How RSA Works

An RSA Data Security, Inc. Engineering Brief
Steve Burnett

RSA is a public-key cryptosystem that MIT professors Ronald L. Rivest, Adi Shamir and Leonard M. Adleman invented in 1977. The system is based on several mathematical principles in number theory. This paper describes those underlying principles.

Public-Key vs. Secret-Key Cryptography

A cryptosystem is simply an algorithm that can convert input data into something unrecognizable (encryption), and convert the unrecognizable data back to its original form (decryption). To encrypt, feed input data (known as “plaintext”) and an encryption key to the encryption portion of the algorithm. To decrypt, feed the encrypted data (known as “ciphertext”) and the proper decryption key to the decryption portion of the algorithm. The key is simply a secret number or series of numbers. Depending on the algorithm, the numbers may be random or may adhere to mathematical formulae.

In secret-key cryptography, the encryption key and decryption key are the same. Generally there are two functions, an encryption function and its inverse, the decryption function.

The drawback to secret-key cryptography is the necessity of sharing keys. For instance, suppose Alice is sending email to Bob. She wants to encrypt it first so any eavesdropper will not be able to understand the message. But if she encrypts using secret-key cryptography, she has to somehow get the key into Bob’s hands. If an eavesdropper can intercept a regular message, then an eavesdropper will probably be able to intercept the message that communicates the key.

In contrast to secret-key is public-key cryptography. In such a system there are two keys, a public key and its inverse, the private key.

In such a system when Alice sends email to Bob, she finds his public key (possibly in a directory of some sort) and encrypts her message using that key. Unlike secret-key cryptography, though, the key used to encrypt will not decrypt the ciphertext. Knowledge of Bob’s public key will not help an eavesdropper. To decrypt, Bob uses his private key. If Bob wants to respond to Alice, he will encrypt his message using her public key.

A One-Way Function

The challenge of public-key cryptography is developing a system in which it is impossible (or at least intractable) to deduce the private key from the public key. This can be accomplished by utilizing a one-way function. With a one-way function, given some input values, it is relatively simple to compute a result. But if you start with the result, it is extremely difficult to compute the original input values. In mathematical terms, given x, computing f(x) is easy, but given f(x), it is extremely difficult to determine x.

It turns out that multiplication can be a one-way function. It is easy (especially on computers) to multiply two big prime numbers. But for most very large numbers, it is extremely time-consuming to factor them.

By the way, a prime number, or prime, is a number that is evenly divisible by only 1 and itself. For instance 10 is not prime because it is evenly divisible by 1, 2, 5 and 10. But 11 is prime, since only 1 and 11 evenly divide it. The numbers that evenly divide another number are called factors. The process of finding the factors of a number is called factoring.

For example, factoring 15 is simple, it is 3 * 5. But what about 6,320,491,217? Now how about a 155‑digit number? Or 200 digits or more? In short, factoring numbers takes a certain number of steps, and the number of steps increases subexponentially as the size of the number increases. That means even on supercomputers, if a number is sufficiently large, the time to execute all the steps to factor it would be so great that it could take years to compute.

So how can we utilize this one-way function in cryptography? We want to build a cryptosystem which somehow uses two large prime numbers to build the private key and the product of those primes to build the public key. What follows is how the RSA algorithm accomplishes just that.

Modular Math

It turns out that prime numbers possess various useful properties when used in modular math. The RSA algorithm will take advantage of these properties.

Modular math means that the only numbers under consideration are the non-negative integers less than the modulus. So for mod n, only the integers from 0 to (n ‑ 1) are valid operands and results of operations will always be numbers from 0 to (n ‑ 1). Think of military time where the modulus is 2400. For instance, 2200 plus 400 (10:00 PM plus 4 hours) is not 2600. Once you reach 2400, you start over at 0. Hence, 2200 + 400 mod 2400 is 2600 - 2400 = 0200, or 2:00 in the morning. Likewise, if we start at 0, or midnight, 6 times 500 (say six 5‑hour shifts) is not 3000, but 0600, or 6:00 AM the following day.

