by-hop fragmentation would be employed. This
means that the router neighbors on the link with the tiny
packets would chop the packet up for transit across that link,
but reassemble the packet on the other side of the link. This hid
the packet size of that link from the rest of the network.

However, for links with “reasonable” packet size, the
traditional approach has been to do fragmentation at the IP
layer, with reassembly at the destination. These days it is
generally assumed safe to assume that all links can handle
about 1500 byte packets (though with extra headers due to
tunnels, etc., “1500” sometimes means a little less than 1500),
so packets smaller than 1500 bytes should not require
fragmentation.

2.2 Stateless Cookies in IKE version 1
Version 1 of IKE’s first phase consisted of two types of
handshakes; a 6-message “main mode” handshake that did
identity hiding, and a 3-message “aggressive mode” that also
did mutual authentication and SA (security association)
establishment, but did not do identity hiding. The basic
structure of the full-featured (i.e., main mode) handshake is as
follows, where we are leaving out fields that are not relevant to
this paper. Curly brackets (i.e., “{“ and “}”) around a quantity
indicate it is encrypted.

In [15], it was pointed out that the ISAKMP/IKE design
precluded stateless cookies. In [12], it was asserted that the
IKE exchange could be altered, without adding messages, by
having the initiator (Alice) repeat in message 3, what she had
sent in message 1. Although in theory this approach allows
Bob to be stateless until he receives a valid cookie, in practice
it would fail to prevent a fragmentation denial of service
attack. Since message 3 is large and typically needs to be
fragmented, an attacker that is using up reassembly resources
can block reassembly of a legitimate initiator’s IKE messages,
preventing successful creation of an IPsec SA.

2.3 How likely is fragmentation?
How large are IKE messages? The largest field in IKE
messages is likely to be the certificate. Certificates can be
upwards of 500 bytes (many Verisign certificates are > 1000
bytes). And the “certificate” field can actually be a certificate
chain containing multiple certificates. There are other
potentially large fields such as:

• the Diffie-Hellman value (which for a 1024-bit group will
be about 128 bytes),

• a certificate request field (not shown in the figure), which
is a list of distinguished names of acceptable CAs
(typically around 100 bytes each, and there might be many
acceptable CAs), and

• the “proof” which is a public key signature, and in the
case of 2048-bit RSA keys will be about 256 bytes.

In practice, in current IKE implementations, fragmentation is
very common.

2.4 Defense, post-handshake
Once an IPsec SA is successfully created, there is connection
state, and the endpoints of the SA can protect themselves
against the fragmentation DoS attack by doing MTU

Figure 1. Basic structure of IKEv1 main mode

Alice Bob
crypto proposed

crypto accepted, cookie

gA mod p, cookie

gB mod p

{“Alice”, cert, proof I’m Alice}

{“Bob”, cert, proof I’m Bob}

3

(maximum transmission unit) discovery to find out what size
packets can be sent over that SA without needing to be
fragmented. Once the MTU is known, IPsec itself (AH/ESP),
in tunnel mode, can fragment packets that are too large to be
forwarded over the SA. Then either the SA tunnel endpoint can
reassemble the packets (which is not prone to DoS since each
fragment is separately cryptographically protected, and
therefore attackers’ fragments will be thrown away without
consuming reassembly resources), or the fragments can be
decapsulated and forwarded on for the remainder of the path.
In that case, reassembly is left as a problem for the true source
and destination of those packets--the SA is just another link in
the network with a limited MTU size, so they can do standard
MTU discovery [10].

Therefore the only issue with protecting IPsec against this
fragmentation attack is ensuring that SA establishment from
legitimate IP addresses not get locked out during the initial
IKE handshake.

Although the solutions proposed in this paper could in theory
protect legitimate sources throughout an IPsec SA, an attacker
that guesses the source address of a legitimate node could send
IP fragments from that forged source address. Therefore, the
defense is most robust if it depends on keeping an IP address
on the list of preferred addresses for as short a time as
possible. Therefore, the most robust defense is to only rely on
fragmentation during the handshake, and use one of the
defenses in this paper to defend the handshake from this
attack.

