
The Fuzzball 1,2,3

David L. Mills
Electrical Engineering Department

University of Delaware

Abstract

The Fuzzball is an operating system and applications library designed for the PDP11 family of
computers. It was intended as a development platform and research pipewrench for the DARPA/NSF
Internet, but has occasionally escaped to earn revenue in commercial service. It was designed,
implemented and evolved over a seventeen-year era spanning the development of the ARPANET
and TCP/IP protocol suites and can today be found at Internet outposts from Hawaii to Italy standing
watch for adventurous applications and enduring experiments. This paper describes the Fuzzball and
its applications, including a description of its novel congestion avoidance/control and timekeeping
mechanisms.

Keywords: protocol testing, network testing, perform-
ance evaluation, Internet architecture, TCP/IP protocols,
congestion control, internetwork time synchronization.

1. Introduction

The Fuzzball is a software package consisting of a fast,
compact operating system, support for the DARPA/NSF
Internet architecture [8] and an array of application pro-
grams for network protocol development, testing and
evaluation. It usually runs on a LSI-11 personal worksta-
tion, to which it also lends its name, and functions as a
multi-purpose packet switch, gateway and service host.
It supports the complete TCP/IP protocol suite, including
network, transport and applications-level protocols for
virtual-terminal, file-transfer and mail systems with text,
voice and image capabilities. It includes a comprehen-
sive user interface based on a multiple-user, virtual-ma-
chine emulator for the DEC RT-11 operating system, so
that RT-11 program-development utilities and user pro-
grams can be run along with network-application pro-
grams in an internetworking environment.

It is not clear how or exactly when the Fuzzball came to
be called that. Its ancestor was born at the University of
Edinburgh in 1971 and evolved as the DCN operating
system for a distributed network of PDP11 virtual ma-
chines at the University of Maryland in 1975 [MIL75].
Among the lessons learned is the fact that context switch-
ing in a virtualized PDP11 architecture is painfully slow,
so the DCN system remained a demonstration curio.

By 1977 the DCN system was dismantled and rebuilt in
a leaner, zippier design and software was developed for
the TCP/IP protocol suite. The DCN routing protocol,
now called Hellospeak [12], was completely redesigned
to link DCN hosts and gateways together and to other
networks, including ARPANET, SATNET and various
LANs. At the time there were no full-featured Internet
hosts other than DCN based on a microprocessor; so,
presumably because nobody knew what DCN stood for,
they became affectionally and widely known as Fuz-
zballs. The Fuzzball has since been in a state of continu-
ous, reckless evolution to support more processor
features and peripherals and to support progressively
more complex protocol suites and more sophisticated
resource-management techniques.

Over the years many network experiments, demonstra-
tions and more durable applications have been mounted
on the Fuzzball, a selection of which is described in
subsequent sections. Several experiments with ad-
vanced-technology networks such as packet radio,
packet satellite and various gateway systems have used
Fuzzballs as debugging, measurement and evaluation
platforms. Various organizations have used Fuzzballs as
terminal concentrators, mail and word-processing hosts,
network monitoring and control devices and general-
purpose packet switches and gateways. Fuzzballs have
seen regular service on the INTELPOST and NSFNET
Backbone networks and several campus networks at

1. Sponsored by: Defense Advanced Research Projects Agency contract number N00140-87-C-8901 and by National
Science Foundation grant number NCR-86-12015.

2. Author’s address: Electrical Engineering Department, University of Delaware, Newark, DE 19716; Internet mail:
mills@udel.edu.

3. Reprinted from: Mills, D.L. The Fuzzball. Proc. ACM SIGCOMM 88 Symposium (Palo Alto CA, August 1988,
115-122).

university, government and industrial research laborato-
ries.

Perhaps the most useful and interesting Fuzzball appli-
cation is as an experimental tool for the development and
evaluation of novel network algorithms and protocols.
Many Fuzzballs have been deployed for that purpose at
various locations in the US and Europe. In the typical
case several Fuzzballs are lashed together with Ethernets
and makeshift wires, then connected to the Internet via
an existing LAN or gateway. Fuzzballs have even been
connected via dial-up telephone circuits, amateur
packet-radio channels, international undersea cables,
satellite terminals and strange statistical multiplexors.

This paper begins with an overfly of the Fuzzball system
architecture, including process and memory structure,
interprocess communication, and network support. In-
cluded are brief descriptions of application software
found useful for network testing, debugging and evalu-
ation. The paper then summarizes selected experiments
and demonstrations in which Fuzzballs have played a
pivotal part and highlights the useful features and lessons
learned. It describes how Fuzzballs have been used in
operational systems such as the INTELPOST and
NSFNET Backbone networks and concludes with a de-
tailed description of two interesting applications, one
involving congestion avoidance/control and the other the
synchronization of network clocks.

2. System Architecture

The Fuzzball operating system consists of the supervisor
and two kinds of processes, supervisor and user. The
supervisor consists of the process scheduler and a collec-
tion of supervisor primitives (EMT instructions) used by
all processes. Supervisor processes are used to support
direct-access and terminal devices, as well as network
interfaces and protocol multiplexors. User processes pro-
vide an emulated environment in which most system and
user programs developed for the RT-11 operating system
can run unchanged. Some user processes support dedi-
cated functions such as routing daemons, input/output
spoolers and generic network servers supporting connec-
tion-based (TCP) and connectionless (UDP) services.