Another aspect of modular math is the concept of a modular inverse. Two numbers are the modular inverse of each other if their product equals 1. For instance, 7 * 343 = 2401, but if our modulus is 2400, the result is

(7 * 343) mod 2400 = 2401 – 2400 = 1 mod 2400

Euler’s phi-function

In the eighteenth century, the mathematician Leonhard Euler (pronounced “Oiler”) described (n) as the number of numbers less than n that are relatively prime to n. The character  is the Greek letter “phi” (in math circles it rhymes with “tea,” in the academic organization Phi Beta Kappa it rhymes with “tie”). This is known as Euler’s phi‑function.

Two numbers are relatively prime if they share only one factor, namely 1. For example, 10 and 21 are relatively prime. Neither is prime, but the numbers that evenly divide 10 are 1, 2, 5 and 10, whereas the numbers that evenly divide 21 are 1, 3, 7 and 21. The only number in both lists is 1, so the numbers are relatively prime.

So (6), for instance, is 2, since of all the numbers less than 6 (1, 2, 3, 4 and 5), only two of them (1 and 5) are relatively prime with 6. The numbers 2 and 4 share with 6 a common factor other than 1, namely 2. And 3 and 6 share 3 as a common factor.

What about (7)? Because 7 is prime, its only factors are 1 and 7. Hence, any number less than 7 can share with 7 only 1 as a common factor. Without even examining those numbers less than 7, we know they are all relatively prime with 7. Since there are 6 numbers less than 7, (7) = 6. Clearly this result will extend to all prime numbers. Namely, if p is prime, (p) = (p ‑ 1).

Exponentiation

Exponentiation is taking numbers to powers, such as 23, which is 2 * 2 * 2 = 8. In this example, 2 is known as the base and 3 is the exponent. There are some useful algebraic identities in exponentiation. For instance,

(bx) * (by) = bx+y
To illustrate this identity, let b = 2, x = 3 and y = 4.

(23) * (24) = (2 * 2 * 2) * (2 * 2 * 2 * 2) = 27 = 23+4
Another similar, useful identity is

(bx)y = bxy
Once again, to illustrate this identity, let b = 2, x = 3 and y = 4.

(23)4 = (23) * (23) * (23) * (23) =(2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) * (2 * 2 * 2) = 212 = 23*4
Euler noticed that (n) was the “exponential period” modulo n for numbers relatively prime with n. What that means is that for any number a < n, if a is relatively prime with n, a(n) mod n = 1. So if you multiply a by itself (n) times, modulo n, the result is 1. Then if you multiply by a one more time, you are finding the product of 1 * a which is a, so you are starting over again. Hence, a(n) *a = a(n)+1 mod n = a. For example, if n is 5 (a prime number), then (5) = 4. Let a be 3 and compute

a(n) mod n = 34 = 3 * 3 * 3 * 3 mod 5

32 = 3 * 3 = 9,

9 mod 5 = 9 - 5 = 4
33 = 32 * 3 = 4 * 3 = 12,

12 mod 5 = 12 - (2 * 5) = 12 - 10 = 2
34 = 33 * 3 = 2 * 3 = 6,

6 mod 5 = 6 - 5 = 1

Then, of course,

3(n)+1 mod 5 = 34+1 = 34 * 3 = 1 * 3 = 3 mod 5

We can take advantage of this fact in the following way. Take a number m, and raise it to some power e modulo p,

c = me mod p
Now take the result of that exponentiation, c, and raise it to some other power d,

cd mod p
That is equivalent to

(me)d mod p
which is equivalent to

med mod p
How is that useful? Suppose someone gave you c, e and p and said, “I computed c = me mod p. Find d such that cd mod p = 1.” You would simply find d such that e * d = (p). Because then

cd mod p = (me)d = med = m(p) = 1 mod p
But now suppose someone gave you c, e and p and said, “I computed c = me mod p. I want you to find d such that cd mod p = m.” You would need to find d such that e * d = (p) + 1. Because then

cd mod p = (me)d = med = m(p)+1 = m mod p
For example, let c = 4, e = 3 and p = 11. To find m, determine d such that 3d = (11) + 1. Since 11 is prime, (11) = 10. So find d where 3d = 11. But wait, because we are dealing with integers only, there is no d that will satisfy that equation 3d = 11. Note that 3 * 3 = 9 and 3 * 4 = 12.