2.5 How feasible is this attack?
There are many implementations of IP, and it's safe to say that
each one does reassembly slightly differently. Differences in
the algorithms used to limit the amount of storage used for
packets being reassembled will cause some variation in how
easy or difficult it is to mount this attack.

Two and a half implementations were examined -- the ones
found in the Solaris(TM)1 Operating System (Solaris OS) and
NetBSD; NetBSD also includes a firewall package, ipfilter,
which does its own fragment state tracking, hence the “half”.

Different metrics are used on the Solaris OS and NetBSD.
NetBSD counts the number of partially assembled packets,
while the Solaris OS counts bytes in the fragments to be
reassembled. Limits are tunable at run time. By default, the
Solaris OS allows a megabyte per interface for reassembly,
while NetBSD keeps at most 200 packets.

Both have similar lifetimes for partially assembled packets --
60 seconds for the Solaris OS, 30 seconds for NetBSD, and 60
seconds for ipfilter. When the limits were reached, both use a
“tail drop” scheme -- if there were too many bytes or packets
pending, fragments from previously unseen packets would be
dropped.

While this has not been experimentally verified, it appears that
the NetBSD reassembly subsystem could be clogged by an
attack involving as few as 7 small fragments per second, while
the Solaris OS might be clogged by a few dozen large
fragments per second.

3. DEFENSES
In this section we explore and contrast various defenses
against the fragmentation attack. As explained in Section 2.4,
we only need to ensure that the IKE handshake completes in
spite of this attack, since the remainder of the security
association can be defended through straightforward means.

3.1 Small Initial Messages Defense
The defense in this section involves designing the protocol so
that all messages are small until a cookie can be verified, and
then having IKE (or a similar UDP-based protocol) pass a hint
to the IP reassembly code as to which IP addresses should be
preferred when reassembly resources are limited. If messages
are small enough so that legitimate pre-cookie-verification
packets will not require fragmentation, then the fragmentation
attack will not interfere with cookie verification, and after
cookie verification, fragments from verified IP addresses will
get priority for reassembly resources.

To accomplish this, we needed to create an extra optional
round trip in the IKEv2 handshake. To see why this is
required, we first show, in Figure 2, a 4-message handshake
that has all the properties the IPsec WG wants for IKE,
including mutual authentication and identity hiding (hiding the
names of the communicating parties from eavesdroppers), as
well as a stateless cookie for DoS protection. However,
message 3 in this handshake is likely to be sufficiently large
that it requires fragmentation, since it contains certificates and
must repeat information from the first two messages. We are
only showing the fields necessary to illustrate the point of this
paper.

In Figure 3, we show a handshake which is a 6-message
protocol.

The protocol in Figure 3 has the disadvantage over the one in
Figure 2 of requiring an extra two messages (i.e., an extra
round trip). However, the purpose of adding the extra
messages is that the result is that messages 1, 2, and 3 are all
small enough that they would not require fragmentation.

1 Solaris is a trademark or registered trademark of Sun
Microsystems, Inc. in the United States and other countries.

Figure 2. 4-msg handshake: msg 3 depends on fragmentation

Alice Bob
crypto proposed, gA mod p

crypto accepted, cookie=c, gB mod p

c, info from msgs 1and 2, {“Alice”, cert, proof I’m Alice}

{“Bob”, cert, proof I’m Bob}

Figure 3. With optional additional round trip

Alice Bob
crypto proposed, gA mod p

cookie required, cookie=c

c, crypto proposed, gA mod p

gB mod p, crypto accepted

{“Alice”, cert, proof I’m Alice}

{“Bob”, cert, proof I’m Bob}

4

Therefore, this defense (together with additional
implementation measures) allows the handshake to proceed
successfully until Bob can verify the cookie.

