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Abstract

Relying on the wavelet-based time-scale analysis techniques and
a so called height difference correlation function method, we
studied the dynamics of the delay traces measured in the Inter-
net with sampling interval ranging from 20 ms to 1 min. Scaling
analyses showed that the delay traces have a complicated scaling
behavior changing with both the time scales and the sampling in-
tervals. A significant observation of our research was that the
nature of the delay traces changes from a LRD noise-like time se-
ries (e.g., fractional Brownian noise) to a self-similar one with an
outer cutoff scale when the sampling intervals decrease (we refer
this as crossover). It turns out that the delay jitter time series
derived from a sampled delay trace with small sampling interval
is LRD noise with a Hurst parameterH < 0:5 (anti-persistence),
indicating that the current Internet works in a controlled state.
We also used a wavelet-based partition function method to inves-
tigate the possible multifractality of the delay traces. We ana-
lyzed the underlying physical mechanisms of the observed scal-
ing behavior, crossover and anti-persistence, and discussed the
implications of our findings on several aspects of networking en-
gineering.

1 Introduction

Among the many aspects of the Internet dynamics [15], end-
to-end packet delay dynamics plays an important role in char-
acterizing the end-to-end behavior. There are several reasons
for studying the end-to-end delay dynamics. First, the trans-
port layer protocols such as TCP, rely on measuring end-to-
end delay as a feedback mechanism to do flow control [8].
Better understanding about the delay dynamics, especially in
a small time scale, will provide clues and guidelines to design
and tune the protocols to achieve a better performance. Sec-
ondly, the Internet moving on to provide more real-time, in-
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teractive multimedia services. Many of them may have strict
requirements on the quality of service (QoS) which is quan-
titatively measured by throughput, loss rate, delay and delay
jitter. Understanding and modeling the end-to-end delay are
essential to predicting the viability of the real-time services on
the Internet.

Third, The possibility of building a realistic traffic model for
simulation study depends on how well the characteristics of
the traffic (include LANs and WANs) being understood. Re-
cent researches [9, 16, 6] have empirically demonstrated the
self-similarity characteristic of LAN traffic and the multifrac-
tal nature of Internet WAN traffic. A type of structural models
taking into account specific features of the underlying network
structure and hence providing a physical explanation for the
observed scaling phenomena have been proposed [18]. These
approaches reflect a source-centered view of traffic modeling,
ignoring the interaction between the source and the network
side, such as in the case of TCP connection, the sender would
adjust the sending rate based on the current conditions of the
network. The multifractal nature of the traffic found in the en-
vironment of WANs [6], especially in small-time scale, puz-
zles researchers with the question of the underlying physical
mechanism of the multifractality. A cascade traffic model [6],
viewing the aggregated traffic as multiplicative instead of ad-
ditive, can mathematically reconstruct the multifractality in
the WAN traffic traces, suggesting that the Internet protocol
stack hierarchy causes the multifractality. There is a common
agreement that the changing nature of the scaling phenomena
in small-time scale must be due to “real life” TCP dynamics,
specifically, the flow control mechanism, which implies that
the end-to-end delay dynamics naturally describe the WAN
traffic. So again, better understanding of the delay dynamics
can provide deep insight into the physical explanation which
would de-mystify the multifractality found in the WAN traffic.

Our research is closely related to the studies carried out in
[3, 10]. The study in [3] first explored the long-range depen-
dence (LRD) characteristics of the measured round-trip delay
time series. The study in [10] also found the LRD characteris-
tics of the round-trip delay time series measured by NTP. Due
to the non-stationary characteristics of the packet delay pro-



cess, the question arises about the conclusions drawn in the
studies: whether the LRD-like effects in the delay time series
is actually caused by the non-stationary process. Recently, a
wavelet-based tool for the analysis of long-range dependence
and a related semi-parametric estimator of the Hurst parameter
H — the intensity measurement of the LRD effect, was intro-
duced in [1]. The estimator was shown to be unbiased under
very general conditions, and efficient under Gaussian assump-
tions. The most desired feature of the estimator is that it is
highly robust against the presence of deterministic trends —
possible types of the non-stationarity.

