
Improved Algorithms for Synchronizing
Computer Network Clocks 1,2,3

David L. Mills
Electrical Engineering Department

University of Delaware

Abstract

The Network Time Protocol (NTP) is widely deployed in the Internet to synchronize computer clocks to each
other and to international standards via telephone modem, radio and satellite. The protocols and algorithms
have evolved over more than a decade to produce the present NTP Version 3 specification and implementa-
tions. Most of the estimated deployment of 100,000 NTP servers and clients enjoy synchronization to within
a few tens of milliseconds in the Internet of today.

This paper describes specific improvements developed for NTP Version 3 which have resulted in increased
accuracy, stability and reliability in both local-area and wide-area networks. These include engineered
refinements of several algorithms used to measure time differences between a local clock and a number of
peer clocks in the network, as well as to select the best ensemble from among a set of peer clocks and combine
their differences to produce a clock accuracy better than any in the ensemble.

This paper also describes engineered refinements of the algorithms used to adjust the time and frequency of
the local clock, which functions as a disciplined oscillator. The refinements provide automatic adjustment of
message-exchange intervals in order to minimize network traffic between clients and busy servers while
maintaining the best accuracy. Finally, this paper describes certain enhancements to the Unix operating system
software in order to realize submillisecond accuracies with fast workstations and networks.

Keywords: computer network synchronization, clock syn-
chronization, distributed protocol, disciplined oscillator.

1. Introduction

A computer clock (or simply clock) is an ensemble of hard-
ware and software components used to provide an accurate,
stable and reliable time-of-day function for the computer
operating system and its clients. In order that multiple distrib-
uted computers sharing a network can synchronize their
operations with each other, a synchronization protocol is used
to exchange time information and synchronize the clocks. In
this paper the term local clock identifies the clock in a
particular computer as distinguished from a peer clock in
another computer with which it exchanges time information.
If the clocks are to agree with Coordinated Universal Time
(UTC), a radio clock (usually a special-purpose radio or
satellite receiver) must be provided to synchronize one or

more of them to UTC as disseminated by various means
[NIS90].

Computer clocks can be synchronized to within a few tens of
milliseconds in the global Internet of today [MIL90]. How-
ever, as computers and networks become faster, there is every
expectation that future applications will require accuracies
better than a millisecond. This requires in essence a complete
reexamination of all elements of the timekeeping apparatus,
including the protocols which exchange timekeeping mes-
sages and the algorithms which process the data and disci-
pline the local clock. This paper examines in detail the various
design issues necessary to achieve this goal and, in particular,
describes a suite of algorithms designed to exchange data with
possibly many redundant peer clocks and to select an accu-
rate, stable and reliable set of clocks from among them.
Besides some new results, it contains some previous work
published only in technical reports [MIL92b] and [MIL93].

In this paper the Network Time Protocol (NTP) developed for
the Internet is used as an example application of the new
algorithms, but others, such as the Digital Time Synchroni-

__

Copyright (c) 1994, Association for Computing Machinery.

1 Sponsored by: Advanced Research Projects Agency under NASA Ames Research Center contract NAG 2-638,
National Science Foundation grant NCR-93-01002 and U.S. Navy Surface Weapons Center under Northeastern
Center for Engineering Education contract A30327-93.

2 Author’s address: Electrical Engineering Department, University of Delaware, Newark, DE 19716; Internet mail:
mills@udel.edu.

3 Reprinted from: Mills, D.L. Improved algorithms for synchronizing computer network clocks. Proc. ACM
SIGCOMM 94 Symposium (London UK, September 1994), 317-327.

zation Service (DTSS) [DEC89] could be used as well. After
a review of terms and notation in Section 2, Section 3 gives
an overview of NTP. Section 4 summarizes the clock filter,
clustering and combining algorithms, which select the best
measurement samples from among possibly several peers and
combine them to produce the best available time.

The main results of this paper are in Sections 5 and 6 Section
5 describes the intersection algorithm, which is used to sepa-
rate the truechimers, which represent correct clocks, from
falsetickers, which may not. Section 6 contains a detailed
analysis of the local clock model, which functions as a disci-
plined oscillator and is implemented as a phase-locked loop.
These algorithms are primarily responsible for the increased
accuracy and reliability of the NTP Version 3 protocol com-
pared to previous versions.

Section 7 contains a summary of related improvements and
extensions of previous algorithms, including those utilizing
special PPS and IRIG signals generated by some radio clocks.
It also contains a description of certain modifications to three
different Unix operating system kernels which provide ex-
tremely precise control of the oscillator time and frequency.
Section 8 discusses the present status of NTP in the Internet,
Section 9 outlines future plans, and Section 10 is a summary
of this paper.

2. Terms and Notation

In this paper the terms epoch, timescale, oscillator, tolerance,
clock, and time are used in a technical sense. Strictly speak-
ing, the epoch of an event is an abstraction which determines
the ordering of events in some given frame of reference or
timescale. An oscillator is a generator capable of precise
frequency (relative to the given timescale) within a specified
tolerance, usually expressed in parts-per-million (ppm). A
clock is an oscillator together with a counter which records
the number of cycles since being initialized with a given value
at a given epoch. The value of the counter at epoch t defines
the time of that epoch T(t). In general, time is not continuous
and depends on the precision of the counter.

Let T(t) be the time displayed by a clock at epoch t relative
to the standard timescale:

T(t) = T(t0) + R(t0)[t − t0] + 1⁄2D(t0)[t − t0]
2 + x(t) , (1)

where T(t0) is the time at some previous epoch t0, R(t0) is the
frequency and D(t0) is the drift (first derivative of frequency)
per unit time. It is conventional to represent both absolute and
relative (offset) values for T and R using the same letters,
where the particular use is clear from context. In the conven-
tional stationary model used in the literature, T and R are
estimated by some disciplining process and the second-order
term D is ignored. The random nature of the clock is charac-
terized by x, usually in terms of frequency or phase spectra
or measurements of variance.