A process consists of four virtual-memory segments: the
instruction segment, data segment, descriptor segment
and parameter segment. The instruction and data seg-
ments for the supervisor and supervisor processes are
allocated in separate kernel spaces to provide the maxi-
mum memory possible for buffers, control blocks and
tables. The instruction and data segments for each user
process are allocated in private user spaces, except for
the emulator code, which resides in shared segments
mapped into user space at addresses usually reserved for
the RT-11 resident monitor.

Descriptor segments contain the process stack and mem-
ory-management descriptors, as well as data used for
process scheduling, interprocess communication and re-
lated functions. These segments are allocated in kernel
space and not normally accessible to application pro-
grams. Parameter segments contain data used to establish
various operational parameters, such as interrupt vector,
disk volume size, device timeout and so forth, as well as
various throughput and error counters, depending on
process type. These segments are also allocated in kernel
space, but mapped into each user process adjacent to the
emulator code. This is done in order to facilitate operator
monitoring and control of the various processes and their
operational parameters.

Virtual windows are used to access device registers and
to share buffers and control blocks between processes to
avoid time-consuming copy operations. Mutually exclu-
sive access to shared data areas is provided using a set of
semaphore queues supported by supervisor primitives.
Processes encountering an occupied critical section are
blocked and eventually serviced in order of arrival. A
fixed number of semaphores is available for specific use,
such as update access to the routing data base, volume
directories and so forth.

Processes communicate with one another using small
(16-byte) interprocess messages in one of four formats.
Message passing is supported by supervisor primitives
that send a message or wait for one to arrive. Sending
never blocks the process, while receiving does, unless a
message is already waiting or until a specified timeout
expires. Processes can send special messages called
asynchronous interrupts which result from exceptional
events and are especially useful for system logging and
operator alarms.

The scheduler determines the next process to be run,
restores the processor state from the descriptor segment
and activates the process. It uses a multi-level priority
service discipline with preemptive round-robin
(timesliced) service at each priority level. Preemptions
occur when a higher priority process is scheduled due to
a message arrival, semaphore unblock, timeslice end,
asynchronous event or voluntarily. Voluntary preemp-
tions result in the process either waiting for a message,
semaphore unblock or asynchronous event such as a
timer interrupt.

The emulator intercepts synchronous interrupts (EMT
instructions, etc.) and asynchronous interrupts and pre-
sents them within the virtual environment of the process.
The user process interface presented by the emulator is
a subset of that presented by the resident monitor of the
RT-11 system and includes all of the programmed re-
quests necessary to run standard RT-11 system compo-
nents and user programs.

2

A highly evolved logical clock is an intrinsic feature of
the Fuzzball [16]. The logical clock increments at 1000
Hz and is equipped with frequency and phase control
mechanisms useful for synchronizing time to other sys-
tems with either the Hellospeak routing protocol or Net-
work Time Protocol mentioned later in this paper.
Besides the logical clock, the system provides per-proc-
ess timers and a full complement of timer and clock
primitives.

2.1. Network Software

A pair of supervisor device-driver processes is dedicated
to every network interface device, one for input and one
for output. There are three levels to a device driver, a
common one responsible for Internet processing, includ-
ing routing, fragmentation and various error processing,
another below it responsible for the particular local-net
architecture, such as Ethernet, serial line and so forth,
and the third, which amounts to a set of interrupt routines
and is responsible for the operation of the particular
device. Support for the Hellospeak routing protocol is
provided as an optional module that operates at the
Internet level.

The design is such that packets are transferred from the
input device directly to a buffer and then out from the
same buffer directly to the output device and without
copying. This modular structure allows considerable
flexibility, since the modules at the various levels can be
swapped as required for the local net and device required.

The TCP and UDP transport modules are implemented
as a dedicated supervisor process, which is identified by
an assigned Internet address. All datagrams directed to
this address are delivered to this process, which is then
responsible for matching to the correct protocol and port,
assembling/disassembling the data and delivering it to a
user process. A host can have multiple processes of this
type in order to support configurations where the host is
connected to more than one network interface. Transfers
to and from the user processes use a shared virtual
window in which data are copied directly between ker-
nel-space buffers and user-space buffers.

Some protocols are supported at the user-process level,
including a UDP daemon for file-transfer, name-resolu-
tion and time protocols, as well as an EGP daemon. TCP
daemons are used for remote spooling, both send and
receive, to support standard and multi-media mail sys-
tems, as well as remote print, voice and image functions
for special devices. TCP services such as the virtual-ter-
minal (TELNET) server, file-transfer (FTP) server and
several miscellaneous servers are handled by assigning
a user process to the service upon arrival of a connection
request and then passing an appropriate command to the
application program which controls that process.

2.2. Application Software

Each user has access to one or more user processes and
can switch a single terminal from one to the other in a
few keystrokes. A conventional command language in-
terpreter (shell) running in each user process is used to
initiate application programs, manage debug sessions,
get system help and in general run the system. A very
useful feature is that one process can be used to debug
another while both are running. In addition, input and
output streams can be redirected and virtual environ-
ments can be altered. A virtual volume feature allows
volumes, complete with directory, to be encapsulated as
an ordinary file.

