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Abstract teractive multimedia services. Many of them may have strict
requirements on the quality of service (QoS) which is quan-
Relying on the wavelet-based time-scale analysis techniques anditatively measured by throughput, loss rate, delay and delay
a so called height difference correlation function method, we jitter. Understanding and modeling the end-to-end delay are
studied the dynamics of the delay traces measured in the Inter- essential to predicting the viability of the real-time services on
net with sampling interval ranging from 20 ms to 1 min. Scaling the Internet.
analyses showed that the delay traces have a complicated scaling Third, The possibility of building a realistic traffic model for
behavior changing with both the time scales and the sampling in- simulation study depends on how well the characteristics of
tervals. A significant observation of our research was that the the traffic (include LANs and WANS) being understood. Re-
nature of the delay traces changes from a LRD noise-like time se- cent researches [9, 16, 6] have empirically demonstrated the
ries (e.g., fractional Brownian noise) to a self-similar one with an  self-similarity characteristic of LAN traffic and the multifrac-
outer cutoff scale when the sampling intervals decrease (we refer tal nature of Internet WAN traffic. A type of structural models
this as crossover). It turns out that the delay jitter time series taking into account specific features of the underlying network
derived from a sampled delay trace with small sampling interval structure and hence providing a physical explanation for the
is LRD noise with a Hurst parameter H < 0.5 (anti-persistence), observed scaling phenomena have been proposed [18]. These
indicating that the current Internet works in a controlled state.  approaches reflect a source-centered view of traffic modeling,
We also used a wavelet-based partition function method to inves- ignoring the interaction between the source and the network
tigate the possible multifractality of the delay traces. We ana- side, such as in the case of TCP connection, the sender would
lyzed the underlying physical mechanisms of the observed scal- adjust the sending rate based on the current conditions of the
ing behavior, crossover and anti-persistence, and discussed thenetwork. The multifractal nature of the traffic found in the en-
implications of our findings on several aspects of networking en- vironment of WANs [6], especially in small-time scale, puz-
gineering. zles researchers with the question of the underlying physical
mechanism of the multifractality. A cascade traffic model [6],
. viewing the aggregated traffic as multiplicative instead of ad-
1 Introduction ditive, can mathematically reconstruct the multifractality in
the WAN traffic traces, suggesting that the Internet protocol
Among the many aspects of the Internet dynamics [15], enstack hierarchy causes the multifractality. There is a common
to-end packet delay dynamics plays an important role in chagreement that the changing nature of the scaling phenomena
acterizing the end-to-end behavior. There are several reaspnsmall-time scale must be due to “real life” TCP dynamics,
for studying the end-to-end delay dynamics. First, the transpecifically, the flow control mechanism, which implies that
port layer protocols such as TCP, rely on measuring end-the end-to-end delay dynamics naturally describe the WAN
end delay as a feedback mechanism to do flow control [#]affic. So again, better understanding of the delay dynamics
Better understanding about the delay dynamics, especiallycen provide deep insight into the physical explanation which
a small time scale, will provide clues and guidelines to desigvould de-mystify the multifractality found in the WAN traffic.
and tune the protocols to achieve a better performance. Seur research is closely related to the studies carried out in
ondly, the Internet moving on to provide more real-time, irf3, 10]. The study in [3] first explored the long-range depen-
~ dence (LRD) characteristics of the measured round-trip delay
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cess, the question arises about the conclusions drawn in itliechine in our Lab. This machine is configured to make mea-
studies: whether the LRD-like effects in the delay time serissirement with a primary NTP time server located in Australia.
is actually caused by the non-stationary process. Recentlfs@ more detail about the experiment we refer reader to [10].
wavelet-based tool for the analysis of long-range dependemde run a ping program in the same machine in our lab. All
and a related semi-parametric estimator of the Hurst parameterasurements were done in December, 1998. Table 1 gives a
H — the intensity measurement of the LRD effect, was intr@jualitative description of the set of data.
duced in [1]. The estimator was shown to be unbiased undeiVe use the smallest ping packet (36 bytes: 20 bytes for IP
very general conditions, and efficient under Gaussian assurhpad, 8 bytes for ICMP head, and 8 bytes for the two times-
tions. The most desired feature of the estimator is that ittsmps) in our experiment in wish to minimumize the interfer-
highly robust against the presence of deterministic trends ence to other users. In the original raw traces, some pings
possible types of the non-stationarity. were lost or came back out of order. If a ping was lost we do
In our research, we use the wavelet-based techniqueshading for it . We sorted the raw traces to put every received
study the scaling behavior of the measured delay traces. Wag back to its sending order. Although there are some doubts
also use the wavelet-based multifractal analysis technigwut ping’s fidelity to represent the packets finally going up
proposed in [6] to investigate the multifractal nature of ther down to the applications, We believe it serves the purpose
delay traces. In order to observe the crossover phenomenahis study.
we use another robust and direct technique cdileight dif-