We can make it work with modular math. (p) + 1 is 1 mod (p). Remember, when we reach the modulus, we start over at 0. Hence,

((p) + 1) mod (p) = ((p) + 1) ‑ (p) = 1 mod (p)

So what you want to find is d such that e * d = 1 mod (p) Remember, this is known as the modular inverse.

Notice that we are dealing with a new modulus. In the original exercise, we are exponentiating c using a modulus of p. So c, the base, is working off a modulus of p. But now we are talking about finding the inverse of e modulo (p) = (p ‑ 1). The exponent is working off a separate modulus. That is because, if you recall, (p) is the exponential period. When we multiply a number by itself (p) times, we have completed the cycle.

In our current example, we are looking for d such that 3d = 1 mod 10. There is a method (the extended Euclidian algorithm described later) for computing the modular inverse. It is rather complicated, so for now, simply try each number until we get the right one.

3 * 1 = 3 mod 10
3 * 2 = 6 mod 10
3 * 3 = 9 mod 10
3 * 4 = 12,

12 mod 10 = 12 - 10 = 2 mod 10
3 * 5 = 15,

15 mod 10 = 15 - 10 = 5 mod 10
3 * 6 = 18,

18 mod 10 = 18 - 10 = 8 mod 10
3 * 7 = 21,

21 mod 10 = 21 - (2 * 10) = 21 - 20 = 1 mod 10

Now that we have d = 7, we can compute cd mod p = 47 mod 11. We will compute

47 = 41 * 46 = 41 * (42 * 44) = 41 * (42 * (42)2)

42 = 4 * 4 = 16 = 5 mod 11
(42)2 = 44 = 5 * 5 = 25 = 3 mod 11
42 * 44 = 46 = 5 * 3 = 15 = 4 mod 11
41 * 46 = 47 = 4 * 4 = 16 = 5 mod 11

Now we know that m was 5. To verify, remember that in the original problem we were given c, e and p, which were 4, 3 and 11. So if 5 is the correct m, then 53 mod 11 will equal 4.

5 * 5 * 5 = 125 = 125 - (11 * 11) = 125 - 121 = 4 mod 11 = c
Could this be our public-key cryptosystem? Find a prime, p, pick a public exponent, e, and make those two values public. Using the extended Euclidian algorithm, determine d, the inverse of the public exponent modulo (p) = (p ‑ 1). Keep d private. When people want to send you a message m, they can encrypt and produce ciphertext c by computing c = me mod p. To recover the plaintext message, you compute m = cd mod p.

There is, of course, one reason this could not be a useful system. Our private key is the inverse of e modulo (p ‑ 1). Since p is public, anyone can compute (p ‑ 1) and therefore determine d.

The RSA algorithm solves that problem by using an important property of Euler’s phi‑function. It is “multiplicative.” If p and q are relatively prime, then (pq) = (p)(q). Hence, for primes p and q and n = pq,

(n) = (p ‑ 1)(q ‑ 1).

RSA

Previously we chose a prime number p to be the modulus. Now, instead, we find two large primes, p and q, and use their product

n = pq
as the modulus. We still choose a public exponent, e, and using the extended Euclidian algorithm find d, the inverse of e modulo (n). This time, however, we are finding the d that satisfies

e * d = 1 mod (p ‑ 1)(q ‑ 1)

The pair (n, e) is the public key and d is the private key. The primes p and q must be kept secret or destroyed.

To compute ciphertext c from a plaintext message m, find

c = me mod n
To recover the original message, compute

m = cd mod n
Only the entity that knows d can decrypt.

Because of the relationship between d and e, the algorithm correctly recovers the original message m, since

cd mod n = (me)d = med = m1 = m mod n
Anyone else who wants to compute d, must first know (n), but to know (n) one must know p and q. In other words, they must factor n. Remember the one-way function? We knew that multiplying big prime numbers can be a one-way function, we simply needed to figure out a way to use that fact. Here it is, build the private key using two primes and the public key using their product.

There is one more condition, the public exponent e must be relatively prime with (p ‑ 1)(q ‑ 1). That is because if e is not relatively prime with (p ‑ 1)(q ‑ 1), there will be no modular inverse.

Incidentally, in practice you would generally pick e, the public exponent first, then find the primes p and q such that e is relatively prime with (p ‑ 1)(q ‑ 1). There is no mathematical requirement to do so, it simply makes key pair generation a little easier. In fact, the two most popular e‘s in use today are F0 = 3 and F4 = 65,537. The F in F0 and F4 stands for Pierre de Fermat, the 17th century mathematician who first described the special properties of these and other interesting numbers.

