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Abstract

This paper describes the analysis, implementation and performance of a new algorithm engineered to dis-
cipline a computer clock to a source of standard time, such as a GPS receiver or another computer syn-
chronized to such a source. The algorithm is intended for the Network Time Protocol (NTP), which is in
widespread use to synchronize computer clocks in the global Internet, or with another functionally equiv-
alent protocol such as DTSS or PCS. It controls the computer clock time and frequency using an adap-
tive-parameter, hybrid phase/frequency-lock feedback loop. Compared with the current NTP Version 3
algorithm, the new algorithm developed for NTP Version 4 provides improved accuracy and reduced net-
work overhead, especially when per-packet or per-call charges are involved. The algorithm has been
implemented in a special purpose NTP simulator, which also includes the entire suite of NTP algorithms.
The performance has been verified using this simulator and both synthetic data and real data from Inter-
net time servers in Europe, Asia and the Americas.

Keywords: computer network time synchronization,
clock discipline algorithm, oscillator error modeling,
feedback control loop

1.  Introduction

General purpose workstation computers are becoming
faster each year, with processor clocks now operating at
300 MHz and above. Computer networks are becoming
faster as well, with speeds of 622 Mbps available now
and 2.4 Gbps being installed. Using available technol-
ogy with existing workstations and Internet paths, it has
been demonstrated that computers can be reliably syn-
chronized to better than a millisecond in LANs and bet-
ter than a few tens of milliseconds in most places in the
global Internet [4]. This technology includes the Net-
work Time Protocol (NTP), now used in an estimated
total of over 100,000 servers and clients in the global
Internet. Over 230 public primary servers are available
in this network, each connected to a external source,
such as a GPS receiver or ACTS telephone modem.

Reliable network synchronization requires crafted algo-
rithms which minimize jitter on diverse network paths
between clients and servers, determine the best subset of
redundant servers, and discipline the computer clock in

both time and frequency. NTP is designed to do this in
Unix, Windows and VMS operating systems. The NTP
architecture, protocol and algorithms have evolved over
almost two decades, with the latest NTP Version 3 des-
ignated an Internet (draft) standard.

At the heart of the NTP design are the algorithms that
synchronize the computer clock to NTP servers else-
where in the Internet or an external source. These
include the algorithms that mitigate among multiple
servers to provide the most accurate and reliable time,
together with the algorithm that disciplines the com-
puter clock with respect to this time. The clock disci-
pline algorithm, shortened to discipline in the following,
is the main topic of this paper. It has evolved from sim-
ple beginnings to a sophisticated design which automat-
ically adapts to changes in operating environment
without manual configuration or real-time management
functions. The algorithm has been implemented both in
the NTP software itself and, for the highest accuracy, in
the operating system kernel.

The current NTP Version 3 discipline, together with
improvements already implemented and described in
[4], represent the departure point for this paper. The new
algorithm is intended for NTP Version 4, which is in
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final testing, but could be used in principle with any pro-
tocol that provides periodic time corrections. A key fea-
ture in the new design is improved accuracy to the order
of a few microseconds at the application program inter-
face with fast, modern workstations. The need for this
becomes clear upon observing that the time to read the
computer clock via a system call routine has been
reduced from 40 µs a few years ago on a Sun Microsys-
tems SPARC to less than 1 µs today on an UltraSPARC.
Another valuable feature is that message intervals can
be increased well over the current maximum without
significant impact on accuracy.

While not in itself the subject of this paper, a brief over-
view of the NTP design will be helpful in understanding
the algorithms involved. A comprehensive description
of the NTP architecture, protocol and algorithms is in
[4] and citations found there. The global NTP time syn-
chronization subnet is a hierarchical tree of time servers,
and clients organized in much the same way as digital
telephone synchronization networks. The primary serv-
ers at the root of the tree are synchronized to national
standards by radio or telephone modem. In order to pro-
vide the most accurate and reliable service, secondary
servers and clients typically operate with several redun-
dant servers over diverse network paths. 

The NTP software operates in each server and client as
an independent process. At designated intervals, a client
sends a request to each in a set of configured servers and
expects a response at some later time. The exchange
results in four clock readings, one at the sending and
receiving times for each round. From these, the client
calculates the clock offset and roundtrip delay relative to
each server separately and presents these data to a set of
grooming algorithms. The client also calculates a dis-
tance metrics which is used to organize the NTP subnet
itself as a shortest-path spanning tree with root at the
primary servers. The grooming algorithms select the
best samples in the data stream from each server,
exclude provably incorrect servers, and combine the
data from the survivors to produce time correction,
update in the following, which drives the clock disci-
pline algorithm. 