Among the often-used application programs supported
by connection-oriented transport service (TCP) are the
following:

TELNET virtual-terminal protocol client and server pro-
grams, which provide user access to all Fuzzball
functions, including command, control, monitoring
and process/operator intercommunication. The cli-
ent program includes features to test the negotiation
mechanisms peculiar to that protocol, and to record
and playback session text and emulate graphics dis-
play devices.

FTP file-transfer protocol client and server programs,
which provide the basic means to exchange program
and data files between Fuzzballs in both ASCII and
binary modes.

Server and utility programs for exchanging mail with
other Internet hosts. One of these is based on the
ubiquitous (text-only) SMTP mail protocol used
throughout the Internet, while the other uses the
experimental MPM multi-media mail protocol and
supports text, image, graphics and real-time speech
modes.

Utility servers for various "little" services, including
TCP echo, discard, text generator and various user
and system information utilities. In addition, a com-
prehensive Unix-compatible spooling facility can
be used with text, image and speech devices.

Among the often-used application programs supported
by connectionless transport service (UDP) are the fol-
lowing:

PING network-level testing utility, which uses ICMP
Echo and ICMP Timestamp messages to interrogate
remote machines, collect statistics and produce re-
ports (PING stands for Packet Inter-Net Groper).

XNET cross-net debugger, which is used for remote
interactive loading, dumping and debugging, pri-
marily for diskless machines.

3

Generic UDP server, including two name-address trans-
lation protocols, two time-service protocols a file-
transfer protocol and a remote host monitoring
protocol.

Utility programs for testing and debugging standard
UDP services, including the above, as well as vari-
ous surveying programs.

3. Fuzzball Applications

In following sections selected fuzzball applications are
described, ranging from Internet gateway development
through transport-level performance improvement to the
development of efficient name-address translation
mechanisms.

3.1. Internet Gateway Development

One of the earliest applications of Fuzzballs was as an
Internet gateway, usually used between an experimental
local net and the ARPANET. The first Internet gateways
were implemented by Bolt, Beranek Newman (BBN)
using PDP11 equipment, the BCPL language and the
ELF operating system. Like the DCN system before it,
ELF suffered from debilitating context-switching over-
head and was limited to about 30 packets per second. The
BBN implementation was eventually rehosted to the
MOS operating system, which like the Fuzzball was built
as a subset of its full-featured ancestor, and recoded in
assembly code. This resulted in improved switching rates
in the order of 200 packets/second.

Meanwhile, the Fuzzballs were being used as experimen-
tal development platforms for the Gateway-Gateway
Protocol (GGP) used in the BBN system, and later for
the Exterior Gateway Protocol (EGP) [13]. The goal of
the experimental effort was to explore data-management
techniques, protocol interoperability, routing algorithms
and congestion control mechanisms. As the result of this
exploration, the maximum switching rate of the Fuzzball
(with LSI-11/73 processor) was improved to over 400
packets per second.

The participation of the Fuzzballs in the development of
EGP was particularly important. EGP was developed in
an atmosphere of controversy and delicate compromise
between functionality and robustness. It is intended as
both a primitive reachability protocol for use between
administrative domains and a firewall to prevent insta-
bilities within one domain from affecting another. In
order to get the compromises just right, extensive analy-
sis, prototyping and refinement cycles were necessary.
Most of these involved Fuzzball development networks
built on ARPANET paths, which required careful control
of the routing environment and interoperation with ex-
isting GGP gateways. What made this practical was the
easily butchered routing and forwarding mechanisms in

the Fuzzball, in which firewall principles could be in-
vented, explored and evaluated quickly and with low
effort.

3.2. Internet Performance Issues

Of considerable interest in the early development and
prototyping of TCP/IP were the issues of interoperability
and performance. As various implementations of the
protocol suite matured, in particular those for Multics,
TOPS-20, Unix and Fuzzball, distributed testing sessions
called bakeoffs were held. With the exception of the
Fuzzball, these implementations were intended for long-
term operational use, with operational parameters opti-
mized for the traffic flows and rates typical for a
multi-user timesharing system.

On the other hand, the Fuzzball implementation was
specifically designed to explore the parameter space,
sometimes in regimes ordinarily considered bizarre. For
instance, Fuzzball utility hosts were configured with
1200-bps dial-up lines and used with TCP/IP and TOPS-
20 hosts via Fuzzball gateways and ARPANET for ordi-
nary virtual-terminal, file-transfer and electronic-mail
applications. The purpose was not to establish an opera-
tional user environment, but to explore the practicality
of the TCP/IP protocol suite and the various implemen-
tations at the extremes of the operational envelope.

The bakeoffs and other experimental programs demon-
strated that TCP/IP could indeed work well with grossly
mismatched systems and transmission media; however,
the experiments also revealed that catastrophic perform-
ance degradation could occur unless careful attention
were paid to certain aspects of the protocol implementa-
tion. Not surprisingly, the most serious problem was
overrunning the gateway between the 56-Kbps AR-
PANET and the 1200-bps dial-up lines. The most sensi-
tive areas in the implementation included the
mechanisms for packetization, retransmission and ac-
knowledgement generation.

In 1981 several experiments were carried out with the
goal of exploring techniques to avoid unnecessary packet
congestion in the gateways. These fell into three areas:
reducing the incidence of small segments, especially in
interactive virtual-terminal service, improving the effi-
ciency of remote-echo and acknowledgement strategies
and avoiding large pulses of data when large windows
are first opened.