ference correlation functiomethod used mostly in surface W let-b d Analvsis Techni
science[12]. Using these tools we conduct an extensive study avelet-base nalysis tecnniques

on scaling behavior, and provide empirical evidences showi r%]th' i . brief introduction to th let
the LRD nature and the possible multifractality of the del IS seclion we give a briet introduction 1o the wavelet-
ased techniques (for more detail, see [1, 6]), and discuss the

ICMP pi NTP. A signifi pased L . ? dIs
traces measured by ICMP ping and significant obs pability of the techniques to detrend the deterministic types

vation of our research was that we observed a crossover p% at itv. We start thi tion by introduci
nomena and an anti-persistence phenomena in the delay trgefon-stationarity. Ve start this section by introducing some

The rest of the paper is organized as follows. Sectioncfncepts we meetin this study.
gives a brief description on the measurements. In section 3, we )
introduce the mathematical foundations of the wavelet-basddl  Miscellaneous Concepts

tools, and discuss issues related to non-stationarity. Sectio 4, . ostic signalX () has a power-law spectra g#s— 0
presents the (_emperical results of thg analyse;. Section 5 in\t)(l “callX (#) al/f procesor 1/ f noise The spectra property
duces the height difference correlation function method, ag al/f process indicates a slowly-decaying correlation func-

illustrates the crossover phenomena, and the anti—persistetn&ﬁ S0X(#) is along-range dependengegocess. A popular

: . ) i
discovered in the delay traces. In section 6 we use a reseryalfyel for a long-range dependence process isrtional
SSAussian (or Brownian) nois#erived from the so-calleflac-

model to demonstrate the underlying physical mechanism

the crossover, anti-persistence and LRD of the delay tracggnal Brownian motion(in short fBm) process [11]. The

and also discuss the implications of our findings on several j& i< o non-stationary process with a property catietf-

sues related to networking engineering. Our conclusions @fﬁ]ilarity Let By (t) be a fBm process, anfly; (0) = 0, then
presented in section 7. the self-similarity can be expressed by:

Bp(at) £ a” By (t) 1)

2 Measurements .
for anya > 0, where= denotes equality of finite-dimensional
We believe it is very important to study the packet delay dgistribution, H is called Hurst parameter, afid< H < 1.
namics in different time scales since a protocol or applicati&@elf-similarity (more precisely, self-affinity) indicates that the
may only use a sampled delay time series from an underty-aph (¢, By (t)) remains statistically unchanged when the
ing random process, possibly not in a regular sampling bagigie axis and the amplitude are simultaneously scaled by a
All the data used in this paper are either measured by Nf&tora anda=*, respectively. Or, we say fBm has the same
[13] or ICMP ping [17].There are some concerns that the pirsgaling behavioon all time scales. We call the sample paths
measurements may not realistically reflect the statistics of thefBm the fractal curves, because if we calculate the frac-
delays experienced by packets issued from a higher layer thiaihdimension on these curves, we could get one, such as the
IP. NTP is built on top of UDP, so the purpose of using thidausdorff dimension [5], with valuéim g =2 — H.
NTP measurements in our analysis is simply to generalize theThe fractional Gaussian noi§é/ s 5 (t), (t,6) € R x R4}
findings of this paper. is the incremental process of fBm, defined by:
The NTP delay (file name antp_74sec) trace used in this 1

paper were collected in September, 1996 by running NTP in a Guys(t) = S(BH(t +6) — Bu(t)) 2



Table 1: Qualitative description of the data measured by ping

File Name i?;ggr 9 Measurements :\;;rzlr;nsl;m De- Loss rate Destination
arping20ms | 20ms 60000 413.2 13% Argentina
arping.1s 1s 180000 407.3 4.7% Argentina
ar_ping-1min 1min 10000 589.1 3.5% Argentina
auping20ms | 20ms 60000 445.8 0.65% Australia
auping.1ls 1s 180000 487.881 0.49% Australia
auping.lmin | 1min 10000 421.3 2.0% Australia
uk_ping-20ms | 20ms 60000 124.4 6.46% England
uk_ping_1s 1s 180000 123.3 0.79% England
uk_ping-1min | 1min 10000 124.3 0.97% England

where Gy 5(t) 4 N(0,06"-1)t,  With time lags large the sum of the left wavelet decomposition terms; namely, (5)
enough, Fractional Gaussian noise has a correlation functi@n be rewritten as:
as the following,