This paper continues with a detailed description of the
new discipline, including its state machine and subalgo-
rithms which adjust the clock time and frequency and
manage the various parameters. The paper ends with a
suite of experiments designed to validate the design and
calibrate its performance using both synthetic noise gen-
erators and real data from Internet paths spanning conti-
nents and oceans.

2.  The NTP Clock Discipline Algorithm

In both the current NTP Version 3 and new Version 4
designs, the discipline corrects the computer clock time,
compensates for its intrinsic frequency error, and adjusts
the various parameters dynamically in response to mea-
sured network latency variations or jitter and oscillator
frequency stability or wander. The algorithms function
as a combination of two philosophically quite different
feedback control systems. In a phase-lock loop (PLL)
design, the updates are used directly to minimize the
phase error and indirectly to minimize the frequency
error. In a frequency-lock loop (FLL) design, the
updates are used directly to minimize the frequency
error and indirectly to minimize the phase error. As
shown later, a PLL usually works better when network
jitter dominates, while a FLL works better when the
oscillator wander dominates.

The discipline is implemented as the feedback control
system shown in Figure 1. The variable θr represents the

reference phase produced by the update and θc the con-

trol phase produced by the variable-frequency oscillator
(VFO), which controls the computer clock. The phase
detector produces a signal Vd representing the instanta-

neous phase difference between θr and θc. The clock fil-
ter functions as a tapped delay line, with the output
taken at the tap selected by the algorithm. The clock
selection, clustering and combining algorithms (not
shown) combine the data from multiple filters to pro-
duce the signal Vs. The loop filter, with impulse
response F(t), produces the signal Vc which controls the

VFO frequency ωc and thus its phase θc. The Vc signal

is generated by an adjustment process which runs at
intervals of one second. The characteristic behavior of
this model, which is determined by F(t) and the various
gain factors, is studied in many textbooks and summa-
rized in [4].

Figure 1. Clock Discipline Algorithm
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The original NTP Version 3 discipline, which is based
on a conventional PLL, has been improved to include a
FLL capability. The selection of which mode to use,
FLL or PLL, is made on the basis of update interval τ.
In the improved design, PLL mode is used for τ less
than 1024 s and FLL mode is used from 1024 s to 4.5 h,
which is the maximum possible in this design. This
improves the accuracy and stability in some modes of
operation, specifically those involving large τ, but has
proved suboptimal for reasons described later in this
paper. The new Version 4 discipline uses a combined
approach with a true hybrid PLL/FLL design which
gives good performance with τ from a few seconds to
well over a day, depending on accuracy requirements
and acceptable network overhead.

2.1  Time and Frequency Discipline

In the new design, the loop filter of Figure 2 is imple-
mented using two subalgorithms, one based on a con-
ventional PLL and the other on a FLL design suggested
in [2]. Both predict a time correction x as a function of
Vs. The PLL predicts a frequency adjustment yPLL as an

integral of Vsτ, while the FLL predicts an adjustment

yFLL as an exponential average of . The two adjust-

ments are combined and added to the current clock fre-
quency y, as shown in the figure. The x and y are then
used by the clock adjust process to control the VFO fre-
quency and close the feedback loop shown in Figure 1.

An overview will suffice to describe how the correction
and prediction algorithms work. The details, which are
given in [5], are beyond the scope of this paper. At each
update, a phase correction

(1)

is initialized, then exponentially amortized in Vc by the

clock adjust process at rate 1/Tc, where Tc is the loop
time constant. This is necessary to avoid step changes in
time, as well as to implement the lag network required
for a stable PLL.

In PLL mode, y is a time integral over all past values of
Vs, so

. (2)

From [4], this results in a transfer function 

, (3)

where  is the loop gain and  is the

corner frequency. From elementary theory, this is the
transfer function of a linear, time-invariant, PLL which
can drive both time and frequency errors to zero.

For good stability, Tc must be at least several times the

total loop delay which, because of the clock filter delay,
is several times τ. When the discipline is first started, a
relatively small τ = 64 s is required, in order to achieve
the required discipline capture range of 500 parts-per-
million (PPM). Selecting a compromise Tc = 1024 s, the
PLL response to a time step has a risetime of 53 min-
utes, an overshoot of 5% and a 63% response to a fre-
quency step of 4.25 hours. Ordinarily, τ increases
substantially once the frequency has stabilized and Tc

increases in proportion.