In this paper the stability of a clock is how well it can maintain
a constant frequency, the accuracy is how well its time

compares with UTC and the precision is to what degree time
can be resolved in a particular timekeeping system. These
terms will be given precise definitions when necessary. The
time offset of clock i relative to clock j is the time difference
between them Tij(t) ≡ Ti(t) − Tj(t) at a particular epoch t,
while the frequency offset is the frequency difference between
them Rij(t) ≡ Ri(t) − Rj(t). It follows that Tij = −Tji , Rij = −Rji

and Tii = Rii = 0 for all t. In this paper reference to simply
“offset” means time offset, unless indicated otherwise. The
term jitter refers to differences in subsequent time offset
measurements, while the term wander refers to differences in
successive frequency offset measurements. Finally, the reli-
ability of a timekeeping system is the fraction of the time it
can be kept connected to the network and operating correctly
relative to stated accuracy and stability tolerances.

In order to synchronize clocks, there must be some way to
directly or indirectly compare them in time and frequency. In
network architectures such as DECnet and Internet, local
clocks are synchronized to designated time servers, which are
timekeeping systems belonging to a synchronization subnet,
in which each server disciplines its local clock to other clocks
in the subnet. In this paper to synchronize frequency means
to adjust the subnet clocks to run at the same frequency, to
synchronize time means to set them to agree at a particular
epoch with respect to UTC and to synchronize clocks means
to synchronize them in both frequency and time.

3. Network Time Protocol

The Network Time Protocol (NTP) is used by Internet time
servers and their clients to synchronize clocks, as well as
automatically organize and maintain the time synchroniza-
tion subnet itself. It is evolved from the Time Protocol
[POS83] and the ICMP Timestamp Message [DAR81b], but
is specifically designed for high accuracy, stability and reli-
ability, even when used over typical Internet paths involving
multiple gateways and unreliable networks. This section con-
tains an overview of the architecture and algorithms used in
NTP. A detailed description of the architecture and service
model is contained in [MIL91], while the current protocol
formal specification, designated NTP Version 3, is defined in
RFC-1305 [MIL92a]. A subset of the protocol, designated
Simple Network Time Protocol (SNTP), is presented in RFC-
1361 [MIL92c]. A security analysis of NTP is presented in
[BIS90].

NTP and its implementations have evolved and proliferated
in the Internet over the last decade, with NTP Version 2
adopted as an Internet Standard (Recommended) [MIL89]
and its successor NTP Version 3 adopted as a Internet Stand-
ard (Draft). NTP is built on the Internet Protocol (IP)
[DAR81a] and User Datagram Protocol (UDP) [POS80],
which provide a connectionless transport mechanism; how-
ever, it is readily adaptable to other protocol suites. The
protocol can operate in several scenarios involving unicast
and broadcast modes, private workstations, public servers
and various subnet configurations. A lightweight association-
management capability, including dynamic reachability and

2

variable poll-interval mechanisms, is used to manage state
information and reduce resource requirements. Optional fea-
tures include message authentication based on DES [DES77]
and MD5 [RSA90] algorithms, as well as provisions for
remote control and monitoring.

In NTP one or more primary servers synchronize directly to
external reference sources such as radio clocks. Secondary
time servers synchronize to the primary servers and others in
the synchronization subnet. A typical subnet is shown in
Figure 1a, in which the nodes represent subnet servers, with
normal level or stratum numbers determined by the hop count
from the primary (stratum 1) server, and the heavy lines the
active synchronization paths and direction of time informa-
tion flow. The light lines represent backup synchronization
paths where time information is exchanged, but not necessar-
ily used to synchronize the local clocks. Figure 1b shows the
same subnet, but with the line marked x out of service. The
subnet has reconfigured itself automatically to use backup
paths, with the result that one of the servers has dropped from
stratum 2 to stratum 3. In practice each NTP server synchro-
nizes with several other servers in order to survive outages
and Byzantine failures using methods similar to those de-
scribed in [SHI87].

Figure 2 shows the overall organization of the NTP time
server model, which has much in common with the phase-
lock methods summarized in [RAM90]. Timestamps ex-
changed between the server and each of possibly many other
subnet peers at intervals ranging from one to 17 minutes are
used to determine individual roundtrip delays and clock off-
sets, as well as provide reliable error bounds. As shown in the
figure, the computed delays and offsets for each peer are
processed by the clock filter algorithm to reduce incidental
jitter. As described in [MIL92a], this algorithm selects from
among the last several samples the one with minimum delay
and presents the associated offset as the output.

The clock selection algorithm determines from among all
peers a suitable subset capable of providing the most accurate
and trustworthy time using principles similar to those de-
scribed in [VAS88]. This is done using a cascade of two
subalgorithms, one based on interval intersections to cast out
faulty peers and the other based on clustering and maximum
likelihood principles to improve accuracy. The resulting off-
sets of this subset are first combined on a weighted-average
basis using the algorithm described in [MIL92a] and then
processed by a phase-lock loop (PLL) using the algorithms
described in [MIL92b]. In the PLL the combined offset is
processed by the loop filter to control the numeric-controlled
oscillator (NCO) frequency. The NCO is implemented as an
adjustable-rate counter using a combination of hardware and
software components. It furnishes the phase (timing) refer-
ence to produce the timestamps used in all timing calcula-
tions.

Figure 3 shows how NTP timestamps are numbered and
exchanged between peers A and B. Let T1, T2, T3, T4 be the
values of the four most recent timestamps as shown and,
without loss of generality, assume T3 > T2. Also, for the
moment assume the clocks of A and B are stable and run at
the same rate. Let

a = T2 − T1 and b = T3 − T4 .

If the network delay difference from A to B and from B to A,
called differential delay, is small, the clock offset θ and
roundtrip delay δ of B relative to A at time T4 are close to

θ =
a + b

2
 and δ = a − b . (2)

Each NTP message includes the latest three timestamps T1,
T2 and T3, while the fourth T4 is determined upon arrival.
Thus, both peers A and B can independently calculate delay
and offset using a single bidirectional message stream. This

1

2 2

3 3 3

1

2 3

3 3 3

(a) (b)

x

Figure 1. Subnet Synchronization Topologies

Clock Filter

Clock Filter

Clock Filter
Clock Selection:
Intersection and

Clustering
Algorithms

Clock
Combining

Loop Filter

NCO

Network

Phase-Lock Loop

Figure 2. Network Time Protocol

θ0

T1 T4

T2 T3
B

A

Figure 3. Measuring Delay and Offset

3

is a symmetric, continuously sampled, time-transfer scheme
similar to those used in some digital telephone networks
[LIN80]. Among its advantages are that errors due to missing
or duplicated messages can be avoided.