3.1.1 The necessary implementation modification
In the IP stack in a typical operating system, IKE will be above
UDP, which will be above IP. Ordinarily there is no channel by
which IKE could give the IP reassembly code hints, but it is
not hard to implement such, even though it is somewhat of a
layer violation. If IKE is designed so that it can verify which
IP source addresses have returned valid cookies, even in the
presence of a fragmentation attack, IKE can pass a list of
preferred IP addresses to the reassembly code, allowing
resources to be used for completion of IKE handshakes from
IP addresses that have returned valid cookies.

The scheme we are proposing has the IP reassembly code,
when resources are getting scarce, devote resources to IP
addresses recommended by IKE (based on having received a
valid cookie).

3.1.2 The guessed IP address attack
There is an additional subtlety, which is that attackers that can
guess IP addresses on the preferred list will still be able to
mount a fragmentation attack, since the IP reassembly code
would not be able to distinguish packet fragments from the
legitimate source from packet fragments from an attacker.

To guard against this attack, an address should stay on the
preferred list only long enough to complete the IKE exchange.
Once an SA is established, there are other ways to defend
against a fragmentation attack. The endpoints of the SA can, as
TCP can, discover the MTU, and prefragment a large packet to
a size that will not need to be fragmented along the path, with
each fragment separately IPsec-protected. Reassembly at the
SA endpoint can be done above the IP reassembly layer, i.e.,
after the fragment has been verified authentic by IPsec. Or if
the SA is merely a VPN link along the path, say between two
firewalls, then the fragments can be forwarded after being
decapsulated.

Therefore, there is only a small time window in which IP
reassembly must favor traffic from an IP address in order for
the IKE exchange to complete and allow the SA to be
established. In the 6-message protocol, the window is between
receipt of message 3 (in which the cookie is received and
verified) and the successful establishment of the SA. It would
be tempting to assume that Bob’s IKE can remove that IP
address from the preferred list after receipt of the reassembled
message 5. However, if Bob’s message 6 were lost, then Alice
will retransmit the (still large) message 5. Thus Bob will need
to keep the IP address on the preferred list until he is assured
that the SA has been established. This can be done after
successful receipt of traffic on that SA, or (somewhat
dangerously) after a timeout after receipt of message 5.

3.1.3 Making the extra messages optional
The extra round trip can be made optional (and actually is, in
the IKEv2 protocol). Bob can choose, in message 2, whether to
do the handshake in Figure 2 or the one in Figure 3, and Alice
will know which one he has chosen based on his reply to her
initial message. The idea of having the stateless cookie be an
optional initial round-trip was proposed in [11]. The choice of
doing the stateless cookie exchange with the optional initial

round trip realizes the goal of keeping legitimate pre-cookie-
verification messages sufficiently small so as not to require
fragmentation.

How would an implementation know if it was under attack?
The simplest strategy is to always use the 6-message protocol,
since it is the safest. An alternative is to count the number of
partially completed handshakes, and revert to the 6-message
protocol if that number goes over some threshold. This is
equivalent to saying that the implementation reserves a fixed
amount of resources to IKE handshakes that have not returned
a cookie.

3.1.4 Avoiding a CPU exhaustion attack
Note that in the stateless 4-message protocol in Figure 2 we
are assuming that Bob will reuse the same Diffie-Hellman
exponent (“b”) for many exchanges, perhaps encoding into the
cookie which “b” he’d chosen. Otherwise, if Bob had to
compute a unique gb mod p for each connection attempt, he
would be vulnerable to a CPU resource exhaustion DoS attack.
Reusing the same “b” does result in less than perfect PFS
(perfect forward security) if knowledge of “b” persists beyond
a connection whose key is computed from b and information
exchanged over the wire.

If the stateless cookie is instead done as in Figure 3, as an
optional additional round trip, then Bob will be keeping state
starting with message 3, and there is no need to repeat the
information from messages 1 and 2 into message 3.

3.2 First Fragment Defense
In this section we describe how to defend against the
fragmentation attack with the 4-message design in Figure 2,
despite the fact that message 3 is large, and might require
fragmentation.