J
B[Grs(t 4+ 7)Grrs(8)] ~ S H(2H 1)|T|2H72 3) X(t) = approxs(t) + ]2::1 detail;(t)

J
= ax(L Rkt + Y D> dx (i, k)k(t)  (6)
4) k

where ¢ (t) is called thescaling function which is de-

sowhenv| = 0,'p,, ,(v) = . . .
In rgal|ity thg ’ggto)c:hastic description of physic rlvegfrom a base function, (¢) by the template$o; « () =
! —J —Jt _ ; i i
phynomenon are rarely exactly self-similar, i.e., (1) holds for (27t — k), (4, k) € Z}. Equatloréc(?ﬂ:s(bcz;egntge
0

all time scales (or for any > 0) with a constan#l. Usually, multi-resolution a}nalysnls (MRA) ofX(t).
with a constantfl, (1) only holds for some range of time%(t) are not arbitrary; their constructions are based on cer-

scales between inner and outer cutoff time scales. Very oftg?\m rules, which require thato () has at least one vanishing

we could find that (1) only holds piecewise in small ranges (r)quent; €.,
a with different constantfs. In this case we need to check if +o0
this random process haswaultifractal nature /

and al/ f power spectrum density at low frequencies, as:

Tp,,(v) ~ 2 0< v <67t J=—oo k

tpo(t)dt =0, m=0,1,..M—1, (7)

— 00

3.2 Discrete Wavelet Transform and Scaling /heré? > 0. Compactly supported wavelets wifif van-

. ishing moments and a support domain equal to the interval

Analysis [-(M — 1), M] were provided in [4]. The higher the order of
Discrete Wavelet Transform (DWT) is a signal analysid€ vanishing moments of the wavelet, the better its detrending
tool [4]. There exists a function,, called themother capability when used in the long-range dependence analysis.
wavelet where a set of base functions can be derived fromltis shownin [1] that, ifX (z) is the incremental process of a
the scaled and shifted versions ©f, such as{y; (t) = Self-similar processwith Hurst parameteH € (0.5, 1), then
279/24po (279t — k), (j, k) € Z}. Using discrete wavelet anal-the expectation of the energy; tha}t lies within a giver2—7
ysis, X (t) can be decomposed as the follow: scale around frequend/ 7)o (Ao is a reference frequency
which depends on the wavelgg(t)) is given by
X(6) =D dx (G, k)sn(®) (5)
k

1 :
; E[F)] = Bl5r Y ldiel] = 27027, (8)
Tk

Wheredx (j, k) can be computed by drivin& (¢) through

a fast recursive filter-bank-based pyramidal algorithm. THEerec is a prefactor that does not depend prand N; is

mapping fromX (¢) to the set of coefficientdx (j, k) is the the number. of yvgvelet c.oeffi'cients.at sca‘!e By plotting
DWT. log, E; againstj (in practice,j = 1 is the finest scale and

Decomposition can be stopped at any stdge 0 by using 2|n many studies X (¢) is directly considered self-similar. In our study
an approximation of\ (¢) at scale2” to collectively represent we need to differenciate the concept of being self-simialr (e.g. fBm) from
that of being the incremental process of a self-similar process (e.g. fractional
Gaussian noise).

1N (m, o) denotes a normal law with mean and variancer?.



j = |log,(length(X(t))] is the coarsest), we can see that ar_ping_lsec
for the incremental process of an exactly self-similar proces: ;
it will yield a linear fit, and for a white noise process the fit
line will be horizontal. If we can not fit the plot by a line _
for all time scales, that means the underlying process is nt =-
the incremental process of an exactly self-similar process. = _-
demonstrates a more complicated scaling behavior. If the lir
ear relationship betweelog, E; and scalej hold for large

time scales, it suggests the incremental process of an asyn
totically self-similar process. Performing a least-squares fit o 4 - 3
the linear portion of the energy-scale Slotve can estimate

the Hurst parameter H, so the scaling analysis also serves as . . .
an H estimator. Figure 1: Periodogram of trace_pmg_1sec.

3.3 Multifractal Analysis tical techniques is actually caused by non-stationarity in the
delay process. We address this question by two steps.