In FLL mode, yFLL is an exponential average of past fre-
quency changes, as computed from Vs and τ. The goal of

the algorithm is to reduce Vs to zero; so, if this has been
successful in the past, previous values can be assumed
zero and the exponential average becomes simply

, (4)

where w is a constant determined so that the averaging
time is close to the Allan intercept, as described later.

2.2  Hybrid FLL/PLL Combining Algorithm

The NTP Version 3 discipline selects either the PLL or
FLL mode on the basis of τ. In general, PLL mode is
used for τ < 1024 s, which is appropriate for network
servers, and FLL mode is used at τ > 1024 s, which is
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appropriate for modem servers. While this results in a
useful compromise, it does not provide for the automatic
selection on the basis of prevailing network jitter and
oscillator wander. It also results in a moderate transient
when switching between modes. In the NTP Version 4
design, the feedback loop is modified to operate as a
true hybrid, where FLL and PLL frequency predictions
are computed separately and combined on the basis of
RMS error over previous predictions. The result is that
the PLL prediction is weighted more heavily under con-
ditions of extreme network jitter due, for example, to
network congestion, while the FLL prediction is
weighted more heavily under conditions of extreme
oscillator wander due, for example, to large local tem-
perature variations.

As in the original design, Tc is the loop time constant
and τ the interval since the previous update. In the new
design, x is the residual time correction and yadj is the
frequency adjustment at the next update. First, the xFLL

and xPLL prediction errors are computed from these val-

ues and the frequency predictions at the last update:

 and 

. (5)

The RMS prediction errors  and  are com-

puted from successive samples of xFLL and xPLL. The
number of samples averaged, or equivalently the aver-
aging time, depends on Tc, which itself depends on τ.
The intent of this design is to keep the averaging time
near the Allan intercept.

Next, new values for x, yPLL and yFLL are determined

using (1), (2) and (4). The prediction errors determine
the proportional gain for the PLL and FLL frequency
adjustments used to compute yadj:

. (6)

Figure 3 shows typical standard error (RMS) curves as a
function of τ in FLL mode (solid), PLL mode (dash-dot)
and hybrid mode (dash). For this particular network
path, the optimum choice is PLL mode below 200 s and
FLL mode otherwise; however, the optimum choice var-
ies widely, depending on the particular network path
involved and degree of congestion. As a compromise,
the original NTP Version 3 discipline used PLL mode
below 1024 s and FLL mode otherwise. In the new
hybrid mode, PLL predictions are usually better at small
τ, while FLL predictions are better at large τ. From

about 100 s to 1000 s, hybrid mode is better than either
PLL or FLL modes and above 1000 s is only a little
worse than FLL mode. Below 100 s hybrid mode is
somewhat worse than PLL mode and a little better than
FLL mode, but still better than 1 ms.

2.3  Poll-Adjust Algorithm

NTP Version 3 time servers and clients operate today
using network paths that span the globe. In very many
cases, primary servers operate with several hundred cli-
ents or more. It is necessary to explore every means with
which τ can be increased without significantly degrad-
ing clock accuracy or stability. The NTP Version 4 disci-
pline allows a significant increase in τ without
compromising accuracy, while at the same time adapt-
ing dynamically to widely varying network jitter and
oscillator wander regimes.

The experiments described later in this paper show that,
in almost all cases, the standard error increases as τ
increases, due primarily to the effect of oscillator wan-
der. Since the overhead decreases as τ increases, a
method is needed to select τ as the best compromise
between required accuracy and acceptable overhead.
This is most important in configurations where a toll
charge is incurred for each poll, as in ISDN and tele-
phone modem services.

In the NTP Version 3 design, the minimum and maxi-
mum τ default to values appropriate for almost all net-
work and computer configurations. For network servers,
τ can range from 64 s to 1024 s, while for telephone
modem servers, it can range from 1024 s to 16,384 s.
However, in NTP Version 4, the upper limit can range
up to 131,072 s, or well over a day. The discipline auto-
matically manages τ within these ranges in response to
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the prevailing network jitter and oscillator wander. An
important point is that, using the new discipline, it is not
necessary to clamp τ to the minimum when switching
among different synchronization sources as in NTP Ver-
sion 3. In cases of moderate to severe network jitter and
with multiple sources, this sometimes causes frequent
clockhopping which in turn degrades accuracy.