In [MIL92b] an exhaustive analysis is presented of the time
and frequency errors that can accrue as the data are processed
and refined at various levels in the subnet hierarchy. While
the analysis is too long to repeat here, the results define the
maximum error that can accrue under any operational condi-
tion, called the synchronization distance λ, and the error
expected under nominal operating conditions, called the dis-
persion ε. There are several components of ε, including:

1. The maximum error in reading the local clock and each
peer clock, which depends on the clock resolution and
method of adjustment.

2. The maximum error due to the frequency tolerance of the
local clock and each peer clock since the time either was
last set.

3. The estimated error contributed by each peer clock due
to delay variations in the network and statistical latencies
in the operating systems on the path to the primary
reference source, which depends on differences between
successive measurements for each peer clock. This is
called the peer dispersion.

4. The estimated error contributed by the combined set of
peers used to discipline the local clock, which depends
upon the differences between individual members of the
set. This is called the select dispersion.

In practice, errors due to network delays usually dominate ε.
However, it is not possible to characterize these delays as a
stationary random process, since network queues can grow
and shrink in chaotic fashion and packet arrivals are fre-
quently bursty. However, the method of calculating ε, as
defined in the NTP Version 3 specification, represents a
conservative estimate of the errors due to each of the above
causes.

In [MIL92b] it is shown that, given the ε calculated as above,

λ ≡
δ
2
 + ε represents the maximum error contribution due to

all causes. In other words, if θ is the measured offset of the
local clock relative to the primary reference source, then the
true offset θ0 relative to that source must be somewhere in the
interval

θ − λ ≤ θ0 ≤ θ + λ , (3)

which is called the confidence interval.

The ε and λ are used as metrics in the various algorithms
presented in following sections. They determine which clocks
are selected by the clock selection and clustering algorithms,
the weight factors used by the clock combining algorithm,
and in calculating various error statistics. While the basic
design of these algorithms is developed using sound engi-

neering and statistical principles, there are a number of intri-
cate details, such as various weights used in the filter and
selection algorithms, which can only be determined by cut-
and-try. In general, however, the metrics used are based on
the pragmatic observation that the highest reliability is usu-
ally associated with the lowest stratum and synchronization
distance, while the highest accuracy is usually associated with
the lowest stratum and dispersion.

4. Clock Filter, Combining and Clustering Algo-
rithms

The clock filter, clustering and combining algorithm shown
in Figure 2 operate essentially as described previously in
[MIL91], however all three have been refined and defined
formally in [MIL92a]. In order to understand the other algo-
rithms described in this paper, it will be useful to briefly
summarize the operation of these three algorithms.

The clock filter algorithm operates on a moving window of
samples to produce three statistical estimates: peer delay δ̂,
peer offset θ̂ and peer dispersion ε̂. A discussion of the design
approach, implementation and performance assessment is
given in [MIL91] and will not be repeated here. However, the
design there, which can be described as a minimum filter, has
been enhanced to include the peer dispersion contributions
due to the frequency tolerance of the local clock and the
interval between T1 and the present time, which must be
recorded with every data sample.

There are usually some offset variations among the peers
surviving the intersection algorithm, due to differential de-
lays, radio clock calibration errors, etc. The clustering algo-
rithm is designed to select the best subset of this population
on a maximum likelihood basis. It first ranks the peers by
stratum, then by synchronization distance λ. For each peer it
computes the select dispersion, defined as the total weighted
time differences of that peer relative to all the others. It then
ejects the outlyer peer with greatest select dispersion and
repeats the process until either a prespecified minimum num-
ber of peers has been met or the maximum select dispersion
is less than or equal to the minimum peer dispersion for all
peers in the surviving population.

The termination condition is designed to maximize the num-
ber of peers for the combining algorithm, yet to produce the
most accurate time. Since discarding more outlyers can nei-
ther increase the select dispersion nor decrease the peer
dispersion, further discards will not improve the accuracy. As
incorporated in NTP Version 3, the increase in dispersion as
samples grow old helps to reduce errors resulting from local
clock instability.

The clock combining algorithm averages the time offsets of
the peers selected by the clustering algorithm using a system
of weights, where the weight of each contributing peer is
determined by its dispersion as a fraction of the total disper-
sion of all peers. As incorporated in NTP Version 3, the
dispersions are augmented in the same way as in the clock

4

filter algorithm and the system dispersion determined as the
sum of the weighted dispersions.

5. Intersection Algorithm

When a number of peer clocks are involved as in Figure 2, it
is not clear beforehand which are truechimers and which are
falsetickers. In order to provide reliable synchronization,
NTP relies on multiple peers and disjoint peer paths whenever
possible. Crucial to the success of this approach is a robust
algorithm which finds and discards the falsetickers from
among these peers. Criteria for evaluation include a suite of
sanity checks, consistency checks and the intersection algo-
rithm described in this section.

Recall that the true offset θ0 of a correctly operating clock
relative to UTC must be contained in the confidence interval
(3). Marzullo and Owicki [MAR85] devised an algorithm
designed to find an appropriate interval containing the correct
time given the confidence intervals of m clocks, of which no
more than f are considered incorrect. The algorithm finds the
smallest intersection interval containing points in at least
m − f of the given confidence intervals.

Figure 4 illustrates the operation of this algorithm with a
scenario involving four clocks A, B, C and D, with the peer
offset θ̂ (shown by the ↑ symbol) along with the confidence
interval for each. For instance, any point in the A interval may
represent the actual time associated with that clock. If all
clocks are correct, there must exist a nonempty intersection
including points in all four confidence intervals; but, clearly
this is not the case in the figure. However, if it is assumed that
one of the clocks is incorrect (e.g., D), it might be possible to
find a nonempty intersection including all but one of the
intervals. If not, it might be possible to find a nonempty
intersection including all but two of the intervals and so on.

The algorithm used by DEC in DTSS is based on these
principles. The algorithm finds the smallest intersection con-
taining at least one point in each of m − f confidence intervals,
where m is the total number of clocks and f is the number of

falsetickers, as long as the f <
m
2

. For the scenario illustrated

in Figure 4, it computes the intersection for m = 4 clocks,
three of which turn out to be correct and one not. The interval
marked DTSS is the smallest intersection containing points
in three confidence intervals, with one interval outside the
intersection considered incorrect.