In our research, we use the wavelet-based techniques to
study the scaling behavior of the measured delay traces. We
also use the wavelet-based multifractal analysis techniques
proposed in [6] to investigate the multifractal nature of the
delay traces. In order to observe the crossover phenomena,
we use another robust and direct technique calledheight dif-
ference correlation functionmethod used mostly in surface
science[12]. Using these tools we conduct an extensive study
on scaling behavior, and provide empirical evidences showing
the LRD nature and the possible multifractality of the delay
traces measured by ICMP ping and NTP. A significant obser-
vation of our research was that we observed a crossover phe-
nomena and an anti-persistence phenomena in the delay trace.

The rest of the paper is organized as follows. Section 2
gives a brief description on the measurements. In section 3, we
introduce the mathematical foundations of the wavelet-based
tools, and discuss issues related to non-stationarity. Section 4
presents the emperical results of the analyses. Section 5 intro-
duces the height difference correlation function method, and
illustrates the crossover phenomena, and the anti-persistence
discovered in the delay traces. In section 6 we use a reservoir
model to demonstrate the underlying physical mechanisms of
the crossover, anti-persistence and LRD of the delay traces,
and also discuss the implications of our findings on several is-
sues related to networking engineering. Our conclusions are
presented in section 7.

2 Measurements

We believe it is very important to study the packet delay dy-
namics in different time scales since a protocol or application
may only use a sampled delay time series from an underly-
ing random process, possibly not in a regular sampling basis.
All the data used in this paper are either measured by NTP
[13] or ICMP ping [17].There are some concerns that the ping
measurements may not realistically reflect the statistics of the
delays experienced by packets issued from a higher layer than
IP. NTP is built on top of UDP, so the purpose of using the
NTP measurements in our analysis is simply to generalize the
findings of this paper.

The NTP delay (file name auntp 74sec) trace used in this
paper were collected in September, 1996 by running NTP in a

machine in our Lab. This machine is configured to make mea-
surement with a primary NTP time server located in Australia.
For more detail about the experiment we refer reader to [10].
We run a ping program in the same machine in our lab. All
measurements were done in December, 1998. Table 1 gives a
qualitative description of the set of data.

We use the smallest ping packet (36 bytes: 20 bytes for IP
head, 8 bytes for ICMP head, and 8 bytes for the two times-
tamps) in our experiment in wish to minimumize the interfer-
ence to other users. In the original raw traces, some pings
were lost or came back out of order. If a ping was lost we do
noting for it . We sorted the raw traces to put every received
ping back to its sending order. Although there are some doubts
about ping’s fidelity to represent the packets finally going up
or down to the applications, We believe it serves the purpose
in this study.

3 Wavelet-based Analysis Techniques

In this section we give a brief introduction to the wavelet-
based techniques (for more detail, see [1, 6]), and discuss the
capability of the techniques to detrend the deterministic types
of non-stationarity. We start this section by introducing some
concepts we meet in this study.

3.1 Miscellaneous Concepts

If stochastic signalX(t) has a power-law spectra asf ! 0,
we callX(t) a1=f processor1=f noise. The spectra property
of a1=f process indicates a slowly-decaying correlation func-
tion, SoX(t) is a long-range dependenceprocess. A popular
model for a long-range dependence process is thefractional
Gaussian (or Brownian) noisederived from the so-calledfrac-
tional Brownian motion(in short fBm) process [11]. The
fBm is a non-stationary process with a property calledself-
similarity. LetBH(t) be a fBm process, andBH(0) = 0, then
the self-similarity can be expressed by:

BH(at)
d
= aHBH(t) (1)

for anya > 0, where
d
= denotes equality of finite-dimensional

distribution,H is called Hurst parameter, and0 < H < 1.
Self-similarity (more precisely, self-affinity) indicates that the
graph (t; BH(t)) remains statistically unchanged when the
time axis and the amplitude are simultaneously scaled by a
factora anda�H , respectively. Or, we say fBm has the same
scaling behavioron all time scales. We call the sample paths
of fBm the fractal curves, because if we calculate the frac-
tal dimension on these curves, we could get one, such as the
Hausdorff dimension [5], with valuedimH = 2�H .