First, in Figure 1 we draw the periodogram of trace
tar_ping_lsec, that is

The distinction betweemultifractal andmonofractalcan be
clarified by the follow informal definition [6]:X (¢) is a ran-
dom signal, we say thaX (¢) has a local scaling exponen
a(ty) at timet, if X (t) behaves likgst)>(*) in an interval
[to, to + dt] of lengthdt atty asét — 0. Informally, X (¢) with
a(tg) = H < 1 atallinstantg,, is called monofractal (and in-
cludes the incremental process of an exactly self-similar prphe expected value dfx (w), which is the spectral density of
cess), whileX (¢) with non-constant scaling exponemtto) the trace, is obviously different from that of a white noise pro-
called multifractal. cess, which would take the dashed line shown in the log-log
A wavelet-based multifractal analysis technique is proposeéale figure as its expectation value. That the spectral den-
in [6]. It is shown that, if X(t) has a local scaling ex- sity obeys a power-law near the origin suggests a possilfle
ponenta(ty) at to, then for large negativg-values (small process.
scales), the wavelet coefficients affecteddt,) behave like  Secondly, if the diurnal changing pattern can be modeled
dj i (to, j) ~ 29(2(t)+1/2) [4] where for two functiong and by several low frequency components[14], then the wavelet-
g9, f(4) = g(j) means thatim; ,  f(j)/g(j) = const.. based techniques can perfectly suppress the low frequency di-
The core of the technique is first to construct the so calleginal changing pattern disturbing the scaling analysis results.

Ix(w) = 2m) ™'Y X;e" ]P0 <w <

J

wavelet-basegartition functionS(q, j) as To prove this, we add several low frequency components to the
o : re-shuffled version of trace gqning_1sec. After completely re-
S(¢,7) = Z |kl ©) shuffling, the reshuffled trace is simply a white noise with the
k

same first order statistics as the original trace. The modified
whered; , = 279/%d;, the normalized wavelet coefficient.trace after adding the diurnal components looks like
It can be shown tha$(q,j) ~ 2~7(1=29) for the case of a

monofractal signal with a constant scaling exponrenihen X x4 X Z sin(%ij)
it defines astructure functionr(q) as the scaling exponent of J ] port ’
S(q,7), asj — —oo for a general case, we wish that the par- B
tition function would behave lik& (g, j) ~ 2/7(9), thatis,  whereX; is the re-shuffled time serie; is the mean ofX,
_ logS(q,4) andn is the length of the trace. Then, we can use the wavelet-
7(q) = jgf_noo W (10) based scaling analysis technique implemented in Matlab to ex-

_ plore the scaling behaviors of both the re-shuffled tréigand

For a monofractal signat(q) = ag —1 (or Hg — 1), 7(9)  the modified traceX. We find that, with a Daubechies2 [4]

changes linearly witly. In the multifractal caser(q) is N0 \avelet (which has a vanish moment N = 2), the technique

longer linear ing but instead a concave function qf can not completely suppress the sinusoidal components. But,
changing to a Daubechies4 wavelet (N = 4), the technique

3.4 Robustness of the Wavelet-based Analysescan perfectly suppress the sinusoidal components, so it can

detrend the artificial non-stationarity and reveal a scaling be-

If delay traces span over'hours or days it may raise "’_‘ ques,tﬁglvior similar to that of the re-shuffled trace. The results are
whether or not the LRD-like effect revealed by certain statist own in Figure 2. It is not surprising to find that both of

3In this study we call théog,, E; vs. j plot as the energy-scale plot. them are horizontal, implying a Hurst parametér= 0.5.




Generally, with a larger N, the wavelet would have a bettdr.1  Scaling Analysis of the Delay Traces
suppressing ability, so the detrending ability of the scaling . , , ) i
analysis technique. Besides the detrending capability we di¢€ investigated the nine ping traces and the NTP trace. Fig-
cuss here, the wavelet-based technique can actually suppf€s3 Shows the scaling analysis results of the nine ping traces.
a broader range of deterministic trends such as linear trenﬁ@‘,u,a"y’ all the nine energy-scale plots'show increasing trends
polynomial trends and arbitrary smooth trends[, 4]. ThrougRd2inst scales, which suggest some kind of long-range depen-
out this study we choose the Daubechies4 wavelet to detrélRfiC€ Phenomenaexistin the traces. Roughly speaking, traces

the diurnal changing pattern presented in the delay traces. ar_p|qg_20ms, arp?ng_lsec, and. ujping_QOms may b,e phar-
acterized as the incremental time series of self-similar pro-

cess, and traces aaing 1sec and ulping_lsec the incremen-
diurnally modified ar_ping_1sec tal time series of asymptotically self-similar process. Trace