There are some cases where this algorithm can produce
anomalistic results. For instance, consider the case where the
left endpoints of A and B are moved to coincide with the left
endpoint of D. In this case the intersection interval extends to
the left endpoint of D, in spite of the fact that there is a
subinterval that does not contain at least one point in all
confidence intervals. Nevertheless, the assertion that the cor-
rect time lies in the intersection interval remains valid.

One problem is that, while the smallest interval containing
the correct time may have been found, it is not clear which

point in that interval is the best estimate of the correct time.
Simply taking the estimate as the midpoint of the interval
throws away a good deal of useful statistical data and results
in large jitter as confirmed by experiment. Especially in cases
where the network jitter is large, some or all of the calculated
offsets (such as for C in Figure 4) may lie outside the inter-
section. For these reasons, in the NTP algorithm the DEC
algorithm is modified so as to include at least m − f of the peer
offsets. The revised algorithm finds the smallest intersection
of m − f intervals containing at least m − f peer offsets. As
shown in Figure 4, the modified algorithm produces the
intersection interval marked NTP and including the calcu-
lated time for C.

The algorithm starts with a set of peers which have passed
several sanity checks designed to detect misconfigurations
and defective implementations. In the NTP Version 3 imple-
mentation only the ten peers with the lowest synchronization
distance λ are considered to avoid needless computing cycles
for candidates very unlikely to be useful. For each peer the
algorithm constructs a set of three tuples of the form [offset,
type]: [θ − λ, −1] for the lower endpoint, [θ, 0] for the mid-
point, and [θ + λ, +1] for the upper endpoint. These entries
are placed on a list sorted by offset.

The job of the intersection algorithm is to determine the lower
and upper endpoints of an interval containing at least m − f
peer offsets. As before, let m be the number of entries in the
sorted list and f be the number of presumed falseticker clocks,
initially zero. Also, let lower designate the lower limit of the
final confidence interval and upper the upper limit. The
algorithm uses endcount as a counter of endpoints and mid-
count as the number of offsets found outside the confidence
interval.

1. Set both endcount and midcount equal to zero.

2. Starting from the beginning of the sorted list and working
toward the end, consider each entry [offset, type] in turn.
As each entry is considered, subtract type from endcount.
If endcount ≥ m − f, the lower endpoint has been found.
In this case set lower equal to offset and go to step 3.
Otherwise, if type is zero, increment midcount. Then
continue with the next entry.

Correct DTS

Correct NTP

D
↑

A
↑

B
↑

C
↑

Figure 4. Confidence Intervals and Intersections

5

3. At this point a tentative lower endpoint has been found;
however, the number of midpoints has yet to be deter-
mined. Set the endcount again to zero, leaving midcount
as is.

4. In a similar way as step 2, starting from the end of the
sorted list and working toward the beginning, add the
value of type for each entry in turn to endcount. If
endcount ≥ m − f, go to step 5. Otherwise, if type is zero,
increment midcount. Then continue with the next entry.

5. If lower ≤ upper and midcount ≤ f, then terminate the
procedure and declare success with lower equal to the
lower endpoint and upper equal the upper endpoint of the
resulting confidence interval. Otherwise, increment f. If

f ≥
m
2

, terminate the procedure and declare failure. If

neither case holds, continue in step 1.

The original (Marzullo and Owicki) algorithm produces an
intersection interval that is guaranteed to contain the correct
time as long as less than half the clocks are falsetickers. The
modified algorithm produces an interval containing the origi-
nal interval, so the correctness assertion continues to hold.
However, so long as the clock filter produces statistically
unbiased estimates for each peer, the new algorithm allows
the clustering and combining algorithms to produce unbiased
estimates as well.

Table 1 shows a typical configuration for NTP primary server
pogo. The peers are located in Europe, Australia and the
National Institute of Standards and Technology (NIST) in
Boulder, CO, as shown; the others are located at the Univer-
sity of Delaware. The server identified as GPS and assigned
pseudo-stratum zero is a precision timing receiver synchro-
nized by the Global Positioning System (GPS) directly con-
nected to pogo. Since pogo is operating at stratum 1, the
servers marked stratum 2 and higher would be considered for
synchronization only if the GPS receiver and all other stra-
tum-1 sources fail. The synchronization source for each serv-
er is shown by dissemination service if stratum 0 or 1 or by
another server if higher. GPS, DCF77 and WWV use radio
and satellite, ATOM is a national standard clock ensemble

and ACTS is the Automated Computer Time Service oper-
ated by NIST [LEV89].

The offset, delay, dispersion and synchronization distance for
each peer are shown in the table, all in milliseconds. The
synchronization status is shown by the Code column. The
peers with no symbol in that column are disallowed by the
sanity checks, since they are at a lower stratum than the
server. Those servers with a symbol are eligible for process-
ing by the intersection algorithm and then the clustering
algorithm; however, those marked “x” have been discarded
by the intersection algorithm as falsetickers, while the peers
marked “-” have been discarded by the clustering algorithm
as outlyers.

The peers marked “*” and “+” have survived both algorithms
and the one marked “*” has been identified as the pick of the
litter. All of these peers will be considered by the combining
algorithm; however, the NTP Version 3 implementation in-
cludes an option: If a designated peer has survived both
algorithms, it is the sole source for synchronization and the
combining algorithm is not used. This is useful in special
cases where known differential delays are relatively severe
or when the lowest possible jitter is required.

6. The Local Clock Algorithm

The local clock is commonly implemented using a hardware
counter and room-temperature quartz oscillator. Such oscil-
lators exhibit some degree of temperature-induced frequency
instability in the order of one or two ppm due to room
temperature variations. The NTP local clock algorithm con-
tinuously corrects the time and frequency of the local clock
to agree with the time as determined from the synchronization
source(s).