The fractional Gaussian noisefGH;�(t), (t; �) 2 R�R+g
is the incremental process of fBm, defined by:

GH;�(t) =
1

�
(BH (t+ �)�BH(t)) (2)



Table 1: Qualitative description of the data measured by ping

File Name
Sampling
Interval

Measurements
Minimum De-
lay(ms) Loss rate Destination

ar ping 20ms 20ms 60000 413.2 13% Argentina
ar ping 1s 1s 180000 407.3 4.7% Argentina
ar ping 1min 1min 10000 589.1 3.5% Argentina
au ping 20ms 20ms 60000 445.8 0.65% Australia
au ping 1s 1s 180000 487.881 0.49% Australia
au ping 1min 1min 10000 421.3 2.0% Australia
uk ping 20ms 20ms 60000 124.4 6.46% England
uk ping 1s 1s 180000 123.3 0.79% England
uk ping 1min 1min 10000 124.3 0.97% England

whereGH;�(t)
d
= N (0; ��H�1)1. With time lags large

enough, Fractional Gaussian noise has a correlation function
as the following,

E[GH;�(t+ �)GH;�(t)] � �2H(2H � 1)j� j2H�2 (3)

and a1=f power spectrum density at low frequencies, as:

�BH;�
(�) � j�j1�2H ; 0 < j�j � ��1: (4)

so whenj�j ! 0, �BH;�
(�)!1.

In reality, the stochastic description of physical
phynomenon are rarely exactly self-similar, i.e., (1) holds for
all time scales (or for anya > 0) with a constantH . Usually,
with a constantH , (1) only holds for some range of time
scales between inner and outer cutoff time scales. Very often,
we could find that (1) only holds piecewise in small ranges of
a with different constantHs. In this case we need to check if
this random process has amultifractal nature.

3.2 Discrete Wavelet Transform and Scaling
Analysis

Discrete Wavelet Transform (DWT) is a signal analysis
tool [4]. There exists a function 0, called themother
wavelet, where a set of base functions can be derived from
the scaled and shifted versions of 0, such asf j;k(t) =
2�j=2 0(2

�jt�k); (j; k) 2 Zg. Using discrete wavelet anal-
ysis,X(t) can be decomposed as the follow:

X(t) =
X
j

X
k

dX(j; k) j;k(t) (5)

WheredX (j; k) can be computed by drivingX(t) through
a fast recursive filter-bank-based pyramidal algorithm. The
mapping fromX(t) to the set of coefficientsdX(j; k) is the
DWT.

Decomposition can be stopped at any stageJ > 0 by using
an approximation ofX(t) at scale2J to collectively represent

1N (m;�) denotes a normal law with meanm and variance�2.

the sum of the left wavelet decomposition terms; namely, (5)
can be rewritten as:

X(t) = approxJ (t) +

JX
j=1

detailj(t)

=
X
k

aX(J; k)�J;k(t) +
JX

j=�1

X
k

dX (j; k) j;k(t) (6)

where�J;k(t) is called thescaling function, which is de-
rived from a base function�0(t) by the templatesf�j;k(t) =
2�j=2�0(2

�jt � k); (j; k) 2 Zg. Equation 6 is called the
multi-resolution analysis (MRA) ofX(t). Both �0(t) and
 0(t) are not arbitrary; their constructions are based on cer-
tain rules, which require that 0(t) has at least one vanishing
moment; i.e.,

Z +1

�1

tm 0(t)dt = 0; m = 0; 1; :::;M � 1; (7)

whereM > 0. Compactly supported wavelets withM van-
ishing moments and a support domain equal to the interval
[�(M � 1);M ] were provided in [4]. The higher the order of
the vanishing moments of the wavelet, the better its detrending
capability when used in the long-range dependence analysis.

It is shown in [1] that, ifX(t) is the incremental process of a
self-similar process2 with Hurst parameterH 2 (0:5; 1), then
the expectation of the energyEj that lies within a given2�j

scale around frequency2�j�0 (�0 is a reference frequency
which depends on the wavelet 0(t)) is given by

E[Ej ] = E[
1

Nj

X
k

jdj;kj
2] = cj2�j�0j

1�2H ]; (8)

wherec is a prefactor that does not depend onj, andNj is
the number of wavelet coefficients at scalej. By plotting
log2Ej againstj (in practice,j = 1 is the finest scale and

2In many studies,X(t) is directly considered self-similar. In our study
we need to differenciate the concept of being self-simialr (e.g. fBm) from
that of being the incremental process of a self-similar process (e.g. fractional
Gaussian noise).



j = blog2(length(X(t))c is the coarsest), we can see that
for the incremental process of an exactly self-similar process,
it will yield a linear fit, and for a white noise process the fit
line will be horizontal. If we can not fit the plot by a line
for all time scales, that means the underlying process is not
the incremental process of an exactly self-similar process. It
demonstrates a more complicated scaling behavior. If the lin-
ear relationship betweenlog2Ej and scalej hold for large
time scales, it suggests the incremental process of an asymp-
totically self-similar process. Performing a least-squares fit on
the linear portion of the energy-scale plot3, we can estimate
the Hurst parameter H, so the scaling analysis also serves as
an H estimator.