Techniques used by the Fuzzballs to reduce the incidence
of small segments include send delays, in which data are
held and aggregated until a sufficiently large segment has
accumulated, aggregated retransmissions, in which data
arriving since the first transmission are included in sub-
sequent retransmissions, and adaptive thresholds which
prevent transmission until the TCP window has opened

4

to a respectable size. Techniques used to improve the
piggybacking efficiency of acknowledgements include
acknowledgement delays, which delay the acknow-
ledgement until the received data have been copied to
user buffers and the application response (typically re-
mote-echo data) are available.

Many of these techniques were employed in some (but
not all) the implementations at the time, including the
Fuzzball, and have been further refined since then. How-
ever, since the Fuzzball was operating at the extremes of
the credible envelope, precise tuning of the dynamics
was exceptionally critical, to the point where the parame-
ters had to be adjusted on an adaptive basis, including the
retransmission timeouts, packetization delays and ac-
knowledgement delays. A particularly troublesome issue
was the determination of retransmission timeout under
conditions of moderate segment loss and path delays
varying over several orders of magnitude. An extensive
survey [12], conducted with the aid of Fuzzballs used as
network sounders, revealed the Internet had path delays
and delay dispersions much larger than imagined.

As the result of these experiments, several modifications
to the suggested TCP retransmission-timeout estimation
algorithm were made, including a nonlinear adjustment
intended to improve performance under conditions of
very high delay dispersion and provision for multiple
per-segment range measurements to increase the sample
density. In addition, an adaptive backoff algorithm was
designed, along with explicit counting of outstanding
segments with a rate-sensitive limit. These experiments
used digital-analog converters and panel meters to watch
critical time-varying variables, which resulted in some
memorable demonstrations.

3.3. Applications Development

Several experimental Internet mail systems have come
and gone during the lifetime of the Fuzzballs. As each
was designed, implemented and evaluated, Fuzzball pro-
totypes were used for test and debug of the protocol and
various implementations. Perhaps the most ambitious of
these projects involved the DARPA Multi-media Mail
Project, in which research groups at SRI, BBN, ISI and
Linkabit developed an experimental multi-media mail
architecture and presentation protocol with real-time
voice, image and text capabilities. The Fuzzball imple-
mentation includes special-purpose spooler daemons for
digitized speech, facsimile and bitmap graphics, as well
as rule-based mail sending, receiving and reading pro-
grams. It was used mostly to explore the features of the
architecture, develop fast encoding and storage algo-
rithms and verify interoperability of all implementations.

One of the most interesting experiments using the Fuz-
zballs involved the Domain Name System [17], which is
now in widespread use as a host name/address directory

service. The system is based on a distributed, hierarchical
data base and a set of structured lookup procedures that
can be used in connection-oriented or connectionless
modes. The Fuzzball implementation includes both a
domain-name server, which holds the data base, and a
resolver subroutine, which is linked with every applica-
tion program needing this service. A distinguishing fea-
ture of resolver subroutine relative to others
implemented for Unix, is an amazingly persistent, adap-
tive search algorithm that painstakingly combs the data
base of possibly many other servers in case of incomplete
or inconsistent data.

4. Enduring Systems

Over the years Fuzzballs have been involved in enduring
demonstrations and networks requiring commercial-
grade operation, monitoring and control. Several of these
applications, including two out of the three described in
following sections, have provided service to large num-
bers of users under punishing conditions and have served
to evaluate the performance of the Fuzzball implemen-
tation itself.

4.1. SATNET Demonstrations

The DARPA Packet Satellite Project was started in 1975
to adapt packet-switching technology to international
satellite communications, resulting by 1979 in the Atlan-
tic SATNET system which spanned the US, United
Kingdom and Norway [6]. As part of an intensive meas-
urement and evaluation effort, Fuzzballs were used as
traffic generators, statistics collection platforms and gen-
eral-purpose data reducers [3]. At the 1979 National
Computer Conference, Fuzzballs were used in a demon-
stration of SATNET with real-time packet-voice confer-
encing, image transmission, and an experimental
small-aperture Earth terminal [MIL80].

As additional countries such as Italy and the Federal
Republic of Germany joined the SATNET community
the Fuzzball was often used as a vehicle to gain famili-
arity with the SATNET technology and as a tool for
experiments and measurements. At one time or another,
the research and defense establishments of every SAT-
NET participant had nests of Fuzzballs spliced to their
local-net infrastructure and functioning as gateways,
lightweight electronic-mail hosts and experimental plat-
forms.

In order to support these activities a good deal of ad-hoc
experimental software was developed, including data-re-
duction, graphics-display and format-conversion appli-
cations. The multiple virtual-process architecture and
RT-11 emulator features of the Fuzzball proved highly
useful and suited to this effort. Since the emulated RT-11
environment supports the FORTRAN, BASIC and C
programming languages, as well as most RT-11 utility

5

programs and text editors, real-time traffic generators,
statistics processors and display generators can be
quickly constructed or adapted to particular experiments.