An Example With Small Numbers

To illustrate the RSA algorithm, look at the following example with small numbers. Choose public exponent e = 3. Then, let p = 5 and q = 11, which means n = 55 and (p ‑ 1)(q ‑ 1) = 40. This is a valid p and q combination since 3 is relatively prime with 40. The inverse of 3 modulo 40 is 27 (computed using the extended Euclidian algorithm). To verify,

(3*27) = 81
81 - (2*40) = 81 - 80 = 1
3*27 = 1 mod 40

Apply the RSA algorithm with these parameters to the “plaintext message” of 14.

c = me = 143 = 2744
2744 - (49 * 55) = 2744 - 2695 = 49 mod 55

Now compute the inverse.

cd = 4927 mod 55

Rather than computing 4927 directly, a shortcut would be to compute 4916+8+2+1 = 4916 498 492 491.

490

1 mod 55

491

49 mod 55

492
491 * 491 = 49 * 49 = 2401
2401 - (43 * 55) = 36
36 mod 55

494
492 * 492 = 36 * 36 = 1296
1296 - (23 * 55) = 31
31 mod 55

498
494 * 494 = 31 * 31 = 961
961 - (17 * 55) = 26
26 mod 55

4916
498 * 498 = 26 * 26 = 676
676 - (12 * 55) = 16
16 mod 55

491 * 492
49 * 36 = 1764
1764 - (32 * 55) = 4
4 mod 55

(491 * 492) * 498
4 * 26 = 104
104 - 55 = 49
49 mod 55

(491 * 492 * 498) * 4916
49 * 16 = 784
784 - (14 * 55) = 14
14 mod 55

Security

Remember that it is possible to obtain the private key d from the public key (n, e), by factoring n into p and q. In order to find d, one must know the product (p ‑ 1)(q ‑ 1). But to find that value, one must know p and q. For example, in the earlier example, an eavesdropper would know that pq = 55, but what is (p ‑ 1)(q ‑ 1)?

Finding the prime factors of 55 is easy, they are 5 and 11. However, for very large numbers, factoring is very difficult. The RSA Laboratories publication, “Frequently Asked Questions About Today’s Cryptography,” (the "FAQ") describes the state of the art in factoring. In short, factoring numbers takes a certain number of steps, and the number of steps increases subexponentially as the size of the number increases. Even on supercomputers, the time to execute all the steps is so great that for large numbers it could take years to compute. According to the “FAQ,” the current threshold of general numbers which can be factored is about 129 digits. Within a short time, that limit will probably rise to 155 digits. Most applications will use a 231- to 308- or even 616-digit RSA modulus.

Finding Primes

The RSA algorithm depends on finding large prime numbers. If that were not relatively simple to do, the algorithm would be too difficult to implement. As it turns out, there are techniques for generating random primes. Outlined here is one popular technique.

First, produce a random number about the length of the prime you are looking for. For instance, if you want a 6 decimal digit prime, you might generate

2,793,472

Trim off any extra digits.

793,472

Any even number (other than 2) will definitely not be prime, so adjust the initial guess by adding 1.

793,473

There is an old trick from grade school to determine if a number is evenly divisible by 3. Add up the digits and if the sum is evenly divisible by 3, the number itself is evenly divisible by 3.

7 + 9 + 3 + 4 + 7 + 3 = 33

3 + 3 = 6

Hence, our adjusted number is evenly divisible by 3 and therefore it is not prime. But if we add 2, the resulting number will no longer be divisible by three. Actually, if we add 1 it would no longer be evenly divisible by 3, but that result would be even.

793,475

Another trick from grade school, if the last digit of a number is 0 or 5, the number is evenly divisible by 5. Our candidate ends in 5, so we need to adjust it further. We cannot add 1, the result would be even. So add 2.

793,477

What we are doing is known as the “sieve technique” originally developed by Eratosthenes of Cyrene (276 - 197 BCE, Cyrene is now Shahhat, Lybia). We start with a random number and adjust it to make sure smaller primes do not evenly divide it. It is as if we were dropping our initial guess through a sieve, sifting out numbers with known factors. Each time we adjust our initial guess, we make the new number relatively prime with the current smaller prime while making sure the resulting adjustment remains relatively prime with the previous smaller primes we have already sieved.