3.3 Multifractal Analysis

The distinction betweenmultifractal andmonofractalcan be
clarified by the follow informal definition [6]:X(t) is a ran-
dom signal, we say thatX(t) has a local scaling exponent
�(t0) at timet0 if X(t) behaves like(�t)�(t0) in an interval
[t0; t0+�t] of length�t att0 as�t! 0. Informally,X(t) with
�(t0) = H < 1 at all instantst0 is called monofractal (and in-
cludes the incremental process of an exactly self-similar pro-
cess), whileX(t) with non-constant scaling exponent�(t0)
called multifractal.

A wavelet-based multifractal analysis technique is proposed
in [6]. It is shown that, ifX(t) has a local scaling ex-
ponent�(t0) at t0, then for large negativej-values (small
scales), the wavelet coefficients affected byX(t0) behave like
dj;k(t0; j) � 2j(�(t0)+1=2) [4], where for two functionsf and
g, f(j) � g(j) means thatlimj!�1 f(j)=g(j) = const..
The core of the technique is first to construct the so called
wavelet-basedpartition functionS(q; j) as

S(q; j) =
X
k

j ~dj;kj
q ; (9)

where ~dj;k = 2�j=2dj;k, the normalized wavelet coefficient.
It can be shown thatS(q; j) � 2�j(1��q) for the case of a
monofractal signal with a constant scaling exponent�. Then
it defines astructure function�(q) as the scaling exponent of
S(q; j), asj ! �1 for a general case, we wish that the par-
tition function would behave likeS(q; j) � 2j�(q), that is,

�(q) = lim
j!�1

logS(q; j)

j log 2
(10)

For a monofractal signal�(q) = �q � 1 (or Hq � 1), �(q)
changes linearly withq. In the multifractal case,�(q) is no
longer linear inq but instead a concave function ofq.

3.4 Robustness of the Wavelet-based Analyses

If delay traces span over hours or days it may raise a question
whether or not the LRD-like effect revealed by certain statis-

3In this study we call thelog2 Ej vs. j plot as the energy-scale plot.

Figure 1: Periodogram of trace arping 1sec.

tical techniques is actually caused by non-stationarity in the
delay process. We address this question by two steps.

First, in Figure 1 we draw the periodogram of trace
ar ping 1sec, that is

IX(!) = (2�n)�1j
X
j

Xje
ij! j2; 0 � ! � �:

The expected value ofIX (!), which is the spectral density of
the trace, is obviously different from that of a white noise pro-
cess, which would take the dashed line shown in the log-log
scale figure as its expectation value. That the spectral den-
sity obeys a power-law near the origin suggests a possible1=f
process.

Secondly, if the diurnal changing pattern can be modeled
by several low frequency components[14], then the wavelet-
based techniques can perfectly suppress the low frequency di-
urnal changing pattern disturbing the scaling analysis results.
To prove this, we add several low frequency components to the
re-shuffled version of trace arping 1sec. After completely re-
shuffling, the reshuffled trace is simply a white noise with the
same first order statistics as the original trace. The modified
trace after adding the diurnal components looks like

X
0

j = Xj +
X

4

4X
i=1

sin(
2�ij

n
);

whereXj is the re-shuffled time series,X is the mean ofXj ,
andn is the length of the trace. Then, we can use the wavelet-
based scaling analysis technique implemented in Matlab to ex-
plore the scaling behaviors of both the re-shuffled traceXj and
the modified traceX

0

j . We find that, with a Daubechies2 [4]
wavelet (which has a vanish moment N = 2), the technique
can not completely suppress the sinusoidal components. But,
changing to a Daubechies4 wavelet (N = 4), the technique
can perfectly suppress the sinusoidal components, so it can
detrend the artificial non-stationarity and reveal a scaling be-
havior similar to that of the re-shuffled trace. The results are
shown in Figure 2. It is not surprising to find that both of
them are horizontal, implying a Hurst parameterH = 0:5.