4.2. INTELPOST Network

The INTELPOST system was an electronic-mail net-
work built in 1981 by BBN and COMSAT and operated
by the US Postal Service and overseas affiliates. It linked
sites in the US and Canada with several cities in Europe
and South America and consisted of about a dozen
PDP11-class processors with high-speed facsimile scan-
ners and printers interconnected by serial lines with
speeds to 56 Kbps. Each processor used the DEC RSX-
11 operating system together with the Fuzzball TCP/IP
networking software and Hellospeak routing algorithm.
The software was adapted from the native Fuzzball code
by simply replacing the macro library with another spe-
cifically tailored for the RSX-11 environment.

This system is believed to be the first commercial de-
ployment of the TCP/IP protocol suite outside the re-
search community. It operated for several years carrying
revenue traffic, but remained largely a pilot project and
unknown by most of the public. It was in this environ-
ment that early experiments in congestion control were
carried out, including those based on flow modulation,
which is described in another section. While the system
used the standard TCP/IP protocol suite and addressing
conventions and an experimental gateway was set up at
COMSAT Laboratories, the only traffic ever exchanged
between INTELPOST and the DARPA research com-
munity was monitoring and debugging packets and an
occasional misrouted file.

4.3. NSFNET Backbone

The NSFNET is a loosely organized community of net-
works funded by the National Science Foundation to
support the sharing of national scientific computing re-
sources, data and information [7]. NSFNET consists of
a large number of industry and academic campus and
experimental networks, many of which are intercon-
nected by a smaller number of regional and consortium
networks. The NSFNET Backbone Network [15], which
is the primary means of interconnection between the
regional networks, includes switching nodes located at
six supercomputer sites and three regional interties. Ad-
ditional nodes are used for program development and
testing, bringing the total to about thirteen.

A Backbone node consists of a Digital Equipment Cor-
poration LSI-11/73 system with 512K bytes of memory,
dual-diskette drive, Ethernet interface and serial inter-
faces. One or two low-speed serial-asynchronous inter-
faces are provided, as well as one to three high-speed
serial-synchronous interfaces. All Backbone nodes in-
clude crystal-stabilized clock interfaces, while one node

(NCAR) is equipped with a WWVB radio time-code
receiver providing a network time reference accurate to
the order of a millisecond.

The Backbone nodes function as Internet gateways [2]
and include all the switching, monitoring, control and
error-recovery functions necessary to forward packets
from one regional Ethernet to another. Other gateways
connect the Ethernets to regional and consortium net-
works, which in some cases span large regions of the
country. Some sites are connected to other backbone
networks such as ARPANET and public data networks
as well.

In mid-June 1988 there were 5856 hosts on 918 networks
interconnected by 236 gateways listed at the Department
of Defense Network Information Center alone, which in
itself is only a small fraction of the overall Internet. Of
the approximately 460 nets now in regular operation,
about 130 are either directly connected to the Backbone
or indirectly by means of gateways and other regional
and consortium networks. The aggregate backbone traf-
fic has doubled over the last nine months to about 71
packets per second, or about 4.4 packets per second per
56-Kbps line.

5. Experiments

Among the many experiments mounted on the Fuzzball,
three have been selected as typical and representing the
scope and application of the Fuzzball implementation.
The first examines issues in type-of-service routing and
queueing, the second involves preemption and conges-
tion management and the third describes an internetwork
time service.

5.1. Type-of-Service and P recedence Queueing

The Internet protocol includes provisions for specifying
type of service (TOS), precedence and other information
useful to improve performance and system efficiency for
various classes of traffic. The TOS specification deter-
mines whether the service metric is to be optimized on
the basis of delay, throughput or reliability and is ordi-
narily interpreted as affecting the route selection and
queueing discipline. The precedence specification deter-
mines the priority level used by the queueing discipline.

The Fuzzball routing mechanism includes provisions to
determine the route based on TOS. The mechanism
simply decodes the eight combinations of three TOS bits
and appends the resulting octet to the four-octet Internet
address. The routing tables use a mask-and-match
scheme where the resulting 40 bits are first filtered by a
mask specific to each entry, then matched against an
address specific to that entry. The tables are ordered, with
possibly several entries for the same address range, but
different TOS masks, and with the first match found
terminating the search. This scheme allows TOS inter-

6

pretation to be integrated directly into the routing mecha-
nism and protocols; however, existing routing protocols,
including Hellospeak, do not provide means to propagate
TOS masks so entries using this feature have to be
manually configured.

As the NSFNET Backbone has reached its capacity,
various means have been incorporated to improve inter-
active service at the possible expense of deferrable (file-
t ransfer and mai l) service. An experimental
priority-queueing discipline has been established based
on the precedence specification. Queues are serviced in
order of priority, with FIFO service within each priority
level. However, many implementations lack the ability
to provide meaningful values and insert them in this field.
Accordingly, the Fuzzball cheats gloriously by impugn-
ing a precedence value of one in case the field is zero and
the datagram belongs to a TCP session involving the
virtual-terminal TELNET protocol.

The results of this scheme are mixed, as could be ex-
pected. Customers of the NSFNET Backbone were
thrilled when TELNET response dramatically improved
after the new scheme was installed. However, it some-
times happens that low-priority traffic is continually
pushed back in the queue as the result of high-priority
arrivals, only to be preempted, cause a quench message
(see below) or simply to time out. However, if large
quantities of deferrable data, such as file-transfers and
mail, get pushed back in this way, quench messages tend
to concentrate on the originating hosts and help dissipate
the load.