A key statistic in controlling τ is the system dispersion,
which is a determined from the RMS errors measured
by the grooming algorithms [5]. If  is greater then

the system dispersion by an experimentally determined
constant factor, the oscillator frequency is deviating too
fast for the discipline to follow. In this case, τ is reduced
in stages to the minimum. If the opposite case holds for
some number of updates, τ is slowly increased in steps
to the maximum. A hysteresis mechanism built into the
algorithm prevents unnecessary dithering of τ. Under
typical operating conditions, τ hovers close to the maxi-
mum; but, on occasions when the oscillator frequency
wanders more than about 1 PPM, it quickly drops to
lower values until the wander subsides.

Figure 4 shows the time and frequency offsets and
update interval for a typical workstation over a 30-day
period. In this figure, the baseline is +10 for the τ curve,
zero for the time curve, and −20 for the frequency curve.
Most of the time is spent at the maximum interval, in
this case 16,384 s, with brief excursions to lower inter-
vals not less than 1024 s when the frequency deviates
too rapidly for the discipline to follow. This particular
figure shows the expected behavior for a typical tele-
phone modem, where it is important that τ remain at
large values whenever possible. In particular, it is
important that the initial frequency adaptation when the
discipline is first started be substantially complete
within only the first few samples before τ starts to

increase. In Figure 4, where the initial time and fre-
quency offsets are zero, this occurs after the eighth call.

2.4  Clock State Machine

The discipline must operate over an extremely wide
range of network jitter and oscillator wander character-
istics without manual intervention or configuration. As
determined by past experience and experiment [4], the
various data grooming algorithms work well to sift good
data from bad, especially under conditions of light to
moderate network and server loads. However, under
conditions of extreme network or server congestion,
operating system latencies, and oscillator wander, any
discipline may perform poorly and even become unsta-
ble.

In order to deal with very large transients at and after
startup, the discipline is managed by the state machine
shown in Figure 5. Each of the four states has defined
inputs, outputs and transition functions. Initially, the
machine is unsynchronized and in UNSET state. If the
minimum τ is greater than 1024, the first update
received sets the clock and transitions to HOLD state.
This behavior is designed for toll services with long
intervals between calls. If τ is less than 1024 s, these
actions will not occur until after several updates, to
allow the data grooming algorithms to accumulate suffi-
cient data for reliable synchronization.

In HOLD state the discipline is locked in FLL mode, in
order to provide rapid adaptation to possibly very large
clock oscillator frequency errors. Once entering HOLD
state, the machine remains in this state for several
updates, in order to complete, as far as possible, the fre-
quency adaptation process. After the correction θ has
decreased below 128 ms, the machine transitions to
SYNC state and remains there pending unusual condi-
tions.

In SYNC state, a suite of sanity checks, spike detectors
and tolerance clamps are operative. To avoid disruptions
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due to frequency spikes, the frequency is clamped not to
exceed 500 PPM and frequency adjustments not to
exceed 10 PPM. In addition, frequency adjustments are
disabled if the system dispersion exceeds 128 ms. To
avoid disruptions due to occasional network delay tran-
sients, spike detectors reject updates greater than ten
times the dispersion. However, the spike does increase
the dispersion; so, if a true time step were to occur, the
first one or two samples, may be discarded, but eventu-
ally the step will be recognized and corrections made.

Special provisions are made for updates larger than 128
ms, which may happen occasionally when the network
is badly congested or when some major disruption
occurs. It can also happen upon the occasion of a leap
second, when the clock has been automatically stepped
by the protocol, but for some reason the source has not
implemented the step. In both cases, the best response is
to ignore large updates, unless they persist for some
time.

However, if no updates less than 128 ms arrive after a
timeout interval, currently 15 m, the eventual response
should be to believe any that are received, regardless of
value. The first large update after the timeout causes a
state transition to SPIKE state, but does not set the
clock. If the next update after that is less than 128 ms,
the machine transitions to SYNC state and proceeds
normally. In this case the prior update is considered a
spike and ignored. If the next update in SPIKE state is
greater than 128 ms, the machine transitions to HOLD
state and sets the clock. Since the sanity checks are dis-
abled in HOLD state, the discipline can quickly adapt to
the new time and frequency as described previously.

Figure 6 shows an extreme example, where the initial
time offset is 100 ms and initial frequency offset is 500
PPM. Most of the frequency adaptation occurs in HOLD

state, as the FLL wrangles the frequency to approximate
agreement. The initial time offset is purposely chosen so
that the residual offset after this initial adaptation results
in the state machine first transitioning to SYNC state,
but with residual frequency offset beyond the loop cap-
ture range in that state. This eventually causes the offset
to exceed 128 ms and, after the timeout interval, the
state machine transitions to HOLD state. This process
may repeat a cycle or two, until the residual frequency
offset is sufficiently reduced. In Figure 6, after about six
hours, the adaptation is complete and τ starts to ramp
up. In the original NTP Version 3 design, the loop cap-
ture range was only 100 PPM and adaptation to even
that unambitious value took well over a day.