A significant improvement in accuracy and stability is possi-
ble by modelling the local clock and its adjustment mecha-
nism as a disciplined oscillator. In this type of oscillator the
time and frequency are controlled by a feedback loop with a
relatively long time constant, so the frequency is “learned”
over some minutes or hours of integration. Besides improving
accuracy, a disciplined oscillator can correct for the intrinsic

Code Server (Location) Stratum Source Offset Delay Dispersion Distance
* GPS 0 GPS -0.01 0.00 0.00 0.00
+ barnstable 1 GPS -0.27 2.53 0.00 1.27
+ rackety 1 GPS -0.30 3.07 0.37 1.91
+ mizbeaver 1 GPS -0.38 4.06 0.00 2.03

churchy 2 pogo -0.66 3.83 4.53 6.45
porkypine 2 pogo 0.16 2.27 15.66 16.80
baldwin 3 ACTS -0.42 2.70 16.59 17.01

x time_a (Boulder, CO) 1 ATOM 7.97 61.92 2.11 33.07
x er-gw (Switzerland) 1 DCF77 -3.99 117.14 22.37 80.94
- lucifer (Germany) 1 GPS -1.10 174.71 20.65 108.00
- grundoon 1 WWV -0.80 220.67 0.85 111.19
x swifty (Australia) 1 ATOM -13.71 276.57 13.72 152.00

Table 1. Peer Configuration for Server pogo

6

frequency error of the oscillator itself, so that much longer
intervals between messages can be used without degrading
accuracy.

A disciplined oscillator can be implemented as a type-II,
phase-lock loop (PLL) as shown in Figure 5. The variable
ωr represents the reference signal and ωc the numeric-con-
trolled oscillator (NCO) signal, which controls the local
clock. The phase detector (PD) produces a signal θd repre-
senting the instantaneous phase difference between ωr and ωc.
The clock filter functions as a tapped delay line, with the
output θs taken at the sample selected by the clock filter
algorithm. The loop filter, with transfer function F(s), pro-
duces a NCO correction θc, which controls the oscillator
frequency ωc and thus its phase. The characteristic behavior
of this PLL model, which is determined by the F(s), is studied
in many textbooks and summarized in [MIL92b].

The Unix 4.3bsd clock model requires a periodic hardware
timer interrupt produced by an oscillator in the 100-1000 Hz
range. Each interrupt causes an increment tick to be added to
the kernel time variable. The value of tick is chosen so that
time, once properly initialized, is equal to the present time of
day in seconds and microseconds relative to a given epoch.
When the tick does not evenly divide the second in microsec-
onds, an additional increment fixtick is added to time once
each second to make up the difference.

The Unix clock can actually run at three different rates, one
at the intrinsic oscillator frequency, another at a slightly
higher frequency and a third at a slightly lower frequency.
The adjtime() system call is used to adjust the local clock to
a given time offset. The argument is used to select which of
the three rates and how long ∆t to run at that rate, in order to
amortize the specified offset. The NTP local clock uses the
Unix clock model as the NCO and implements the transfer
function F(s) using a set of recurrence equations described
below. A capsule overview of the design extracted from
[MIL92b] may be helpful in understanding how the model
operates.

In the NTP local clock algorithm, the Unix clock is continu-
ously adjusted in small increments at fixed adjustment inter-
vals σ = 1 s. The increments are computed from state
variables representing the frequency offset f and phase offset
g of the local clock. These variables are in turn determined
from NTP messages received at nominal update intervals µ,
which are variable from 16 to 1024 s. The time constant τ is
the adaptive parameter of the model; it is adjusted as a
function of µ and the dispersion ε determined by the clock
filter and clock selection algorithms.

In the following, successive generations of the algorithm are
numbered from zero and shown in parentheses. All state
variables are initialized at i = 0 to zero. After an interval
µ(i) = t(i) − t(i − 1) (i > 0) from the previous update, the ith
update arrives at time t(i) and the time offset θd(i) is deter-
mined as above. Then, new values for the f(i + 1) and
g(i + 1) state variables are computed:

f(i + 1) = f(i) +
µ(i)θd(i)

τ2
 , g(i + 1) =

θd(i)
τ ,

It is convenient to set the temporary variable a = g(i + 1). At
each adjustment interval σ the quantity

a
Kg

 +
f(i + 1)

Kf

(4)

where Kg and Kf are fixed constants, is added to the local clock

time and the quantity
a

Kg
 is subtracted from a. For conven-

ience, let n be the greatest integer in
µ(i)
σ ; that is, the number

of adjustments that occur in the ith interval. Thus, at the end
of the ith interval just before the i+1th update, the local clock
offset is:

θc(i + 1) = θc(i) + [1 − (1 −
1

Kg
)n] g(i + 1) +

n
Kf

 f(i + 1) .

As described in [MIL92b], the NTP daemon simulates the
PLL loop filter and NCO using the above recurrence rela-
tions. At each adjustment interval, the offset (4) is provided
to the kernel using the adjtime() system call. With the parame-

ters Kg = 26 and Kf = 216 used in the NTP Version 3 imple-
mentation and default τ = 4, the PLL converges to a step
change in phase in about 900 s with less than 7 percent
overshoot. Through the use of carefully chosen parameter
values and arithmetic procedures, almost all multiply and
divide operations are done with economical shifts.

However, using the Unix clock model, the residual jitter can
exxceed 100 µs when the timer interval does not evenly
divide the second in microseconds. Also, since the adjustment
process must complete within 1 s, larger adjustments must be
parceled out in a series of adjtime() calls. Finally, provisions
must be made to compensate for the roundoff error in com-
puting ∆t. These factors add to the error budget, increase
system overhead and complicate the daemon implementa-
tion. A solution to these problems is presented in a later
section.

As reported in [MIL93], the major source of error in most
configurations is the stability of the local clock oscillator. For
example, a typical uncompensated quartz oscillator varies 1
ppm for each degree Celsius and has a short term stability in

NCO

ωr

Clock Filter

Loop Filter F(t)

θs
PD

+

–
ωc

θd

θc

Figure 5. Phase-Lock Loop Model

7

the range 0.1 ppm to 1 ppm. A key feature of the NTP design
is the behavior of τ in response to local oscillator stability.
When operated with a relatively small τ, the PLL adapts
quickly to changes in the local oscillator frequency, but has
poor long term stability. When operated with a relatively
large τ, the PLL produces the most accurate time, but adapts
slowly to changes in the local oscillator frequency.

For the best accuracy and reliability, it is necessary to adjust
τ on a continuous basis as a function of measured stability.
The stability of a free-running frequency source is commonly
characterized by a statistic called Allan variance [ALL87],
which is defined as follows. Consider a series of time offsets
measured between an oscillator and some external standard.
Let θ(i) be the ith measurement and T be the interval between
measurements. Define the fractional frequency

y(i) ≡
θ(i) − θ(i − 1)

T
 .