Generally, with a larger N, the wavelet would have a better
suppressing ability, so the detrending ability of the scaling
analysis technique. Besides the detrending capability we dis-
cuss here, the wavelet-based technique can actually suppress
a broader range of deterministic trends such as linear trends,
polynomial trends and arbitrary smooth trends[1, 4]. Through-
out this study we choose the Daubechies4 wavelet to detrend
the diurnal changing pattern presented in the delay traces.
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Figure 2: Scaling analyses of both the re-shuffled and modi-
fied version of trace arping 1sec.

The above experiments help us conclude that, with a care-
fully chosen wavelet, the white noise like process (such as the
re-shuffled traceXj) even with strong deterministic trends can
not fake a false scaling behavior to confuse the analysis result.
So if the wavelet-based analysis really picks up some obvi-
ously scaling features, they must be caused by the underlying
random process. We believe that the wavelet-based analysis is
robust against the diurnal trends as long as they are smoothly
changing trends.

4 Wavelet-based Analyses of the Delay
Traces

In this section we present the analysis results by applying the
wavelet-based techniques to the delay traces.

4.1 Scaling Analysis of the Delay Traces

We investigated the nine ping traces and the NTP trace. Fig-
ure 3 shows the scaling analysis results of the nine ping traces.
Visually, all the nine energy-scale plots show increasing trends
against scales, which suggest some kind of long-range depen-
dence phenomena exist in the traces. Roughly speaking, traces
ar ping 20ms, arping 1sec, and ukping 20ms may be char-
acterized as the incremental time series of self-similar pro-
cess, and traces auping 1sec and ukping 1sec the incremen-
tal time series of asymptotically self-similar process. Trace
au ping 20ms, arping 1min, and auping 1min show strong
long-range dependency, but hard to fit into either category.
Trace ukping 1min shows a very weak long-range depen-
dence, so we may treat it as a white noise. Obviously, several
of the energy-scale plots do not show a strict linear relation-
ship betweenlog2 Ej andj in ranges of either large or small
scales, implying a more complicated underlying process. Ta-
ble 2 gives the estimated Hurst parameter calculated by using
a weighted least-squares fit on the roughly linear portions of
the energy-scale plots. Generally,H decreases as the sampling
interval of a trace increases.

For the purpose of comparison and generalizing the results
of scaling behavior found in the ping traces, we also applied
the wavelet-based scaling analysis technique to the NTP trace.
The result is shown in Figure 4. The energy-scale plot of the
NTP trace clearly indicates that it is the incremental time se-
ries of an asymptotically self-similar process. This analysis
confirms the conclusion obtained in one study [10] which uses
the variance-time plot to investigate NTP traces. So, we may
conclude that the scaling behavior observed in the ping traces
can also be observed in delay traces measured from the appli-
cation layer.
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Figure 4: Scaling analysis of the NTP trace.

4.2 Multifractal Analysis of the Delay Traces

Using the methodology proposed in [6], we took trace
au ping 1sec and ukping 1sec as examples, calculated their
wavelet-based partition functionS(q; j)’s respectively, and
their corresponding wavelet-based structure function�(q).
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Figure 3: Scaling analyses of the nine ping traces.

See the introduction of this technique in Section 3.3.
Figure 5 shows the results of applying the wavelet-based

multifractal analysis method to the two traces. We imple-
mented the algorithm in Matlab and took advantage of the
wavelet analysis package already developed in Matlab, which
always takesj = 1 as the smallest scale index. In our case
j = 1 is the smallest scale in theS(q; j) plots4. Examin-
ing the scaling behavior of the partition functionS(q; j) in
small scales of the two traces in Figure 5 (left), we do not
see well-defined scaling regions for largeq’s. This situation

4We have adjusted the calculation of theS(q; j) accordingly, which be-
comes

S(q; j) = 2�(J+1)
X
k

j ~dj;kj
q;

whereJ = log2Nj , Nj is the total number of the DWT coefficientsdj;k,
the same meaning as in the scaling analysis. The purpose of adjusting the
calculation ofS(q; j) is simply to shift the scale indexj in (9) from j = �J
to j = 1. So, the validity of (10) is preserved with the Matlab’s wavelet
analysis package.