Of course, we cannot run our sieve on every prime less than a certain value. For very large numbers we would have to perform this technique on trillions upon trillions of primes. What we will do for now is perform sieving on the first 7 primes.

The technique actually determines if our random number plus a given amount is evenly divisible by our known primes. Start by creating a table of 30 entries. Each entry is yes if the proprosed prime plus the amount has a known factor, or no if it does not. For instance, the first entry (actually the “zero’th” entry) in the table is yes if the proposed prime plus 0 evenly divides a known prime, no if it does not. Let the number 1 represent yes and 0 represent no.

The first 7 primes are 2, 3, 5, 7, 11, 13 and 17 and our proposed prime is 793,472. Initialize our table to all entries 0.

table[0] = 0, representing whether the proposed prime + 0 has a known factor
table[1] = 0, representing whether the proposed prime + 1 has a known factor
 .
 .
 .
table[29] = 0, representing whether the proposed prime + 29 has a known factor

Now we fill in the table. Start with our first known prime, 2. Does 2 evenly divide our proposed prime? To find out, compute the remainder of

The remainder is 0, so 2 evenly divides. We can set table[0] to 1. But we can also set every second table entry to 1. If we add 2 to our proposed prime, that result will be evenly divisible by two. It is the same if we add 4 to our proposed prime. And so on.

table[0] = 1
table[1] = 0
table[2] = 1
table[3] = 0
table[4] = 1

table[5] = 0
table[6] = 1
table[7] = 0
table[8] = 1
table[9] = 0

table[10] = 1
table[11] = 0
table[12] = 1
table[13] = 0
table[14] = 1

table[15] = 0
table[16] = 1
table[17] = 0
table[18] = 1
table[19] = 0

table[20] = 1
table[21] = 0
table[22] = 1
table[23] = 0
table[24] = 1

table[25] = 0
table[26] = 1
table[27] = 0
table[28] = 1
table[29] = 0

Now do the same thing with 3. Find the remainder of

It is 2. So our proposed prime is not evenly divisible by 3. But we know that if we add 1 or 2 to the proposed prime, we will get a number that is. Which is it? It turns out it is 3 minus the remainder (3 - 2 = 1). So the proposed prime plus 1 is evenly divisible by 3. The table entry table[1] represents the proposed prime plus 1, so set that entry to 1. And we can set every third entry after that to 1 as well.

table[0] = 1
table[1] = 1
table[2] = 1
table[3] = 0
table[4] = 1

table[5] = 0
table[6] = 1
table[7] = 1
table[8] = 1
table[9] = 0

table[10] = 1
table[11] = 0
table[12] = 1
table[13] = 1
table[14] = 1

table[15] = 0
table[16] = 1
table[17] = 0
table[18] = 1
table[19] = 1

table[20] = 1
table[21] = 0
table[22] = 1
table[23] = 0
table[24] = 1

table[25] = 1
table[26] = 1
table[27] = 0
table[28] = 1
table[29] = 0

Continue doing this with all the known primes in our list. For prime candidate pc and known prime pk, find r, the remainder of

. Then set table[pk - r] to 1. Add pk to pk - r and set the table entry indexed by that value to 1. Keep adding pk to the index and setting the table entries of the resulting indices to 1. After performing this exercise for 2, 3, 5, 7, 11, 13 and 17, the table looks like this.

table[0] = 1
table[1] = 1
table[2] = 1
table[3] = 1
table[4] = 1

table[5] = 0
table[6] = 1
table[7] = 1
table[8] = 1
table[9] = 1

table[10] = 1
table[11] = 0
table[12] = 1
table[13] = 1
table[14] = 1

table[15] = 0
table[16] = 1
table[17] = 0
table[18] = 1
table[19] = 1

table[20] = 1
table[21] = 0
table[22] = 1
table[23] = 1
table[24] = 1

table[25] = 1
table[26] = 1
table[27] = 1
table[28] = 1
table[29] = 0

We have “knocked out” several numbers that we know are not prime. Any entry with a 0 is a number for which we could find no factor. That does not mean there is no factor, it just means we could not find a factor.