3.  Performance Evaluation

The performance of the new discipline has been evalu-
ated using a simulation approach. There are three rea-
sons for this, rather than building and testing the
algorithms in the context of the existing NTP Version 3
implementation. First, evaluation of these algorithms
can take long wallclock times, since the intrinsic time
constants are often quite long - several hours to days.
Simulation time runs much faster than real time, in fact
by several orders of magnitude. Second, the simulation
environment is not burdened by the infrastructure in
which the real software must operate, such as I/O and
monitoring code. Third, the simulator code itself, writ-
ten in portable C, represents a model for the eventual
formal specification and implementation, as well as a
documentation aid. This is the same approach that
proved highly successful in the development of the orig-
inal NTP Version 3 specification and implementation.

The simulator faithfully mimics the operation of the
implementation, including the entire suite of data
grooming algorithms, as well as the discipline itself. It
can use timestamp data collected by the existing soft-
ware operating over real Internet paths, as well as data
synthesized by internal phase and frequency noise gen-
erators. The generators produce white phase noise and
random-walk frequency noise, both using zero-mean
Gaussian processes. As shown in subsequent discussion,
these generators closely emulate the real data for most
statistical purposes. The general philosophy is to evolve
the algorithms using repeatable, synthetic noise streams
and, once the design has stabilized, verify the expected
operation using real data.

An important strategy in the experiments with real data
is the exclusive use of 19 primary servers in Europe,
Asia and the Americas. Since primary servers are inde-
pendently synchronized to external references, such as
GPS receivers or ACTS telephone modems, their clocks
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have presumed zero time and frequency error4. This
allows real phase data to be collected without contami-
nation by errors due to frequency variations. Real fre-
quency data are separately collected using a series of
measurements with a free-running clock oscillator and a
precision time reference source. The phase and fre-
quency data are collected in data files which are read by
the simulator and integrated with synthetic noise as
required.

There are three sets of experiments described in the fol-
lowing. In the first set, the behavior of typical Internet
paths and computer clocks is modeled using a special
statistic, in order to develop synthetic noise profiles
which characterize common client-server configura-
tions. In the second set, the behavior of the model is
explored using these profiles, in order to predict how the
errors due to network jitter and oscillator wander scale
relative to τ. These provide the basis and justification
for the new fully hybrid discipline design. In the third
set, the model is evaluated using real phase and fre-
quency data, in order to verify the model and discipline
behave as predicted.

3.1  Computer Clock Modeling

The first set of experiments is designed to develop a
model characterizing a typical computer clock oscillator
synchronized via Internet paths. The experiments are
designed to do two things: (a) evaluate the error charac-
teristics for typical oscillators and Internet paths
between a University of Delaware site and selected
remote sites and (b) validate that the synthetic random
noise generators incorporated in the simulator realisti-
cally emulate these characteristics on a statistical basis.

That typical computer clocks behave in ways quite
counterproductive to good timekeeping should come as
no surprise. There are no explicit means to control crys-
tal ambient temperature, power level, voltage regulation
or mechanical stability. For instance, in a survey of
about 20,000 Internet hosts synchronized by NTP, the
median frequency error was 78 PPM [3], with some
hosts showing errors over 500 PPM. Since the clock
oscillator is not temperature stabilized, its frequency
may vary over a few PPM in the normal course of the
day.

The traditional characterization of oscillator stability is
a plot of Allan variance [1], which is defined using a
series of time differences measured between a computer
clock and some external standard. Let xk be the kth mea-

surement and τ be the interval between measurements.
Define the fractional frequency

, k > 0, (7)

which is a dimensionless quantity. Now, consider a
sequence of N independent fractional frequency samples
for k = 1, 2,..., N. If the measurement interval is the same
as the averaging interval, the 2-sample Allan variance is
defined

 

(8)

and the Allan deviation  as the square root of this

quantity. The results are commonly displayed as a curve
plotted in log-log coordinates as described below.

Two experiments were designed to establish Allan devi-
ation characteristics for typical workstation clocks under
typical room-temperature conditions. The PPS experi-
ment measured time differences between a free-running
SPARC IPC clock and a directly connected cesium
clock. Data were collected at 2-s intervals over five days
and recorded in a data file. The LAN experiment mea-
sured differences between a free-running SPARC IPC
clock and a primary server on the same network wire.
Data were collected at 16-s intervals over fifteen days
using NTP and recorded in a data file.