makes the calculation of the structure function�(q) difficult
and ambiguous, which is normally computed for eachq by a
linear least-squares fit on the fine-scale portion ofS(q; j), and
equals the slope of the linear fit. Despite this situation, we still
calculated the�(q) based on the portion of theS(q; j) in the
scales ranging from 1 to 4, and showed the result in the mid-
dle of Figure 5. As discussed in [6], if the underlying process
is monofractal,�(q) will behave like a linear function, where
the slope of the�(q) is the scaling exponent equal to the Hurst
parameter. But for a multifractal process,�(q) will diverge
from a strict linear function. In order to help visually check
the linearity of the�(q) plots, we calculated the local slope
of �(q), and identified the slope as�. The results are shown
in Figure 5 (right). The� functions clearly indicate that the
�(q) functions are not linear, which suggest that the examined
traces may be more multifractal in nature than monofractal.



interval 20ms 1sec 1min
ar ping 1:05� 0:03 0:84� 0:03 0:72� 0:05
au ping 0:97� 0:03 0:76� 0:03 0:78� 0:05
uk ping 1:20� 0:03 0:63� 0:03 0:54� 0:05

Table 2: Hurst parametersH for the ping traces
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Figure 5: Multifractal analyses of trace auping 1sec and ukping 1sec.

5 Crossover

Since the values of H in Table 2 for trace arping 20ms and
uk ping 20ms are> 1:0, we began to suspect that in these
two cases modeling the delay traces as the fractional Gaus-
sian noises may be incorrect. By directly modeling a delay
trace as a fBm, we found thecrossoverphenomena. Crossover
simply means here that the characteristics of delay time series
changes from fractional Gaussian noise to fBm when the sam-
pling interval decreases to a certain limit. In this section we
first introduce the techniques we used in conducting the study
and then show the analysis results.

5.1 Height Difference Correlation Function

One of the most robust and direct approaches to characterizing
the self-similar curves (or signals) is by defining theheight
difference correlation functionsas

Cq(t) = fE[(�X(t))q]g
1

q = fE[(X(t0 + t)�X(t0))
q ]g

1

q

(11)
whereX(t) is a fractal curve or signal and usuallyq = 2. It
has been shown [12] that for a self-similar signal (e.g., fBm),

Cq(t) has the form
Cq(t) � t

H ; (12)

whereH is the Hurst parameter of the signal. In practice, in
many case (12) only holds within certain scales oft, or in
other words, the scaling behavior ofX(t) described by (12)
is only valid in a regime bounded by lower and upper corre-
lation lengths as�� < t < �+. In this case we would say
X(t) is a self-similar (or precisely self-affine) signal with an
inner cutoff scale�� and anouter cutoff scale�+. By plot-
ting logC2(t) againstlog(t), we can estimate the Hurst ex-
ponentH for X(t). Also, by examining the scaling behavior
of logC2(t), we can find the inner cutoff scale and the outer
cutoff scale ofX(t).

5.2 Crossover Analysis and Anti-persistence

Figure 6 shows the results of applying the height differ-
ence correlation function method to trace arping 20ms,
au ping 20ms, and ukping 20ms. Surprisingly all the plots
show a piecewise linear relationship betweenlogC2(t) and
log(t), which suggest that the delay traces under question are
self-similar time series (modeled by fBm) with outer cutoff



scale. In Figure 6 we can easily identify the break points on
the logC2(t) vs. log(t) plots. These break points correspond
to the cutoff scales, wheret = 1:5s, 1:5s, and100ms sep-
arately for each trace. From each plot we can estimate two
Hurst exponents based on the portions of the plot before and
after the break point. The values are listed in Table 3.

In Table 3 we see that the Hurst exponents of all three traces
have big step-style changes before and after the first break
points. Before the break points, the three traces all have a
Hurst exponent in the range of0 < H < 0:5, which suggests
the three traces can be characterized by self-similar time se-
rieses(e.g. modeled by fBm) with the break points as the outer
cutoff scales. The inner cutoff scales remain an open question.
After the break point, the three traces all have a Hurst expo-
nentH � 0:0, which means that if we take a sub-trace from
an original trace with an interval between the two consecu-
tive samples in the sub-trace larger than the break point (or
the cutoff scale) of the original trace, then we will see a more
noise-like time series. So a delay time series with a sampling
interval smaller than the break point of an end-to-end Inter-
net path, can be modeled by a self-similar process (e.g., fBm)
with an outer cutoff scale equal to the break point. If the sam-
pling interval is larger than the break point, the delay trace can
then be modeled by an LRD process (e.g., fractional Gaussian
noise) which is an incremental process of a self-similar pro-
cess. The changing nature of the delay trace around the break
point is referred as thecrossoverphenomena.