So now we perform another test, known as the Fermat test, on the candidates. Find

if

 then pc is not a prime. If it is 1, it is still possible pc is not a prime, but unlikely. So try this test with several known primes. If the Fermat test passes for pk equal to 3, 5, 7 and 11, for instance, the probability that the candidate is not prime is very, very small. (How small? There is one paper on this issue[Rivest in Advances in Cryptology - CRYPTO 90] which replaces the phrase “very, very small” with the estimate 1 in 1022, but that is for a variation of the test outlined here and only discusses 256-bit primes. Actually, though, this test should have better results than the test in the paper.)

In our example, begin with our original random number plus 5 (table[5] is the first occurrance of 0). Find

It is 355,221. So 793,477 is definitely not prime. Try the original number plus 11.

It is 16,293. So try the original number plus 15.

It is 1. So this number may be a prime. To increase our confidence, try the Fermat test with 5, 7 and 11. It passes. So we accept 793,487 as a prime number.

If we had not found a prime number, we could have simply generated a new random starting candidate and run through this exercise again.

We can also increase the size of this test. For instance, instead of a 30 entry table, we could build a 1000 entry table. We could also eliminate even numbers from the table, that is, look at only the odd numbers beyond our original candidate. And we can sieve with more than the first seven primes. All these alterations to the test can make it easier for us to find a random prime number.

Why not simply run the Fermat test on a bunch of odd numbers to begin with? It is very time-consuming. We want to make sure we have very good candidates for the Fermat test before running it.

The Extended Euclidian Algorithm

Donald Knuth describes Euclid’s algorithm as, “the granddaddy of all algorithms, because it is the oldest nontrivial algorithm that has survived to the present day.” Euclid published a form of the algorithm in his book Elements in about 300 BC, although historians believe a form of it was invented up to 200 years earlier.

What does Euclid’s algorithm do? It finds the greatest common divisor of two positive integers. The greatest common divisor (gcd) is the largest number that evenly divides two numbers. For instance, the gcd of 12 and 16 is 4. Any number greater than 4 will not divide evenly either 12 or 16 or both. For example, the number 6 is greater than 4 and will divide 12 evenly, but will not divide 16 evenly.

Euclid’s algorithm is the following. Given two positive integers (u, v),

Step1: Does v divide u evenly? Compute u/v, if there is no remainder, the answer is v. If not, continue to Step 2.

Step2: Replace u with the remainder of Step 1. If the remainder of u/v (which can be denoted u mod v) is 1, the numbers are relatively prime and the answer is 1. If not, return to step 1 with the numbers (v, u mod v).

For example, find the gcd of (945, 217).

Step 1: 945/217 = 4 rem 77
Step 2: find gcd(217, 77)
Step 1: 217/77 = 2 rem 63
Step 2: find gcd(77, 63)
Step 1: 77/63 = 1 rem 14
Step 2: find gcd(63, 14)
Step 1: 63/14 = 4 rem 7
Step 2: find gcd(14, 7)
Step 1: 14/7 = 2, no remainder

Hence, the gcd of (945, 217) is 7.

There are many results based on this algorithm, but one extension is especially interesting. While computing the gcd of (u, v), we can also find u‘ and v‘ such that

u*u‘ + v*v‘ = gcd(u, v)

In Step 1 of Euclid’s algorithm, we test to see if v is the gcd. If it is, then u‘ would be 0 and v‘ would be 1.

u*0 + v*1 = v
If that is not the case, we find the gcd of (v, u mod v). If u mod v is the gcd, then u‘ would be 1 and v‘ would be the negative of the integer portion of u/v. The “integer portion of u/v” is denoted int(u/v). It is the result of the division if you discarded the remainder. For instance, 5/2 is 2.5 or 2 remainder 1. So int(5/2) is 2.

u*1 - v*int(u/v) = u mod v.

Actually, that is pretty much the definition of u mod v, the same thing as the remainder of division. For example, when we found the gcd of (945, 217), we tested 217, that was not the answer, so we found the gcd of (217, 945 mod 217). What is 945 mod 217? It is

945*1 - 217*int(945/217) = 945 - 217*4 = 945 - 868 = 77

Continuing in this fashion, each time we execute the two steps of Euclid’s algorithm, we can find the u‘ and v‘ to use in the equation

u*u‘ + v*v‘ = the proposed gcd

Then when the proposed gcd turns out to be the gcd in fact, we have the u‘ and v‘ we want.