5.2. Congestion and P reemption Strategies

In the TCP/IP protocol suite, which is based on end-to-
end connectionless service, it is usually assumed that
gateways have little state except that induced by the
routing algorithm. In particular, the state of the various
resources, including processor time, buffer space and
queue contents, is generally invisible outside the gate-
way. This makes congestion avoidance and control very
difficult, since the only access a congested gateway has
to the state of any virtual flow is the composition of the
queues in the gateway itself.

In order to deal with traffic surges, the Internet architec-
ture specifies the ICMP Source Quench message, which
is in effect a choke packet sent to the originating host by
a downstream gateway when it experiences an overload.
Some gateway implementations make an attempt to cope
with congestion by emitting a quench when a datagram
arrives for a queue whose size exceeds a threshold or
when the number of datagrams dropped due to conges-
tion-related reasons exceeds a threshold. Host imple-
mentations respond to quenches in various ways; some
ignore it, some including (modified) Berkeley 4.3 Unix
and Fuzzball, reduce the TCP window size by a multi-

plicative factor, after which each acknowledgment re-
ceived causes an additive increase, and some, including
Cray Research Unix, operate on rate-based principles
such as described in [PRU86].

Experience suggests that such simple mechanisms have
only marginal utility and then only for traffic surges
where the delay on the path to the originating host is short
compared to the period of the traffic surge. In the case of
the NSFNET Backbone gateways, which is typical of
other Internet gateway systems, congestion is charac-
terized by frequent surges lasting up to a few minutes
along with occasional intense bursts lasting only a few
seconds. Bursts, often caused by misengineered TCP
implementations, can be extremely damaging, since they
tend to fill up queues quickly and are resistant to
quenches.

Upon review of the extensive log information collected
by the NSFNET Backbone Fuzzballs a key fact emerges:
most congestion surges and bursts are caused by a rela-
tively small number of originating hosts. This suggests
an effective congestion policy should fairly distribute
resources such as buffer space on the basis of originating
host address. Congestion causes large queues, large de-
lays, large delay dispersions and invites further abuse by
undisciplined host retransmissions, even if heroic buffer
space is available [18]. These observations suggest an
effective congestion avoidance policy should be based
on mean queue size and attempt to fairly equalize the
sizes if more than one queue is present.

However, when a burst exceeds the buffer space avail-
able, the only defense possible is to either drop arriving
packets or selectively preempt ones already queued for
transmission. This naturally suggests the preemption
policy should be an extension of the quench policy and
result in preemption of those hosts which do not respond
to quench. Furthermore, fairness in the form of equal
access to system resources should be observed in order
to avoid capture of excessive network resources by reck-
less hosts [15].

In an experiment designed to evaluate various realiza-
tions based on the above policies, the Fuzzball imple-
mentation was modified to incorporate comprehensive
quench, preemption and service disciplines based on the
specifications explicit and implicit in every IP datagram
header. The result is a service model based on IP prece-
dence and type-of-service, a fairness model based on IP
source address and a congestion-control model based on
mean queue size. This architecture can be summarized
in the following rules:

1. Customers are identified on the basis of IP source
address. Each distinct IP address is associated with
a different customer for quench and preemption
purposes.

7

2. Customer service classes are determined on the ba-
sis of IP precedence and type-of-service. Queues are
serviced in order of class, with all customers of a
higher class serviced in FIFO order before any cus-
tomer of a lower class.

3. Every customer has equal claim to critical system
resources, most importantly buffer space. In case of
insufficient resources, the quench and preemption
mechanisms operate to reduce the allocations of
those customers claiming the most resources, so that
the available resources will tend to be equally allo-
cated among all customers.

4. The congestion state for each queue is determined
by its mean size. Below a selected threshold no
quench messages are sent. Above the threshold,
quench messages are sent to customers determined
by (3) above and at a rate proportional to mean queue
size.

5. If upon a new arrival insufficient system resources
(e.g. input buffers) can be found for subsequent
arrivals, customers determined by (3) above (which
may include the new arrival) are preempted from the
queues until these resources can be found.

6. In case of ties when the above mechanisms would
preempt any one of two or more queues, the queue
selected is the one going longest since the last pre-
emption.

In order to implement these mechanisms without signifi-
cant performance penalty, it is necessary to minimize
per-packet processing and minimize queue scanning.
The technique implemented in the Fuzzball was adapted
using timestamp mechanisms already in place for other
functions. An arriving packet buffer is timestamped and
inserted on an output queue determined by the routing
algorithm in FIFO order by service class. When the
buffer is removed from the queue for output, the differ-
ence between the removal time and the timestamp repre-
sents the queueing time for the buffer and is used in
conjunction with the time-to-live field in the Internet
header to determine whether the packet has lived too long
in the system and should be destroyed.

The queueing time can also be used to estimate the mean
queue size as follows. The queueing times for successive
packets are summed over an interval depending on the
output line speed or service rate, currently about four
times the maximum packet transmission time. At the end
of each interval the sum is exponentially averaged into
an accumulator with a selected weight, currently one-
half, and the accumulator compared against a threshold.
If the threshold is exceeded a quench is sent to the
originating host with the largest total buffer space on the
queue and the accumulator is forced to zero.