(5)

Now, consider a sequence of n independent fractional fre-
quency samples y(j) (j = 1, 2, …, n). If the averaging interval
T is the same as the interval between measurements, the
2-sample Allan variance can be defined

σy
2(T) ≡

1
2(n − 1)∑

j=1

n−1

[y(j + 1) − y(j)]2 .

The Allan variance σy
2(T) (or Allan deviation σy(T)) is par-

ticularly useful when designing the local clock algorithm,
since it determines the optimum PLL time constants and
update intervals. Figure 6 shows the results of an experiment
designed to determine the Allan deviation of a typical work-
station under normal room temperature conditions. For the
experiment the oscillator was first synchronized to a primary
server on the same LAN using NTP to allow the frequency to
stabilize, then uncoupled from NTP and allowed to free-run
for about seven days. The local clock offsets during this
interval were measured at the primary server using NTP. This
model is designed to closely duplicate actual operating con-
ditions, including the jitter of the LAN and operating systems
involved.

It is important to note that both the x and y scales of Figure 6
are logarithmic. The characteristic falls rapidly from the
lowest T, where the errors are due primarily to phase jitter, to
a minimum of 0.1 ppm and then rises again to about 0.2 ppm
at the highest, where the errors are due primarily to random-
walk frequency variations. The conclusion to be drawn is that
using integration intervals much below or much above
T = 1000 s do not improve the oscillator stability.

In the NTP design the PLL time constant τ, update interval
µ and integration interval T are directly proportional to each
other. The default τ = 4 corresponds to µ = 64s and
T = 900s, which is close to optimum under most operating
conditions. In this design τ can be varied from 1 to 64 and µ
and T scale in direct proportion. In order to minimize network
load, it is ordinarily desirable to operate with the largest µ

consistent with good accuracy. However, while the PLL can
in principle eliminate residual timing errors due to a constant
frequency offset, it is quite sensitive to changes in frequency,
such as might occur due to room temperature surges. For
instance, a 2-ppm step change in frequency causes a surge of
600 µs at τ = 4. In addition, the amplitude of the surge scales
directly with τ and the temperature change. Therefore, in
order to avoid occasional large errors, it is necessary to adjust
τ automatically to match prevailing conditions.

In the NTP Version 3 implementation, the product ετ is used
as a measure of oscillator instability. If the absolute offset
|θ| exceeds ετ by an experimentally determined threshold, the
oscillator frequency is deviating too fast for the PLL to
follow. so τ is reduced. In the opposite case holds for some
number of updates, τ is increased. The threshold is adjusted
so that, under typical conditions, τ hovers close to the maxi-
mum; but, on occasions when the oscillator frequency wan-
ders more than about 1 ppm, τ quickly drops to lower values
until the wander subsides.

7. Additional Improvements

In a perfect world the NTP PLL model would be implemented
as an intrinsic feature of the kernel with standardized inter-
faces for the user and daemon processes and with a precision
local clock oscillator available as a standard option. However,
during the development and deployment of NTP technology,
there was considerable reluctance to intrude on kernel hard-
ware or software features, since this would impede portabil-
ity, maintainability and perhaps reliability. In addition,
manufacturers were understandably reluctant to provide a
precision oscillator option, since there were not many cus-
tomers to justify the development expense.

We have explored both the kernel PLL and external oscillator
technology. A Unix kernel implementation of the PLL has in
fact been developed for three popular workstations, the Ultrix
kernel for the DECstation 5000 series, the OSF/1 kernel for
the 3000 AXP Alpha series and the SunOS 4 kernel for the
SPARCstation series. As described in [MIL93], the kernel
PLL provides a time resolution of 1 µs and a frequency
resolution of parts in 1011 (with an appropriately stable ex-
ternal oscillator). In addition, the modified kernels provide
new system calls so that applications can learn the local clock

*

*

*

*

*

*

* *
* *

*
*

*
*

Time (s)

A
lla

n
D

ev
ia

tio
n

(p
pm

)

100 1000 10000 100000

0.
1

0.
2

0.
5

1.
0

2.
0

Figure 6. Allan Variance of Typical Local Oscillator

8

status, maximum error and estimated error determined by the
daemon.

A special pulse-per-second (PPS) signal is available from
sources such as cesium clocks and precision timing receivers.
It generally provides much better precision than the serial
ASCII timecode produced by an ordinary radio clock. The
new kernel software uses a modem control lead of a serial
port to produce an interrupt at the PPS signal transition. The
software captures a timestamp at each transition and com-
putes the residue modulo 1 s. Assuming the seconds number-
ing of the clock counter has been determined by a reliable
source, such as the ASCII timecode or even an NTP peer, the
PPS offset is used to control the local clock via the NTP or
kernel PLL. Using this feature on a typical workstation with
a PPS signal from a GPS receiver, jitter is reduced to few tens
of microseconds [MIL93].

Some radio clocks can produce a special IRIG signal, which
encodes the day and time as a modulated audio signal that is
compatible with the audio codec native to some workstations.
A particularly interesting feature of the NTP design described
in [MIL93] is an algorithm that processes codec samples to
demodulate the signal, extract the time information and con-
trol the local clock via the usual NTP algorithms. The scheme
requires very few external components, but achieves a jitter
comparable to the PPS signal.

However, neither the PPS or IRIG signals improve the stabil-
ity of the local clock oscillator itself, since wander-induced
time errors usually dominate the error budget. We have
experimented with external oscillators, both using commer-
cial bus peripherals and bus peripherals of our own design.
An external clock for the Sun SBus has been constructed
using FPGA technology. It includes a pair of counters that
can be read directly in Unix timeval format and an oven-com-
pensated precision oscillator with stability of a few parts in
109. In experiments where a host equipped with this device
was synchronized to a primary server using NTP, the wander
was measured at a few parts in 108, about two orders of
magnitude less than the original undisciplined oscillator.

Perhaps the most novel and useful approach is an auxiliary
feedback loop designed to discipline the local clock oscillator
frequency to an external PPS signal. In this design the time
difference between a timestamp captured at a PPS interrupt
and the hardware microsecond counter is computed at inter-
vals from 4 to 256 s. If θ(i) is the difference at interval i, the
fractional frequency y(i) is calculated as in (5) and used to
update a frequency estimate y

_
:

y
_
(i + 1) = y

_
(i) +

y
_
(i) − y(i)

Ky
 ,

where Ky = 4 is an experimentally determined averaging fac-
tor. Equation (4) above is then modified to include the fre-
quency estimate y

_
,

a
Kg

 +
f(i + 1)

Kf
 + y

_
(i + 1) .