14.5 auping 20ms, arping-1min, and auping.1min show strong
14t / long-range dependency, but hard to fit into either category.
S 135} Trace ukping.1min shows a very weak long-range depen-
g 1l dence, so we may treat it as a white noise. Obviously, several
g of the energy-scale plots do not show a strict linear relation-
815y ship betweerog, E; and; in ranges of either large or small
12t scales, implying a more complicated underlying process. Ta-
115 s s s s s ble 2 gives the estimated Hurst parameter calculated by using
0 2 4 6 8 10 12 a weighted least-squares fit on the roughly linear portions of
Scale] the energy-scale plots. Generallydecreases as the sampling
reshuffled ar_ping_1sec interval of a trace increases.
145 ' ' ' For the purpose of comparison and generalizing the results
14} / of scaling behavior found in the ping traces, we also applied
3 135 the wavelet-based scaling analysis technique to the NTP trace.
2 The result is shown in Figure 4. The energy-scale plot of the
a 3 NTP trace clearly indicates that it is the incremental time se-
%" 125 ries of an asymptotically self-similar process. This analysis
12} confirms the conclusion obtained in one study [10] which uses
s , , , , , the variance-time plot to investigate NTP traces. So, we may
0 2 4 6 8 10 12 conclude that the scaling behavior observed in the ping traces
Scale can also be observed in delay traces measured from the appli-
cation layer.

Figure 2: Scaling analyses of both the re-shuffled and modi-

fied version of trace aping 1sec. au_ntp_ 74sec

N
~

N
w
N
)

The above experiments help us conclude that, with a care-
fully chosen wavelet, the white noise like process (such as the
re-shuffled traceX ;) even with strong deterministic trends can
not fake a false scaling behavior to confuse the analysis result.
So if the wavelet-based analysis really picks up some obvi-
ously scaling features, they must be caused by the underlying
random process. We believe that the wavelet-based analysis is
robust against the diurnal trends as long as they are smoothly Scale j
changing trends.

NN
o = N
NN

log2(Energy(j))

=
©

[
[e¢)

Figure 4: Scaling analysis of the NTP trace.

4 Wavelet-based Analyses of the Delays 2 multifractal Analysis of the Delay Traces

Traces Using the methodology proposed in [6], we took trace

auping.1sec and ulping 1sec as examples, calculated their
In this section we present the analysis results by applying tavelet-based partition functiofi(¢, j)'s respectively, and
wavelet-based techniques to the delay traces. their corresponding wavelet-based structure functdq).
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See the introduction of this technique in Section 3.3.

Figure 3: Scaling analyses of the nine ping traces.

makes the calculation of the structure functicfg) difficult
Figure 5 shows the results of applying the wavelet-basgdd ambiguous, which is normally computed for eadby a
multifractal analysis method to the two traces. We impldinear least-squares fit on the fine-scale portio§ @f, j), and

mented the algorithm in Matlab and took advantage of tlegjuals the slope of the linear fit. Despite this situation, we still
wavelet analysis package already developed in Matlab, whichlculated the-(¢) based on the portion of th&(g, j) in the
always takeg = 1 as the smallest scale index. In our casgcales ranging from 1 to 4, and showed the result in the mid-
j = 1is the smallest scale in th&(q, j) plots'. Examin- dle of Figure 5. As discussed in [6], if the underlying process
ing the scaling behavior of the partition functist{g,7) in is monofractaly(q) will behave like a linear function, where
small scales of the two traces in Figure 5 (left), we do nihe slope of the(g) is the scaling exponent equal to the Hurst
see well-defined scaling regions for largls. This situation parameter. But for a multifractal procesgg) will diverge
from a strict linear function. In order to help visually check

“We have adjusted the calculation of thég, j) accordingly, which be- the linearity of ther(g) plots, we calculated the local slope
comes . of 7(g), and identified the slope as The results are shown

S(a,5) =27 " d;
k

in Figure 5 (right). Thex functions clearly indicate that the
7(¢) functions are not linear, which suggest that the examined

where] = log, Ny, I, 1s e tofal umber ofthe DWT coeficen®s.i.  traces may be more multifractal in nature than monofractal.

the same meaning as in the scaling analysis. The purpose of adjusting
calculation ofS(g, 5) is simply to shift the scale indekin (9) fromj = —J
toj = 1. So, the validity of (10) is preserved with the Matlab’s wavelet
analysis package.



interval | _20ms _1sec _Imin

ar_ping | 1.05£0.03 | 0.84 £0.03 | 0.72 £ 0.05
auping | 0.97+0.03 | 0.76 £0.03 | 0.78 +0.05
uk ping | 1.20 £0.03 | 0.63 +£0.03 | 0.54 +£0.05

Table 2: Hurst parametef$ for the ping traces
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0 20 0.9
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Figure 5: Multifractal analyses of trace_ping 1sec and ulping 1sec.
5 Crossover C,(t) has the form