It is possible to protect against the fragmentation attack
without adding an extra round trip for the stateless cookie.
This is done by an additional unorthodox, but easily
implementable, channel between the reassembly code and the
IKE code.

Recall that message 3 in Figure 2, which includes Alice’s
return of Bob’s cookie, is large enough to require
fragmentation, because it contains information such as
certificate chains.

The solution is to design message 3 so that Bob’s cookie is the
first item in the message, and to allow the reassembly code to
pass the first fragment of an unassembled IP packet up to IKE.
There will be enough information in the fragment for the
reassembly code to detect that:

• it is the first fragment (offset=0)

• it is UDP (protocol type=UDP)

• port in UDP header=500.

This is additional layer violation beyond the defense in
Section 3.1, since it requires the IP reassembly code to look at
the UDP header, and it requires a more radical change to the
API (passing up an unassembled IP fragment). But although
unorthodox, it certainly is not difficult, and it is routine for
routers (which claim to be layer 3 devices) to look beyond the
IP header for firewalling and QOS-categorization reasons.

5

There are two variants of this approach. In one approach, the
IP reassembly code always (whether or not it is at the resource
limit) sends the first fragment of a fragmented IKE packet up
to the IKE code. In the other variant, the IP reassembly code
only passes up the first fragment if it was forced to throw away
fragments due to resource exhaustion. In the first approach,
Bob might be lucky and not need to throw away any fragments
if the first fragment is validated by IKE, and IKE informs the
reassembly process to add the address to the preferred list
before Bob discards other fragments of that packet. In this
case, Alice’s IP address will only have to remain on the
preferred list until message 3 is reassembled.

In the second approach, Bob’s IKE only gets to inspect the
first fragment of message 3 if the reassembly resources are
exhausted and Bob is forced to discard fragments. In that case,
Alice’s IP address will have to remain on the preferred list
until Alice’s retransmission timer expires and Alice
retransmits message 3, this time hopefully successfully
reassembled because her IP address will be on the preferred
list.

3.3 Avoiding-IP-Fragmentation Defense
Another approach to avoiding the fragmentation attack is to
design IKE so that it does not depend on IP fragmentation.
This requires first discovering the path MTU (PMTU) and then
doing application-level fragmentation in order to make the
packets smaller than the PMTU. So, instead of sending the
entire message 3 from Figure 2 in a single chunk, it breaks the
message into fragments of appropriate size and has the IKE
peer at the other end reassemble the messages. In order to
prevent fragmentation-flooding attacks on the IKE process,
each application-fragment (remember, in this approach there
are no IP-level fragments) should include the cookie, and any
fragment containing a bogus cookie will be rejected by IKE.

There are two ways of ensuring that fragments are no larger
than the PMTU. The first is to use essentially the technique of
RFC 1191 and set the DF bit in each packet. Thus, an overlarge
packet will be rejected with an ICMP error. This method has
the drawback that it introduces latency (if Alice guesses too
large a PMTU) even when no attack is in progress.

An alternate approach is to not set the DF bit. Then, if Bob is
under attack and forced to flush his fragment reassembly
queue, he can send the ICMP Time Exceeded (Reassembly)
message. When Alice gets this message, she knows that she
needs to back off and then can use the explicit PMTU
discovery mechanism mentioned above. The difficulty here is
that many implementations do not send the Time Exceeded
message under these circumstances. However, those
implementations concerned with defense against this attack
could easily do so. Those not concerned with defense would do
nothing.

Although this approach offers good protection, it makes the
IKE protocol and implementation somewhat more complex
since it has to do the work that would be done by IP
fragmentation. Moreover, the efficiency is just as bad as
ordinary IP fragmentation [9]. One might improve the
efficiency of the fragmentation mechanism by introducing
application-layer ACKs for individual chunks. This would
remove the need to retransmit the entire message when a single
chunk is lost. However, it would greatly complicate the
protocol state machine. It might well be easier to simply use
TCP instead of UDP.