The result is that the oscillator frequency is disciplined to the
PPS signal and the wander considerably reduced; however,
the external corrections provided by NTP continue to func-
tion as usual. Measurements show that, using this scheme
with a typical workstation and PPS signal from a GPS timing
receiver results in performance comparable to the precision
external oscillator.

Figure 7 shows the performance using the kernel PLL and
PPS discipline, but no external clock, over the UTC day 23
March 1994, corresponding to Modified Julian Day (MJD)
49437. In this experiment measurements were made about
every 64 s of the local clock offset relative to the PPS signal
of a cesium clock and the results graphed. The server in-
volved, a SPARCstation IPC, had about 400 NTP clients on
the day of the experiment. The maximum jitter over the day
is about 45 µs, primarily due to collisions between the timer
interrupt and PPS signal interrupt. This represents probably
the best performance possible with this particular machine.

8. Present Status and Deployment

Software support for NTP is available for a wide variety of
workstations and mainframe computers manufactured by
Digital, IBM, Hewlett Packard, Sun Microsystems, Silicon
Graphics, Cray Research and many others. One manufacturer
(Bancomm) markets a dedicated NTP server integrated with
a GPS receiver and another (Cisco) markets a router with
integrated NTP support. The software is available for public
access or as a standard option in some software products. A
client running this software can synchronize to one or more
NTP servers or radio timecode receivers and at the same time
provide synchronization to a number of dependent clients, in
some cases in excess of 400, while requiring only a small
fraction of available processor and memory resources.

In the most cherished of Internet traditions, the worldwide
NTP synchronization subnet is not engineered in any specific
way other than informal, voluntary compliance to a set of
configuration rules. To protect the primary servers, potential
stratum-2 peers are invited only if they serve a sizable popu-
lation of stratum-3 and higher peers. Operators are cautioned
that reliable service is possible only through the use of redun-
dant servers and diverse network paths. A typical configura-
tion for a campus serving several hundred clients includes

MJD 49437 Time (s)

P
LL

 O
ffs

et
 (

us
)

0 20000 40000 60000 80000-1
00

-5
0

0
50

10
0

Figure 7. Offset with Kernel PLL and PPS signal

9

three stratum-2 servers, each operating with two different
primary servers, each of the other campus servers and at least
one stratum-2 server at another institution. Department serv-
ers then operate with all three campus servers and each other,
which simplifies configuration table management. Depart-
ment servers offer service to client hosts, either individually
or using the NTP broadcast mode.

In a previous paper [MIL90] the number of NTP-synchro-
nized peers was estimated at 1,000 on the basis of an system-
atic survey of all known Internet hosts. Today, such a survey
would be very difficult and probably be considered rude at
best. However, it is known that there are at the time of writing
about 100 NTP primary servers located in North America,
Europe and the Pacific Rim, about a third of which are
advertised for public access. These peers are synchronized to
national time standards using all known computer-readable
time-dissemination services in the world, including the U.S.
(WWVB, WWV and WWVH), Canada (CHU), U.K. (MSF),
Germany (DCF77) and France (TDF), as well as the GPS,
OMEGA and LORAN navigation systems, and the Geosyn-
chronous Orbiting Environmental Satellite (GOES). In addi-
tion, NTP primary servers at the national time standards
laboratories of the U.S., Norway and Australia are directly
synchronized to national standard clock ensembles.

It is difficult to estimate the number of NTP secondary
(stratum-2 and higher) peers in the global Internet. A recent
informal estimate puts the total number of Internet hosts over
1.7 million. An intricate check of the monitoring information
maintained by some public NTP servers reveals about 8,000
stratum-2 and stratum-3 dependents; however, this survey
grossly undercounts the population, since only a fraction of
the servers retain this information and many thousands of
known dependents are hidden deep inside corporate net-
works, either independently synchronized or carefully peek-
ing out through access-controlled gateways. Informal
estimates based on anecdotal information provided by vari-
ous network operators suggest the total number of hosts
running NTP is probably in excess of 100,000.

The earlier survey presented error measurements for various
paths between synchronized NTP primary servers in the U.S.
and concluded reliable time synchronization could be ob-
tained “...in the order of a few tens of milliseconds over most
paths in the Internet of today.” As reported in [MIL93], while
there are exceptions, this claim remains generally valid in the
worldwide Internet of today. With the software and hardware
improvements described herein for the NTP Version 3 speci-
fication and implementations, and with suitable allowance for
differential delays, most places in the worldwide Internet are
able to maintain an accuracy better than 10 ms and those on
LANs and high speed WANs better than 1 ms.

9. Future Plans

In cases where a moderate loss in accuracy can be tolerated,
such as most workstations on a LAN subnet, the NTP broad-
cast mode greatly simplifies client configuration and network

management. In this mode client workstations automatically
configure themselves without requiring pre-engineered net-
work configurations or client configuration files. Upon join-
ing the subnet, a client listens for broadcasts from one or more
servers on the subnet. Upon hearing one, the client enters
client/server mode in order to calibrate the one-way delay
between the server and client. When calibration is complete,
generally after a few messages, the client resumes listen-only
mode. In broadcast mode the NTP filter, selection and com-
bining algorithms operate as in the client/server modes, with
resulting accuracy usually in the order of a few milliseconds
on an Ethernet.

We have recently extended the NTP broadcast mode to use
IP multicast facilities [DEE90] for wide-area time distribu-
tion. The NTP multicast mode operates in the same way as
the broadcast mode, so that clients can discover servers
wherever IP multicast facilities and connectivity to the
MBONE are available. At the present time, experimental
servers have been established in the U.S., U.K. and Germany,
with clients in these and other countries. The accuracies that
have been achieved vary widely, depending on the particular
server and path. For instance, with typical U.K. servers, the
accuracies vary from 10 to 100 ms.

While we have proof of concept that time distribution using
IP multicast is practical, there are many remaining problems
to be resolved, such as how to avoid sending messages all
over the world from possibly many multicast servers, how to
authenticate and select which ones a particular client or client
population chooses to believe, and how to allocate and man-
age possibly many multicast group addresses.