The oscillator frequency computed from the LAN data
is shown in Figure 7. The frequency varies over a 3-
PPM range, sometimes abruptly, which is characteristic
of room temperature changes of a few degrees. This
experiment was conducted in spring, when the labora-
tory windows were open and the temperature allowed to
follow the weather, and is typical of “poor” stability.
The oscillator frequency computed from the PPS data
(not shown) is similar to the LAN characteristic, but
varies over a much smaller 0.25 PPM range. This exper-
iment was conducted in winter, when the room tempera-
ture was thermostatically controlled, and is typical of
“good” stability.

The results of the PPS and LAN experiments were pro-
cessed to produce plots of  in PPM against τ in

seconds in log-log coordinates. The results for the PPS

4. In practice, the errors relative to the reference source are rarely greater than 1 ms and often lower than 100 µs.
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and LAN data are shown as solid lines in Figure 8. The
shape of each curve depends on the phase and frequency
variations specific to the particular clock oscillator and
network path involved. The phase variations, which are
dominated by white phase noise, produce straight lines
with slope −1 on the plots [6]. The frequency variations,
which are dominated by random-walk frequency noise,
produce straight lines with slope +0.5 on the plots. The
intersection of these two lines, called here the Allan
intercept, characterizes each particular clock oscillator
and network path.

The Allan intercept is the primary statistic influencing
the design of the discipline. For τ below this point, there
is an underlying frequency tendency, so increased aver-
aging can improve the accuracy; however, above this
point increased averaging actually degrades the accu-
racy. This various time constants used in the discipline
are engineered with these facts in mind.

The primary contributions to the phase noise evident in
the results for the PPS and LAN data are jitter due to the
clock precision and reading errors, operating system
latencies and, for the LAN experiment, latencies con-
tributed by a lightly loaded 10-Mbps Ethernet. In both
the PPS and LAN experiments, the frequency variations
are due to nondeterministic wobbles of the oscillator
frequency, which is affected primarily by ambient tem-
perature variations.

The dashed lines on Figure 8 show the Allan deviations
determined from a random sequence where each value
consists of the sum of a white phase noise sample and a
random-walk frequency noise sample. White phase
noise is generated directly from a Gaussian distribution.
Random-walk frequency noise is generated by integrat-
ing samples from a Gaussian distribution. The standard
deviation parameter of each noise generator was chosen
by experiment so that the synthetic characteristics
closely match the measured characteristics. For compar-
ison, the NOISE curve on the figure was generated
using a phase parameter of zero and the frequency
parameter of the PPS experiment. This models the case
where the only errors are due to the simulated clock pre-
cision of 1 µs, which represents the best performance
possible with the common Unix microsecond clock.

The PPS and LAN results represent cases involving
external sources, either directly connected or connected
by a LAN. However, these results do not represent cases
where long Internet paths are involved. In the next set of
experiments, the simulator used timestamps measured at
64-s intervals over a ten-day period in fall, 1996,
between server pogo.udel.edu and the 19 remote serv-
ers, individually and in combination. In these experi-
ments the NTP data grooming algorithms were
connected, but the feedback loop was disconnected, so
the clock oscillator ran at constant frequency deter-
mined by the external source.

The Allan deviations for representative sources are
shown in Figure 9. The NOISE, PPS and LAN results
duplicate the data of Figure 8 for comparison. The
BARN data represent a “local” server, in this case on the
same network wire as pogo, while the USNO data repre-
sent a “nearby” server at the U.S. Naval Observatory in
Washington, DC, and the IEN data represent a “distant”
server at the IEN Galileo Ferraris in Torino, Italy. The
USNO data fairly well represent a path between two
servers in the U.S., where the path is only lightly con-
gested, while the IEN data represent moderate to heavy
congestion typical of paths spanning the Atlantic.

The curves described so far involve only a single server,
which is the only source used to synchronize the clock.

0 2 4 6 8 10 12 14 16
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
F

re
qu

en
cy

 (
P

P
M

)

Time (day)

Figure 7. LAN Frequency

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

NOISE

PPS

LAN

A
lla

n 
D

ev
ia

tio
n 

(P
P

M
)

Time Interval (s)

Figure 8. Allan Deviation



9

The PEERS curve represents the case where all servers,
except those on the local LAN, are used, so that the
intersection and clustering algorithms can select the best
subset of sources to synchronize the clock. Note that the
PEERS curve is actually lower (better quality) than the
“best” remote server, in this case USNO, which suggests
that the data grooming algorithms do in fact deliver time
more accurate than available from any single server sep-
arately.