This scheme is designed to avoid quenching hosts if the
mean queue size is small, yet protect against excessive
quench rates in case of overload. The averaging interval
is chosen to match the expected mean path delay in the
Internet, about a couple of seconds. The weight and
threshold are chosen to begin triggering quenches when
the mean queue size exceeds about one-half and reach
maximum frequency (once quench per interval) when
the mean queue size approaches two.

As reported previously [15] there is no doubt the selec-
tive preemption scheme is highly effective in reducing
the impact of bursts due to misengineered host imple-
mentations or profound speed mismatch at the entry
points to the NSFNET Backbone. Some idea of the
effectiveness of the quench scheme is evident from the
following: In July 1988 before quench was implemented,
the NSFNET Backbone aggregate traffic load per queue
ranged from 0.3 to 4.0 packets per second, with a mean
of 2.0. At that time the preemption rate was .06 and
timeout rate .03 percent. In March 1988, several months
after quench was installed, the load ranged from 2.6 to
9.2 packets per second, with a mean of 4.7. At that time
the preemption rate was 0.37, timeout rate 0.11 and
quench rate 0.27 percent. The traffic on the sixteen
56-Kbps internodal trunks had doubled from 31.5 to over
71 packets per second, but the aggregate loss rate was
still well below the system objective of one percent.

Tests with the Cray TCP/IP implementation show that
congestion on NSFNET Backbone paths where the flow
enters the system via an Ethernet are effectively throttled
by the quench mechanism. Tests with a recently im-
proved Unix 4.3bsd implementation show mean queue
size reductions of about one-third over the uncontrolled
size when quench is used. These data alone are insuffi-
cient to estimate the effect of the quench policy.

At this time few definitive conclusions can be reached
on the effectiveness of the quench and preemption
schemes with respect to the global environment, since
they are implemented only in the Fuzzball (although
some Fuzzballs are in busy places) and responsive host
implementations are far from ubiquitous. While the ex-
periment demonstrated that the schemes can be effective,
additional work is necessary to determine the parameters
and their affect on the overall system performance. Fi-
nally, the fact that quenches are generated at intervals
depending on mean queue size, not at regular intervals
or as the result of new arrivals, suggests that host re-
sponse mechanisms based on flow estimators may work
much better than those based on window-size estimators
with these schemes.

5.3. Time Synchronization

Experiments conducted since 1981 have demonstrated
that the Fuzzball implementation is ideally suited as an

8

internet time server. The Fuzzball local clock is con-
structed as a first-order phase-lock loop, in which meas-
ured offsets between the local clock and an external
reference source are used to adjust the local-clock phase
and frequency. The implementation is carefully con-
structed to minimize sources of jitter, such as interrupt
latencies and resource conflicts. The resulting accuracy
at the application interface is usually less than a millisec-
ond in phase and less than a part per million in frequency.

A time-synchronization function is built into the DCN
routing protocol [12], which uses a variant of the distrib-
uted Bellman-Ford algorithm [1]. One or more DCN
hosts synchronize to an external reference source, such
as a radio clock or time daemon, and the routing protocol
constructs a minimum-delay spanning tree rooted on
these hosts. The clock offsets along the tree are then
computed using timestamps included in routing-update
messages. Typical local-clock accuracies using Fuz-
zballs and the DCN routing protocol connected over
LAN paths with serial lines and Ethernets are in the order
of a few milliseconds.

In 1985 after an extensive set of experiments and proto-
type refinement using Fuzzballs at several locations in
the US and Europe, an architecture model and protocol
based on the DCN design, but suitable for use as a
ubiquitous Internet time service, was proposed. The pur-
pose of the protocol, called the Network Time Protocol
(NTP), is to connect a number of master clocks, synchro-
nized to national standards by wire or radio, to widely
accessible resources such as backbone gateways. These
gateways, acting as primary time servers, use NTP be-
tween them to cross-check the clocks and mitigate errors
due to equipment or propagation failures. While multiple
primary servers may exist, there is no requirement for an
election protocol, such as used in some Unix systems [5].

In order to reduce the protocol overhead, some number
of local-net hosts or gateways, acting as secondary time
servers, can run NTP with one or more primary servers,
then redistribute time to the remaining local-net hosts
using NTP, DCN or some other protocol such as de-
scribed in [9] and [5]. In the interest of reliability, se-
lected local-net hosts can be equipped with less accurate
but less expensive backup clocks and used in case of
failure of the primary and/or secondary servers or com-
munication paths between them.

The Fuzzball implementation includes algorithms for
deglitching and smoothing clock-offset samples col-
lected on a continuous basis, as well as algorithms for
selecting good clocks from a population possibly includ-
ing broken ones. These algorithms were evolved under
typical operating conditions over the last two years. A
comprehensive description of the NTP architecture, pro-
tocol and algorithms is given in [16].

Timekeeping accuracies achieved with the Fuzzball im-
plementation on typical Internet paths are in the range of
a few tens of milliseconds. Figure 1 shows the NTP clock
offsets (absolute) measured between Fuzzball primary
servers at the University of Delaware and University of
Maryland over a period of about a week. Performance
data collected with the primary servers show that this
accuracy can be reliably maintained throughout most
portions of the Internet, even in cases of failure or dis-
ruption of clocks, servers or communication paths.