Cy(t) ~ t7, (12)
Since the values of H in Table 2 for trace@ng 20ms and
uk_ping20ms are> 1.0, we began to suspect that in thesWhereH is the Hurst parameter of the signal. In practice, in
two cases modeling the delay traces as the fractional Galigny case (12) only holds within certain scalestobr in
sian noises may be incorrect. By directly modeling a del&fher words, the scaling behavior &f(t) described by (12)
trace as a fBm, we found thgossovephenomena. CrossoveriS only valid in a regime bounded by lower and upper corre-
simply means here that the characteristics of delay time sef@on lengths ag™ < t < ¢*. In this case we would say
changes from fractional Gaussian noise to fBm when the sathtt) is a self-similar (or precisely self-affine) signal with an
pling interval decreases to a certain limit. In this section winer cutoff scaleg™ and anouter cutoff scal™. By plot-

first introduce the techniques we used in conducting the stu#}d 10g C2(t) againstlog(t), we can estimate the Hurst ex-
and then show the analysis results. ponentH for X (t). Also, by examining the scaling behavior

of log C>(t), we can find the inner cutoff scale and the outer

5.1 Height Difference Correlation Function ¢/ seale o ()

One of the most robust and direct approaches to characteriz®  Crossover Analysis and Anti-persistence

the self-similar curves (or signals) is by defining theight

difference correlation functionss Figure 6 shows the results of applying the height differ-

ence correlation function method to trace_pamg 20ms,

Cy(t) = {E[(&X(t))q]}% ={E[(X(to +t) — X(tg))q]}% auping-20ms, and ulping 20ms. Surprisingly all the plots
(11) show a piecewise linear relationship betwéegC,(t) and

where X (t) is a fractal curve or signal and usuadly= 2. It log(t), which suggest that the delay traces under question are

has been shown [12] that for a self-similar signal (e.g., fBm3elf-similar time series (modeled by fBm) with outer cutoff



scale. In Figure 6 we can easily identify the break points w1 On the Reason of Crossover and Anti-
thelog C5(t) vs. log(t) plots. These break points correspond persistence

to the cutoff scales, where = 1.5s, 1.5s, and100ms sep- .
arately for each trace. From each plot we can estimate thborder to understand why the delay trace shows an anti-
Hurst exponents based on the portions of the plot before digfSistence, self-similar nature in small-scale, while a LRD

after the break point. The values are listed in Table 3. noise nature in large-scale, we use an analog to explain the
gason. Hurst, who pioneered LRD phenomena, spent his life-

In Table 3 we see that the Hurst exponents of all three tra . .
have big step-style changes before and after the first br ime studying the Nile and the problems related to water stor-

points. Before the break points, the three traces all hav e [7]. He found in the case of a reservoir that the volume of

Hurst exponent in the range 6f< H < 0.5, which suggests .he water stored in the reservdir(t), which is decided by the

the three traces can be characterized by self-similar time grg[ux §(t) and the discharge flod(t) as

rieses(e.g. modeled by fBm) with the break points as the outer t
cutoff scales. The inner cutoff scales remain an open question. X(t) = /
After the break point, the three traces all have a Hurst expo-