Here is the extension.

Step1: Initialize

(u1, u2, u3) = (1, 0, u)

(v1, v2, v3) = (0, 1, v)

Step2: If v3 = 0, then u‘ = u1 and v‘ = u2. We’re done.

Otherwise, move on to

Step3: Compute

q = int (u3/v3) and

(t1, t2, t3) = (u1, u2, u3) - q*(v1, v2, v3)
Then set

(u1, u2, u3) = (v1, v2, v3)

(v1, v2, v3) = (t1, t2, t3)
and return to step 2.

Notice that what is happening to u3 and v3 is simply Euclid’s original algorithm. We are performing the same operations on u1, u2, v1 and v2, but starting with zeroes and ones instead of u and v. They are simply along for the ride.

In our example with 945 and 217, the first two iterations of the extended Euclidian algorithm would look something like this.

 ui vi

 ui - q*vi

 ti

 1 0

 1 - 4*0

 1
 0 1

 0 - 4*1

-4
945 217

945 - 4*217

77

 move this move this
 column up column up

 0 1

 0 - 2*1

-2
 1 -4

 1 - 2*-4

 9
217 77

217 - 2*77

63

Continuing in this fashion, we would end up with u‘ = -14 and v‘ = 61.

945*(-14) + 217*61 = (-13,230) + 13,237 = 7

There is one problem, though, that negative number. Remember, ultimately we want to find the modular inverse of some number, which means our result must be a positive integer.

The solution is to use modular math. We found u‘ and v‘, now find coeffU = u‘ mod v and coeffV = v‘ mod u. If u‘ is negative, then u‘ mod v is (u‘ + v) mod v. In our example,

coeffU = -14 mod 217 = (-14 + 217) mod 217 = 203
coeffV = 61 mod 945 = 61

It turns out that

(coeffU*u) mod v = (coeffV*v) mod u = gcd(u, v)

For our running example,

(203 * 945) mod 217 = 191,835 mod 217 =

(191,835 - 884*217) = 191,835 - 191,828 = 7 = gcd (945, 217)
(61 * 217) mod 945 = 13,237 mod 945 =

(13,237 - 14*945) = 13,237 - 13,230 = 7 = gcd (945, 217)

What would happen if u and v were relatively prime? Then the gcd of (u, v) would be 1. Then

(coeffU*u) mod v = (coeffV*v) mod u = 1

That would mean coeffU is the modular inverse of u with respect to v, and coeffV is the modular inverse of v with respect to u.

In the RSA algorithm, our private key is the modular inverse of the public exponent with respect to (n). That means we now have a simple algorithm, the extended Euclidian algorithm, to find our private key.

Recall the example of the RSA algorithm earlier with small numbers. We chose e = 3, p = 5 and q = 11. We need to find the d such that e * d = 1 mod (p ‑ 1)(q ‑ 1). That is, find d such that 3d = 1 mod 40. In other words, we want to find the modular inverse of 3 with respect to 40. To do this, set u = 40 and v = 3 and execute the extended Euclidian algorithm.

 ui vi

 ui - q*vi

 ti

 1 0

 1 - 13*0

 1
 0 1

 0 - 13*1

-13
 40 3

 40 - 13*3

 1

u‘ = 1, v‘ = -13
coeffU = 1 mod 3 = 1
coeffV = -13 mod 40 = (-13 + 40) mod 40 = 27

Notice that the gcd of (3, 40) is 1. This confirms that 3 and 40 are relatively prime, a requirement of the RSA algorithm. Then we found coeffV. Remember that

(coeffV*v) mod u = gcd(u, v)

In this case,

(coeffV*3) mod 40 = 1

Hence, we found our d, it is coeffV = 27.

14
Copyright © 1996, RSA Data Security, Inc.

Part no. 002-907001-100-001-000

5
Copyright © 1996, RSA Data Security, Inc.

Part no. 002-907001-100-001-000

_918365258.unknown

_918365260.unknown

_918365261.unknown

_918365259.unknown

_918365256.unknown

_918365257.unknown

_918365255.unknown

_918365254.unknown