In other future plans, we expect to make use of IP multicasting
to maintain timekeeping data not only between peers, but
between other members of the synchronization subnet as
well. This will allow additional opportunities to discover
potential peers, as well as reduce errors due to differential
delays. In addition, we expect to participate in a comprehen-
sive design exercise involving the Domain Name System to
discover domain-based time servers and to distribute authen-
tication information.

10. Summary

This paper has presented an in-depth analysis of certain issues
important to achieve accurate, stable and reliable time syn-
chronization in a computer network. These issues include the
design of the synchronization protocol, the local clock, and
the algorithms used to filter, select and combine the reading
of possibly many peer clocks. The intersection algorithm
presented in this paper is designed to distinguish correct peer
clocks from among a population possibly including faulty
ones. The local clock is modelled as a disciplined oscillator
and implemented as an adaptive-parameter, phase-lock loop.
The behavior of the model is controlled automatically for
oscillators of varying stability and network paths of widely
varying characteristics.

10

The NTP Version 3 implementations have been widely de-
ployed to probably over 100,000 installations in the Internet
of today. Surveys using previous versions of NTP have found
synchronization to UTC can be generally maintained to
within a few tens of milliseconds. With NTP Version 3 and
the hardware and software improvements described in this
paper, synchronization can be generally maintained with
some exceptions to within 10 ms on typical Internet paths and
within 1 ms on LANs and WANs with high speed (over 1
Mbps) transmission paths. The exceptions are in all known
cases due to either severe network congestion or differential
path delays, which in principle can be calibrated out.

11. References

[ALL87] Allan, D.W. Time and frequency (time-domain)
estimation and prediction of precision clocks and oscil-
lators. IEEE Trans. on Ultrasound, Ferroelectrics, and
Frequency Control UFFC-34, 6 (November 1987), 647-
654. Also in: Sullivan, D.B., D.W. Allan, D.A. Howe and
F.L. Walls (Eds.). Characterization of Clocks and Oscil-
lators. NIST Technical Note 1337, U.S. Department of
Commerce, 1990, 121-128.

[BIS90] Bishop, M. A security analysis of the NTP protocol.
Report to the Privacy and Security Research Group.
Department of Mathematics and Computer Science,
Dartmouth College, June 1990.

[DAR81a] Defense Advanced Research Projects Agency.
Internet Protocol. DARPA Network Working Group Re-
port RFC-791, USC Information Sciences Institute, Sep-
tember 1981.

[DAR81b] Defense Advanced Research Projects Agency.
Internet Control Message Protocol. DARPA Network
Working Group Report RFC-792, USC Information Sci-
ences Institute, September 1981.

[DEC89] Digital Time Service Functional Specification Ver-
sion T.1.0.5. Digital Equipment Corporation, 1989.

[DEE90]Deering, S.E., and D.R. Cheriton. Multicast routing
in datagram internetworks and extended LANs. ACM
Trans. Computing Systems 8, 2 (May 1990), 85-100.

[DES77]Data Encryption Standard. Federal Information
Processing Standards Publication 46. National Bureau of
Standards, U.S. Department of Commerce, 1977.

[LEV89] Levine, J., M. Weiss, D.D. Davis, D.W. Allan, and
D.B. Sullivan. The NIST automated computer time serv-
ice. J. Research National Institute of Standards and
Technology 94, 5 (September-October 1989), 311-321.

[LIN80] Lindsay, W.C., and A.V. Kantak. Network synchro-
nization of random signals. IEEE Trans. Communica-
tions COM-28, 8 (August 1980), 1260-1266.

[MAR85] Marzullo, K., and S. Owicki. Maintaining the time
in a distributed system. ACM Operating Systems Review
19, 3 (July 1985), 44-54.

[MIL89] Mills, D.L. Network Time Protocol (version 2) -
specification and implementation. DARPA Network
Working Group Report RFC-1119, University of Dela-
ware, September 1989.

[MIL90] Mills, D.L. Measured performance of the Network
Time Protocol in the Internet system. ACM Computer
Communication Review 20, 1 (January 1990), 65-75.

[MIL91] Mills, D.L. Internet time synchronization: the Net-
work Time Protocol. IEEE Trans. Communications
COM-39, 10 (October 1991), 1482-1493. Also in: Yang,
Z., and T.A. Marsland (Eds.). Global States and Time in
Distributed Systems, IEEE Press, Los Alamitos, CA,
91-102.

[MIL92a] Mills, D.L. Network Time Protocol (Version 3)
specification, implementation and analysis. DARPA
Network Working Group Report RFC-1305, University
of Delaware, March 1992, 113 pp.

[MIL92b] Mills, D.L. Modelling and analysis of computer
network clocks. Electrical Engineering Department Re-
port 92-5-2, University of Delaware, May 1992, 29 pp.

[MIL92c] M ills, D.L. Simple Network Time Protocol
(SNTP). DARPA Network Working Group Report RFC-
1361, University of Delaware, August 1992, 10 pp.

[MIL93]Mills, D.L. Precision synchronizatin of computer
network clocks. Electrical Engineering Department Re-
port 93-11-1, University of Delaware, November 1993,
66 pp.

[NIS90] NIST Time and Frequency Dissemination Services.
NBS Special Publication 432 (Revised 1990), National
Institute of Science and Technology, U.S. Department of
Commerce, 1990.

[POS80] Postel, J. User Datagram Protocol. DARPA Net-
work Working Group Report RFC-768, USC Informa-
tion Sciences Institute, August 1980.

[POS83] Postel, J. Time protocol. DARPA Network Working
Group Report RFC-868, USC Information Sciences In-
stitute, May 1983.

[RAM90] Ramanathan, P., K.G. Shin and R.W. Butler. Fault-
tolerant clock synchronization in distributed systems.
IEEE Computer 23, 10 (October 1990), 33-42.

[RSA90] MD5 Message-Digest Algorithm, RSA Data Secu-
rity, Inc., 1990.

[SHI87] Shin, K.G., and P. Ramanathan. Clock synchroniza-
tion of a large multiprocessor system in the presence of
malicious faults. IEEE Trans. Computers C-36, 1 (Janu-
ary 1987), 2-12.

[VAS88] Vasanthavada, N., and P.N. Marinos. Synchroniza-
tion of fault-tolerant clocks in the presence of malicious
failures. IEEE Trans. Computers C-37, 4 (April 1988),
440-448.

11