nentH = 0.0, which means that if we take a sub-trace frOfo the reservoir was never emptied' Hurst fouﬁdt) Showing
an original trace with an interval between the two consecy-self-similar nature with & > 0.5. The reason for this is be-
tive samples in the sub-trace larger than the break point (Ri/ed to be that there exists a long “memory” in the inffiix)
the cutoff scale) of the original trace, then we will see a motsyer time. The influx of a reservoir is not simply determined
noise-like time series. So a delay time series with a sampligg the recent average precipitation, but by the water content
interval smaller than the break point of an end-to-end Intgf 3 large drainage area. The precipitation is first stored in the
net path, can be modeled by a self-similar process (e.g., fBgtainage area by many means. The large drainage area serves
with an outer cutoff scale equal to the break point. If the sargs a long memory filter to the rainfall, and the influx of the
pling interval is larger than the break point, the delay trace cagservoir is the output of the filter. A reservoir can serve as a
then be modeled by an LRD process (e.g., fractional Gaussjdtfect model for a node in Internet: The influx to a reservoir
noise) which is an incremental process of a self-similar preorresponds to the incoming traffic to a node, the discharge
cess. The changing nature of the delay trace around the brgal; of a reservoir corresponds to the output traffic served by
pointis referred as therossovephenomena. a node, the volume of water stored in a reservoir corresponds
Since a delay trace with a small sampling interval can itsatf the queue length in a node. So, if the incoming traffic has
be modeled by a self-similar process, it implies that the delaylong memory, such as a LRD traffic, then it is not surpris-
jitter time series derived from the delay trace can be modelied that the queue length is self-similar in the small-time scale
by a LRD process (e.g. fractional Gaussian process) wittdaring which the queue in a node has less chance to be com-
Hurst parameter equal to the Hurst exponent of the delay tragketely drained. This analog helps us understanding why the
From Table 3 we see that all the Hurst exponents are less tliatay traces with a small sampling interval can be modeled by
0.5, suggesting that the derived delay jitter time series are alself-similar process.
anti-persistence LRD processes (with < 0.5, the value of  This analogy also suggests that the crossover is mainly
the correlation function of a fractional Gaussian noise will beaused by the events of queue empty and queue overflow.
< 0; see (3)). The physical meaning of the anti-persistencevithen these events happen, the reservoir model is broken, so
that, if the delay jitter in the past are positive, then the deldlye exactly self-similar nature of the queue length is disre-
jitter in the future trend to be negative, and vice versa. Thigrded. This explains the crossover in the delay traces. When
further implies that, if the delays increase in the past, then thedelay trace has a sampling interval larger than the cutoff
delays will trend to decrease in the future. scale where the crossover occurs, the Internet node’s reservoir-
behavior will have little effect on the dynamics of the delay
trace. The dynamics of the delay trace will be determined di-
. . rectly by the large scale, low frequency dynamics of incomin
6 Discussion traffi)é. Yl'he incgming traffic is v(\jell—kn)é)w)rlw to be LRD. This :
can explain why the delay trace with a large sampling interval,
The results in the previous sections provide a new and ieven as large as 1 min, still shows the LRD nature.
proved understanding of the Internet packet delay dynam-n the case of the reservoir, the water volume shows a per-
ics. But, these results also raise fundamental questions ligistence self-similar, but in the case of the Internet node, the
“Why the delay dynamics has a crossover” and “Why the antjueue length shows an anti-persistence self-similar. We be-
persistence exists in the delay dynamics”. In this section Wweve the reason for this is that, in the case of a reservoir, there
present our preliminary thoughts on these questions, and désno feedback mechanism to control the precipitation based
cuss some issues related to traffic modeling, networking piam the volume of water in the reservoir. But, in the case of In-
tocol design, monitor and diagnosis. ternet node, the incoming traffic is controlled by feedback via

(&) — 6(t))dt (13)

oo



break point ar_ping20ms | auping20ms| uk_ping20ms
before 0.05 0.00 0.07
after 0.23 0.18 0.37

Table 3: Hurst parametef$ around the break points of the ping traces

ar_ping_20ms au_ping_20ms uk_ping_20ms
-1 -1.4 -1.2
-1.1 -15 -1.3
S .12 S -16 S-14
e e e
S S S
8-13 8-17 8-15
-1.4 -1.8 -1.6
-15 -1.9 -1.7
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
log 10(t) (sec) log 10(t) (sec) log 10(t) (sec)

Figure 6: Height difference correlation function analyses of tragarag 20ms (a), alping_20ms (b), ukping 20ms (c).

the transport layer. TCP uses a window flow control mech@:3 Outlook

nism to regulate traffic. The window is shifted by acks which

are paced by the round-trip delays, and essentially pacedie findings of crossover and anti-persistence not only can im-
the queue lengths of the nodes in the path. So the feedbpgve our understandings about the current Internet dynamics,
flow control features of transport protocols are very impoput also can be used in many aspects of network engineering.
tant to network performance, it is the fundamental reason f@he direct application of our findings is the prediction of de-
the anti-persistence in today’s Internet delay traces. The amily and delay jitter for Internet protocols and real-time appli-
persistence in the delay trace is a good indication that the cgitions. Since the height difference correlation function of a
rent Internet is working toward a stable state. delay trace has a break point, after the break point the function
becomes flat (see Figure 6). Here, the so called “height differ-
. . ence” is actually the delay jitter of two delays separated by the
6.2 Implications on the Traffic Model correlation lag time. The fact that the height difference corre-
We think that the scaling behavior of WAN traffic in smallJation function becomes flat implies the standard deviation of