3.4 Using-an-IP-option-for-the-cookie defense
Another potential defense has IKE inform IP of the strategy for
cookie verification, and carry Bob’s cookie value in a newly
defined IPv4 option, or IPv6 extension header. For example, if
the cookie is a function of the IP address and a secret S, then
IKE will inform IP of the function and S. Alice’s IKE would,
in this strategy, insert the IP option with Bob’s cookie into all
the handshake messages following receipt of Bob’s cookie. In
this way, IP can discard all fragments with an invalid cookie,
or nonexistent cookie. To ensure that all fragments contain the
IP option, the “copy” flag on that option must be set.

The usual objection to anything involving IPv4 options is that
current router implementations forward packets with options
inefficiently, since they will not be able to be forwarded
through the fast path. Another issue with options is that they
are sufficiently rare these days that router code in some
implementations has evolved that will mishandle packets with
options. Header compression implementations are notorious
for mangling headers with IP options.

Assuming an IP option would be handled correctly but slowly
by the routers, this is not necessarily a problem for IKE. All
this means is that the handshake messages will be slower at
traversing the network. However, it might open up a new
avenue for a DoS attack, which is to send a lot of nonstandard
packets into the network, using up the CPU in a router’s
central processor. But this attack would not be introduced by
this mechanism (an IP option to carry cookies), since an
attacker could already use any unusual IP packets to swamp
the slow path of existing routers.

The fragmentation defense in this section is much more radical
than others proposed. It involves not only giving the IP
reassembly code hints about preferred addresses, but actual
code for verifying cookies. However, it is more resilient
against the guessed-IP-address attack described in
Section 3.1.2.

3.5 Using-the-IP-pktID-for-the-cookie defense
After the fragmentation attack and proposed defense was
described in [4], the defense in this section was proposed and
described in the 4th draft of JFK [2]. This defense is similar to
the defense in Section 3.4 above, but has the cookie appear in
the 2-byte packet identifier field in the IP header instead of as
an IP option. As with the defense in Section 3.4, IKE will need
to tell IP the cryptographic algorithm for verifying cookies.
Since the packet identifier appears in all IP packets, Bob’s IP
reassembly code will need to compute the expected cookie on
every fragment, even those on non-IKE packets, since
fragments other than first fragments cannot be distinguished as
IKE fragments. If the packet identifier field in the IP header
matches the bottom 2 bytes of the cookie Bob’s IKE would
have computed for that IP address, then Bob’s IP reassembly
code queues that fragment on a preferred queue; otherwise, on
a non-preferred queue.

This scheme has additional disadvantages over the defense in
Section 3.4:

• It puts a lot of computation responsibility on the
reassembly code (a cryptographic hash must be computed
for every IP fragment; even those that are not fragments
of IKE packets, since other than the first fragment, an IKE
packet cannot be distinguished from packets from other
protocols).

6

• The packet identifier field is already used by IP for other
purposes, and if other processes at Alice are transmitting
packets that must be fragmented, it is possible that the
value in the bottom 2 bytes of the cookie she received
from Bob has already been assigned to a packet identifier
of a recently transmitted IP packet.

4. CONCLUSIONS
This paper describes a fragmentation DoS attack unique to
protocols such as IKE that run on top of UDP and require
sending large packets. Applications that run on top of TCP can
defend against the attack in more straightforward ways. The
paper presents several strategies for defense against a
fragmentation DoS attack by UDP-based protocols such as
IKE. The proposed defenses are:

• designing the protocol so that messages are small enough
not to require fragmentation until a cookie is verified, and
having IKE pass to the IP reassembly process a list of
preferred IP addresses (those that have returned a valid
cookie).

• designing the protocol so that the cookie is in the first
fragment, and changing the API so that IP can pass the
first fragment of an unreassembled IP packet to a process,
if the process requests. Then, once IKE has verified the
cookie in the first fragment, IKE will inform the
reassembly process to add the IP address from which the
fragment was received to its preferred list.

• designing IKE to do its own MTU discovery and
fragmentation, so as not to depend on IP reassembly

• putting cookies into a new IP option, and having IKE pass
the cookie-verification algorithm to IP, which will verify
all fragments carrying that option

• having IKE pass the cookie-verification algorithm to IP,
as well as the cookie to be carried in the packet identifier
field in the IP header.