Since all the servers in these experiment are synchro-
nized to external sources, the phase noise of each remote
source can be determined independently of the fre-
quency noise. All the curves appear as slightly wiggly
straight lines with slope −1 at low τ values, which is
indicative of white phase noise, as described previously.
On the other hand, the NOISE, PPS and LAN curves,
which represent free-running clock oscillators, inflect
upward, as expected with random-walk frequency noise.
If the remote servers were not externally synchronized,
their curves would inflect upwards in the same manner
as the PPS and LAN curves.

So far, synthetic-noise models for only the NOISE, PPS
and LAN sources have been shown to closely approxi-
mate the real noise characteristics. As the data shown in
Figure 9 were measured using the NTP simulator and
open-loop conditions, the question remains as to how
faithfully the white phase/random-walk frequency
model applies to the other sources under these condi-
tions. The solid lines in Figure 10 show the measured
Allan deviation for each source, while the dashed lines

show the synthetic noise generated by the NTP simula-
tor program. For this purpose, the frequency parameter
was set to zero, while the phase parameter was set to
agree with the actual phase noise at τ = 64 s.

The results show general agreement in all cases at the
lower values of τ, but some disagreement at the larger
values for some servers. Since the phase modeling is
most important at small values of τ, the disagreement at
large values is not considered significant. It is of interest
in passing to compare the USNO curve, which includes
the data grooming algorithms, with the USNO (raw)
curve, which used the same data, but with these algo-
rithms disabled. With these algorithms in place, the
errors are reduced by well over a factor of ten.

The results suggest that a useful predictive model for
ordinary computer clock oscillators and real networks
can be determined from the Allan intercept point (τ = x,
σ = y) and assuming white phase noise for τ < x and ran-
dom-walk frequency noise for τ > x. In this model, the
Allan deviation is completely determined by the white
phase noise characteristic of the network and operating
system and the assumption of “good” (PPS) or “poor”
(LAN) clock oscillators. A convenient x intercept for
graphical analysis is τ = 64 s, which can be used to pre-
dict the y intercept point at any other τ by simply multi-
plying by the ratio of the selected value to 64. The value
τ = 64 s is particularly useful, since this is the default
minimum used in the NTP protocol. Figure 11 shows
the y intercept at this value and the equivalent phase
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noise generator parameter. In this table, the y intercept is
determined directly from the Allan deviation plots. The
p parameter of the synthetic PPS data is varied until the
y intercept matches that of the measured PPS data. In a
similar manner, the p parameter of the synthetic LAN
data is varied until the y intercept matches that of the
measured LAN data. The remaining p parameters are
determined by scaling proportionally to the PPS value.

3.2  Performance Using Real and Synthetic 
Noise Sources

The next set of experiments is designed to explore the
performance of the NTP data grooming and discipline
algorithms with synthetic noise generators and the
parameters of Figure 11 over a simulated interval of 30
days. In each experiment, random timestamps are gener-
ated according to the statistical model for each of the
sources and the standard error of the discipline deter-
mined for τ from 64 s to 131,072 s. The intent of each
experiment is to determine how the errors scale with τ
using both PLL and FLL modes. This is done first using
synthetic phase noise only, then using synthetic fre-
quency noise only.

Figure 12 shows the results with the USNO source for
both PLL mode (solid lines) and FLL mode (dashed
lines) as a function of τ. When τ is varied with phase
noise only (p), the standard error is approximated by the
two nearly horizontal lines. In this case, the PLL outper-
forms the FLL by a factor of about ten. When τ is varied
with frequency noise only (f), the standard error is
approximated by the two lines with slope near 1.4. In
this case, the FLL outperforms the PLL by a factor of
about ten. In fact, the PLL becomes unstable at
τ > 4,096 s, as evidenced by the absence of plotted
points in the figure. In this and other cases, the criterion
for instability is the occurrence of one or more step cor-
rections of 128 ms or more during the simulation run.

As evident from Figure 12, the PLL alone usually per-
forms better under conditions of high phase noise and
low frequency noise, while the FLL alone usually per-
forms better under conditions of high frequency noise
and low phase noise. While the generator parameters
used in constructing the figure are typical of a network
path consisting of two LANs connected by a relatively
uncongested T1 network, the y coordinates of the lines
scale directly as the noise parameters, but retain the
slopes shown. Thus, since the frequency noise is
assumed fixed in the experiment, the selection of which
discipline mode to use depends only on the phase noise
of the particular network path involved.