Since a delay trace with a small sampling interval can itself
be modeled by a self-similar process, it implies that the delay
jitter time series derived from the delay trace can be modeled
by a LRD process (e.g. fractional Gaussian process) with a
Hurst parameter equal to the Hurst exponent of the delay trace.
From Table 3 we see that all the Hurst exponents are less than
0.5, suggesting that the derived delay jitter time series are all
anti-persistence LRD processes (withH < 0:5, the value of
the correlation function of a fractional Gaussian noise will be
< 0; see (3)). The physical meaning of the anti-persistence is
that, if the delay jitter in the past are positive, then the delay
jitter in the future trend to be negative, and vice versa. This
further implies that, if the delays increase in the past, then the
delays will trend to decrease in the future.

6 Discussion

The results in the previous sections provide a new and im-
proved understanding of the Internet packet delay dynam-
ics. But, these results also raise fundamental questions like:
“Why the delay dynamics has a crossover” and “Why the anti-
persistence exists in the delay dynamics”. In this section we
present our preliminary thoughts on these questions, and dis-
cuss some issues related to traffic modeling, networking pro-
tocol design, monitor and diagnosis.

6.1 On the Reason of Crossover and Anti-
persistence

In order to understand why the delay trace shows an anti-
persistence, self-similar nature in small-scale, while a LRD
noise nature in large-scale, we use an analog to explain the
reason. Hurst, who pioneered LRD phenomena, spent his life-
time studying the Nile and the problems related to water stor-
age [7]. He found in the case of a reservoir that the volume of
the water stored in the reservoirX(t), which is decided by the
influx �(t) and the discharge flow�(t) as

X(t) =

Z t

�1

(�(t)� �(t))dt (13)

If the reservoir was never emptied, Hurst foundX(t) showing
a self-similar nature with aH > 0:5. The reason for this is be-
lieved to be that there exists a long “memory” in the influx�(t)
over time. The influx of a reservoir is not simply determined
by the recent average precipitation, but by the water content
in a large drainage area. The precipitation is first stored in the
drainage area by many means. The large drainage area serves
as a long memory filter to the rainfall, and the influx of the
reservoir is the output of the filter. A reservoir can serve as a
perfect model for a node in Internet: The influx to a reservoir
corresponds to the incoming traffic to a node, the discharge
flow of a reservoir corresponds to the output traffic served by
a node, the volume of water stored in a reservoir corresponds
to the queue length in a node. So, if the incoming traffic has
a long memory, such as a LRD traffic, then it is not surpris-
ing that the queue length is self-similar in the small-time scale
during which the queue in a node has less chance to be com-
pletely drained. This analog helps us understanding why the
delay traces with a small sampling interval can be modeled by
a self-similar process.

This analogy also suggests that the crossover is mainly
caused by the events of queue empty and queue overflow.
When these events happen, the reservoir model is broken, so
the exactly self-similar nature of the queue length is disre-
garded. This explains the crossover in the delay traces. When
a delay trace has a sampling interval larger than the cutoff
scale where the crossover occurs, the Internet node’s reservoir-
behavior will have little effect on the dynamics of the delay
trace. The dynamics of the delay trace will be determined di-
rectly by the large scale, low frequency dynamics of incoming
traffic. The incoming traffic is well-known to be LRD. This
can explain why the delay trace with a large sampling interval,
even as large as 1 min, still shows the LRD nature.

In the case of the reservoir, the water volume shows a per-
sistence self-similar, but in the case of the Internet node, the
queue length shows an anti-persistence self-similar. We be-
lieve the reason for this is that, in the case of a reservoir, there
is no feedback mechanism to control the precipitation based
on the volume of water in the reservoir. But, in the case of In-
ternet node, the incoming traffic is controlled by feedback via



break point ar ping 20ms au ping 20ms uk ping 20ms
before 0.05 0.00 0.07
after 0.23 0.18 0.37

Table 3: Hurst parametersH around the break points of the ping traces
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Figure 6: Height difference correlation function analyses of trace arping 20ms (a), auping 20ms (b), ukping 20ms (c).

the transport layer. TCP uses a window flow control mecha-
nism to regulate traffic. The window is shifted by acks which
are paced by the round-trip delays, and essentially paced by
the queue lengths of the nodes in the path. So the feedback
flow control features of transport protocols are very impor-
tant to network performance, it is the fundamental reason for
the anti-persistence in today’s Internet delay traces. The anti-
persistence in the delay trace is a good indication that the cur-
rent Internet is working toward a stable state.