There are presently six Fuzzball primary time servers
located on the east coast, west coast and midcontinent,
each of which serves 20-40 Fuzzball and Unix secondary
time servers in the US and Europe. A survey reported in
[16] suggests there may be well over 2000 potential
clients in the ARPANET/MILNET community, plus
probably several thousand more in the NSFNET commu-
nity.

6. Parting Shots

During the past decade when the Fuzzball has been most
useful, it represented a relatively inexpensive way to pry
into network technology, prototype new architectures
and protocols and in general fan the fuzes of the explod-
ing Internet. As the cost of sophisticated workstations has
plummeted in recent years, the LSI-11 technology itself
is no longer economically attractive. The software, hav-
ing been lashed together by several generations of pro-
grammers and in support of novel applications and
ad-hoc experiments lasting over a decade, is not readily
portable. For awhile, at least, Fuzzballs may lurk in dark
corners of various laboratories in the hulks of otherwise
outmoded PDP11 and LSI-11 systems and occasionally
barge out to resolve routing problems and rescue wan-
dering packets. In the long term Fuzzballs may endure as
time servers and ad-hoc intelligence platforms, for which
they are well suited.

A new generation of Fuzzballs may in fact have already
happened in the form of recent Unix-based workstations,
which are fast becoming as ubiquitous as the common

Figure 1

Time (UT hours)

O
ff

se
t

(s
ec

o
n

d
s)

20 40 60 80 100 120 140 160 180

0.
00

1
0.

01
0.

1
1

10

Figure 1. Measured Clock Offsets

9

video terminal. However, the casual abuse heaped on the
Fuzzball operating system is much harder to do in these
workstations, since much of the code is licensable and
sources are not commonly available. In addition, the
Unix kernel is considerably less tractable than the Fuz-
zball and much of the networking code is not easily
modifiable. Nevertheless, the Unix programming sup-
port is far superior to the Fuzzball and much more
portable. The ideal next-generation Fuzzball would be
programmed in C, support the Unix run-time environ-
ment, TCP/IP and ISO protocol suites and contain no
licensed code.

7. References

1. Bertsekas, D., and R. Gallager. Data Networks.
Prentice-Hall, Englewood Cliffs, NJ, 1987.

2. Braden, R. Requirements for Internet gateways.
DARPA Network Working Group Report RFC-
1009, USC Information Sciences Institute, June
1987.

3. Chu, W.W., D.L. Mills, et al. Experimental results
on the packet satellite network. Proc. National Tele-
communications Conference (November 1979),
45.4.1-45.4.12.

4. Defense Communications Agency. DDN Protocol
Handbook. NIC-50004, NIC-50005, NIC-50006,
(three volumes), SRI International, December 1985.

5. Gusella, R., and S. Zatti. The Berkeley UNIX
4.3BSD time synchronization protocol: protocol
specification. Technical Report UCB/CSD 85/250,
University of California, Berkeley, June 1985.

6. Jacobs, I.M., R. Binder, and E.V. Hoversten. Gen-
eral purpose packet satellite networks. Proc. IEEE
66, 11 (Nov 1978), 1448-1467.

7. Jennings, D.M., L.H. Landweber, I.H. Fuchs, D.J.
Farber and W.R. Adrion. Computer networks for
scientists. Science 231 (28 February 1986), 943-
950.

8. Leiner, B., J. Postel, R. Cole and D. Mills. The
DARPA Internet protocol suite. Proc. INFOCOM
85 (Washington, DC, March 1985). Also in: IEEE
Communications Magazine (March 1985).

9. Marzullo, K., and S. Owicki. Maintaining the time
in a distributed system. ACM Operating Systems
Review 19, 3 (July 1985), 44-54.

10. Mills, D.L. An overview of the Distributed Com-
puter Network. Proc. AFIPS 1976 National Com-
puter Conference (New York, NY, June 1976).

11. Mills, D.L. Internetworking and the Atlantic SAT-
NET. Proc. National Electronics Conference (Oc-
tober 1981), 378-383.

12. Mills, D.L. DCN local-network protocols. DARPA
Network Working Group Report RFC-891, M/A-
COM Linkabit, December 1983.

13. Mills, D.L. Exterior Gateway Protocol formal speci-
fication. DARPA Network Working Group Report
RFC-904, M/A-COM Linkabit, April 1984.

14. Mills, D.L. Internet Delay Experiments. DARPA
Network Working Group Report RFC-889, M/A-
COM Linkabit, December 1983.

15. Mills, D.L., and H. Braun. The NSFNET Backbone
Network. Proc. ACM SIGCOMM 87 Symposium
(Stoweflake, VT, August 1987), 191-196.

16. Mills, D.L. Network Time Protocol (Version 1)
specification and implementation. Electrical Engi-
neering Department Report 88-04-01, University of
Delaware, April 1988.

17. Mocapetris, P. Domain names - implementations
and specifications. DARPA Network Working
Group Report RFC-1035, USC Information Sci-
ences Institute, November 1987.

18. Nagle, J. On packet switches with infinite storage.
DARPA Network Working Group Report RFC-970,
Ford Aerospace, December 1985.

19. Prue, W., and J. Postel. Something a host could do
with source quench: the source quench introduced
delay (SQuID), DARPA Network Working Group
Report RFC-1016, USC Information Sciences Insti-
tute, July 1987.

10