time scales should be disciplined and reflected by the scaltf§ delay jitter between any two delays has an upper bound-
behavior of the delay traces. With TCP as an example, R&/- We need to investigate how robust the upper boundary is.
know that it uses acks pacing the traffic, which is referred Hdlt is robust against the time of day, the upper boundary of
self-clocking The incoming process (or the inter-arrival prothe standard deviation of the delay jitter will be very impor-
cess) of acks is essentially modulated by the delay jitter pfgt to the designs of the protocols and applications running
cess with a sampling interval corresponding to the round-t/@3 the Internet. It opens a new opportunity to refine the de-
delay. It seems that the round-trip delay of a path is still with#gY Prediction algorithms implemented by many protocols and
the cutoff time scale of that path, so the incoming process &#plications. More study needs to be done in this area.
acks must be a fractal-like process, which means TCP uses # seems a simple ping trace can tell us more than we
clock ticking in a fractal way to strobe new packets into thghnought previously. But, we need further understand what as-
network. So the dynamics of TCP traffic in small-time scalgects of the network decide the location of the break point, the
is determined by #ractal-clock This fractal-clock presented Hurst exponent, and the boundary of the height difference cor-
may explain the scaling behavior and multifractality observedlation function. We think all these parameters depend on the
in the WAN traffic in small-time scales. network state, workload pattern, loss rate, total buffer storage
The delay jitter process actually reflects the changing nand the bottleneck bandwidth of a path. The height difference
ture of Internet workload [2], since the delay jitter process @orrelation function can servers as a kind of fingerprint for a
anti-persistent and the anti-persistence phenomena is rolmah. By analyzing the height difference correlation function
in delay traces. We predict that the WAN traffic dynamickased on the ping traces, network administrators can under-
in small-time scale is actually anti-persistent, too. So, antitand more about the network state. Further study is needed to
persistence may be another network traffic invariant. This pmelate the network aspects to the parameters of height differ-
diction needs to be confirmed by future study. ence correlation functions.



The anti-persistence shown in the delay traces suggest tig A. Feldmann, A. C. Gilbert, and W. Willinger. Data net-
network is under control. But it raises a question:"Does there works as cascades: Investigating the multifractal nature

exist an optimum control point?” 1 = 0.5, the network of internet wan traffic. InProceedings of ACM SIG-
has no control, the delays in small-time scale behave like a COMM’'98, pages 42-55, Vancouver, British Columbia,
Brownian motion but if H = 0, the network is either over Canada, September 1998.

controlled, or the load in a path is too light to supporta fBmin o

the nodes. In the case of over control, the network must haJg] H- E. Hurst, R. P. Black, and Y. M. Simaikal.ong-
enforced a harsh policy on the upper bound of the standard €M storage: an experimental studgonstable, Lon-
deviation of the delay jitter. For a network provides best-effort don, 1965.

services, there may be a reasonable range offtivalue. S0 g v/ Jacobson. congestion avoidance and controPrio

how to judge the network’s performance in the macroscopic ceedings of ACM SIGCOMM'8pages 314—329, Stan-
level based on the H value is an interesting topic. ford. CA. 1988. ’

. [9] W. E. Leland, M. S. Taqqu, and D. V. Wilson. On

7 Conclusions the self-similar nature of ethernet traffic (extended ver-
sion). IEEE/ACM Transactions on Networking(1):1—

The long-range dependence (LRD) nature of Internet end-to- 15, February 1994.

end packet delay dynamics was confirmed by this study. B , .

using the wavelet-based scaling analysis technique, partitlglq] Q. Liand D. L. Mills. On the long-range dependence

function method and the height different correlation function ~ ©Of Packet round-trip delays in internet. Rroceedings

method, we conducted an extensive investigation on the dy- ©f IEEE 1CC'98 volume 2, pages 1185-1191, Atlanta,

namic properties of packet delay traces measured using ICMP GA, 1998.

ping and NTP. Our main observations are: (i) the scalingangj} g g, Mandelbrot and J. W. Van Ness. Fractional brow-
ysis shows a very complicated scaling behavior of the de- " .. motions, fractional noises and applicatio®AM
lay traces and demonstrates that the LRD nature of the delay Review 10(4):422—437, October 1968.

traces is robust, even for traces with sampling interval as large

as 1 min; (ii) some delay traces show possible multifractalifyg,2] P. Meakin.Fractal, scaling and growth far from equilib-
(ii)a delay trace with a large sampling interval can be modeled rium. Cambridge University Press, 1998.

as an LRD noise-like time series, while with a small samplin
interval a trace should better be modeled as a self-similar ti - , =t
series with an outer cutoff time scale. The changing of the ~time protocol. IEEE Transactions on Communication
nature of the delay traces is referred to as crossover; (iv) by 39(1):1482-1493, 1991.

applying the height difference correlation function method t[(i4] A. Mukherjee. On the dynamics and significance of low
the delay traces with small sampling interval, we found the frequency components of internet loddternetworking:
anti-persistence phenomena, which suggests that the current oqearch and experiencs:163-205, 1994.

Internet is working in a controlled state.
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