Additional subtleties, such as the desirability of keeping an IP
address on the preferred list for as short a time as possible, are
also explained.

We prefer either of the first two defense strategies. Although
they require layer violation, it is simple to implement and does
not put undue burden on IP. The first strategy is a simpler API
change than the 2nd since the first only requires having IKE
pass preferred IP addresses to IP, and the 2nd additionally
requires having IP pass up first fragments of unfragmented
packets.

The strategies that require IP to verify cookies (the last two
defenses) require a much more difficult interface, and
especially the final proposed defense presents an undo burden
on IP because it requires cryptographic verification of the
packet identifier on every fragment, even those that do not
belong to IKE packets. The third defense (designing IKE to do
its own MTU discovery), has the advantage of not changing
the API, but does require a more complex IKE.

Ultimately, the IPsec WG chose the IKEv2 variant with the
extra round trip, due to its being more amenable to
incorporating legacy authentication, and because of its
simplicity. That decision alone does not mean that IKEv2
implementations will be invulnerable to the fragmentation

attack, since defense requires the additional implementation
mechanism. However, it does enable implementations to
implement the first defense suggested in this paper, if
fragmentation attacks start being seen in the wild.

5. ACKNOWLEDGMENTS
Eric Rescorla was particularly helpful in reading several drafts
of this paper, and offering suggestions.

6. REFERENCES
[1] Aiello, W., Bellovin, S., Blaze, M., Canetti, R., Ioannidis, J.,

Keromytis, A., Reingold, O., “Just Fast Keying (JFK)”, draft-
ietf-ipsec-jfk-00.txt, Nov 2001.

[2] Aiello, W., Bellovin, S., Blaze, M., Canetti, R., Ioannidis, J.,
Keromytis, A., Reingold, O., draft-ietf-ipsec-jfk-03, April
2002.

[3] Harkins, D., and Carrel, D., “The Internet Key Exchange
(IKE)”, RFC 2409, November 1998.

[4] Harkins, D., Kaufman, C., and Perlman, R., “The Internet
Key Exchange (IKE) Protocol, draft-ietf-ipsec-ikev2-00.txt,
Nov 2001.

[5] Harkins, D., Kaufman, C., Kent, S., Kivinen, T., and Perlman,
R., “The Internet Key Exchange (IKE) Protocol, draft-ietf-
ipsec-ikev2-01.txt, Feb 2002.

[6] Harkins, D., Kaufman, C., Kent, S., Kivinen, T., and Perlman,
R., “Design Rationale for IKEv2, draft-ietf-ipsec-ikev2-
rationale-00.txt, Feb 2002.

[7] Leiwo, J., Nikander, P., and Aura, T., “Towards network
denial of service resistant protocol. In Proceedings of the 15th
International Information Security Conference (IFIP/SEC),
August 2000.

[8] Karn, P., “The Photuris Key Management Protocol”, internet
draft draft-karn-photuris-00.txt, December 1994.

[9] Kent C., and Mogul, J, “Fragmentation Considered Harmful”,
ACM SIGCOMM, 1987.

[10] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
November 1990.

[11] Orman, H., “The OAKLEY Key Determination Protocol”,
RFC 2412, November, 1998.

[12] Perlman, R., and Kaufman, C., “Key Exchange in IPsec:
Analysis of IKE”, IEEE Internet Computing, Nov/Dec 2000.

[13] Perlman, R., and Kaufman, C., “Analysis of the IPsec key
exchange Standard”, WET-ICE Security Conference, MIT,
2001, http://sec.femto.org/wetice-2001/papers/radia-
paper.pdf.

[14] Simpson, W. A.: “Photuris: Design Criteria”, Selected Areas
in Cryptography 1999: 226-242

[15] Simpson, W. A., “IKE/ISAKMP Considered Harmful”,
Usenix ;login, December 1999, Volume 24, Number 6.

7