Assuming the frequency noise is fixed by oscillator
type, it would seem that a simple measurement of phase
noise would suffice to determine the Allan intercept and
optimum point to switch between FLL and PLL modes.
As in [2], the phase noise could be measured for each
Internet server prior to regular operation and the opti-
mum point determined. However, as confirmed by
experiment, this is not practical in the current Internet.
Figure 13 shows the absolute phase noise in log-y coor-
dinates measured for the IEN path, which is typically
congested during working hours in Europe and the U.S.
The phase noise varies over three decades during the
hours and days represented in the figure. An NTP client
synchronized via this path would have to periodically
measure the phase noise and recompute the optimum
point. In principle, this could be done at intervals
throughout the working day and a profile developed.
This is still only an approximate solution and does not
allow for minute-by-minute adjustment of the optimum
point. This is in fact the motivation for the hybrid mode,
in which the weight factors for the FLL and PLL predic-

Source y Intercept (PPM) p Parameter

NOISE 8.09x10−3 2.93x10−7

PPS 0.179 5.70x10−6

LAN 0.955 3.10x10−5

BARN 6.04 2.19x10−4

PEERS 15.2 5.50x10−4

USNO 23.1 8.38x10−4

IEN 110 4.00x10−3

Figure 11. Allan Deviation Phase Noise 
Parameters
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tions are determined in real time from the measured pre-
diction errors.

Figure 14 shows a composite of the standard errors with
noise parameters for each source in PLL mode (dashed
lines) and hybrid mode (solid lines). For most sources
over most of the range, the errors in hybrid mode are
about ten times less than in PLL mode. The exceptions
are when the phase noise overwhelms the frequency
noise, which occurs for the most distant servers at small
τ.

Comparing Figure 14 with Figure 9, it is apparent the
inflection point where the curves corresponding to each
source depart the asymptotes on Figure 14 are roughly a
factor of ten above the Allan intercept point on Figure 9.
This is an interesting comparison, in spite of the fact that
the former shows standard error, which is a measure of
time differences, while the latter shows Allan deviation,
which is a measure of frequency differences. In addi-

tion, Figure 14 shows data collected under closed-loop
conditions, while Figure 9 shows data collected under
open-loop conditions. Nevertheless, the results suggest
that an Allan deviation characterization of each network
path and clock oscillator can be an accurate predictor of
discipline performance.

The final set of experiments is designed to determine
how closely the discipline with synthetic noise emulates
the discipline with real data. Figure 15 shows the stan-
dard error for real data with PLL mode (dashed lines)
and hybrid mode (solid lines). Each curve shows the
results with the phase data of Figure 9 and the frequency
data of Figure 7. Compared to Figure 14, the curves for
real data are somewhat jagged, mostly due to the spiky
frequency characteristic evident in Figure 7, but in gen-
eral follow the same characteristic as synthetic noise. As
evident in the figures, the performance with real data is
not quite as good as with synthetic data; however, the
performance in hybrid mode is almost always better
than PLL mode. 

4.  Conclusions

The results demonstrated in this paper show a substan-
tial improvement in the performance of the NTP Version
4 discipline over both the original NTP Version 3 algo-
rithm and the improved algorithm described in [4]. In
addition, the new algorithm automatically selects the
optimum combination of FLL and PLL data over a wide
range of network jitter and oscillator wander while in
regular operation and not requiring initial calibration.
Perhaps the most striking result is that the new disci-
pline is effective with τ well over one day, which is an
attractive feature when telephone toll charges are
involved.

Figure 13. IEN Phase Noise
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As the complexity represented by the suite of crafted
NTP algorithms have grown, it has become necessary to
test and validate their performance by analysis and sim-
ulation. A good deal of the discussion in this paper has
focused on the nature of the simulation process, design
and analysis of the synthetic noise models and valida-
tion of the discipline performance in systematic simula-
tion exercises. Many times during these exercises
interesting things happened which resulted in significant
improvements in the algorithm design. While this paper
has not revealed them, there were in fact a number of
fruitless experiments and dead ends which gave some
insight into the relative merit of some design features, in
particular the sanity checks, spike detectors and toler-
ance clamps. In addition, the insights gained suggested
modifications which considerably simplified the FLL
and PLL design.

Finally, the refinement of the NTP simulator program,
while guiding the development of the various algo-
rithms, may be most valuable as a specification vehicle,
implementation tool and documentation aid for actual
NTP Version 4 implementation. It should be mentioned
in passing that the simulations demonstrated in this
paper require a good deal of machine time. A full suite
of all simulations, including the simulator program itself
and Matlab analysis programs, requires an over two
hours on a 300-MHz workstation.
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