6.2 Implications on the Traffic Model

We think that the scaling behavior of WAN traffic in small-
time scales should be disciplined and reflected by the scaling
behavior of the delay traces. With TCP as an example, we
know that it uses acks pacing the traffic, which is referred as
self-clocking. The incoming process (or the inter-arrival pro-
cess) of acks is essentially modulated by the delay jitter pro-
cess with a sampling interval corresponding to the round-trip
delay. It seems that the round-trip delay of a path is still within
the cutoff time scale of that path, so the incoming process of
acks must be a fractal-like process, which means TCP uses a
clock ticking in a fractal way to strobe new packets into the
network. So the dynamics of TCP traffic in small-time scale
is determined by afractal-clock. This fractal-clock presented
may explain the scaling behavior and multifractality observed
in the WAN traffic in small-time scales.

The delay jitter process actually reflects the changing na-
ture of Internet workload [2], since the delay jitter process is
anti-persistent and the anti-persistence phenomena is robust
in delay traces. We predict that the WAN traffic dynamics
in small-time scale is actually anti-persistent, too. So, anti-
persistence may be another network traffic invariant. This pre-
diction needs to be confirmed by future study.

6.3 Outlook

The findings of crossover and anti-persistence not only can im-
prove our understandings about the current Internet dynamics,
but also can be used in many aspects of network engineering.
One direct application of our findings is the prediction of de-
lay and delay jitter for Internet protocols and real-time appli-
cations. Since the height difference correlation function of a
delay trace has a break point, after the break point the function
becomes flat (see Figure 6). Here, the so called “height differ-
ence” is actually the delay jitter of two delays separated by the
correlation lag time. The fact that the height difference corre-
lation function becomes flat implies the standard deviation of
the delay jitter between any two delays has an upper bound-
ary. We need to investigate how robust the upper boundary is.
If it is robust against the time of day, the upper boundary of
the standard deviation of the delay jitter will be very impor-
tant to the designs of the protocols and applications running
on the Internet. It opens a new opportunity to refine the de-
lay prediction algorithms implemented by many protocols and
applications. More study needs to be done in this area.

It seems a simple ping trace can tell us more than we
thought previously. But, we need further understand what as-
pects of the network decide the location of the break point, the
Hurst exponent, and the boundary of the height difference cor-
relation function. We think all these parameters depend on the
network state, workload pattern, loss rate, total buffer storage
and the bottleneck bandwidth of a path. The height difference
correlation function can servers as a kind of fingerprint for a
path. By analyzing the height difference correlation function
based on the ping traces, network administrators can under-
stand more about the network state. Further study is needed to
relate the network aspects to the parameters of height differ-
ence correlation functions.



The anti-persistence shown in the delay traces suggest the
network is under control. But it raises a question:”Does there
exist an optimum control point?” IfH = 0:5, the network
has no control, the delays in small-time scale behave like a
Brownian motion, but if H = 0, the network is either over
controlled, or the load in a path is too light to support a fBm in
the nodes. In the case of over control, the network must have
enforced a harsh policy on the upper bound of the standard
deviation of the delay jitter. For a network provides best-effort
services, there may be a reasonable range of theH value. So
how to judge the network’s performance in the macroscopic
level based on the H value is an interesting topic.

7 Conclusions

The long-range dependence (LRD) nature of Internet end-to-
end packet delay dynamics was confirmed by this study. By
using the wavelet-based scaling analysis technique, partition
function method and the height different correlation function
method, we conducted an extensive investigation on the dy-
namic properties of packet delay traces measured using ICMP
ping and NTP. Our main observations are: (i) the scaling anal-
ysis shows a very complicated scaling behavior of the de-
lay traces and demonstrates that the LRD nature of the delay
traces is robust, even for traces with sampling interval as large
as 1 min; (ii) some delay traces show possible multifractality,
(iii)a delay trace with a large sampling interval can be modeled
as an LRD noise-like time series, while with a small sampling
interval a trace should better be modeled as a self-similar time
series with an outer cutoff time scale. The changing of the
nature of the delay traces is referred to as crossover; (iv) by
applying the height difference correlation function method to
the delay traces with small sampling interval, we found the
anti-persistence phenomena, which suggests that the current
Internet is working in a controlled state.
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