
SPEEDING UP THE CONVERGENCE OF ESTIMATED FAIR SHARE IN
CSFQ

Peng Wang
Department of Electrical & Computer Engineering

University of Delaware
Newark, DE, USA

email: pwangee@udel.edu

David L. Mills
Department of Electrical & Computer Engineering

University of Delaware
Newark, DE, USA

email: mills@ece.udel.edu

ABSTRACT
Core-stateless Fair Queueing (CSFQ) is a scheme to
achieve approximate fair bandwidth sharing without per-
flow state in the interior routers. The extra packets that
beyond the fair share for each flow are dropped proba-
bilistically based on the attached flow rate in the packet
header and the estimated fair share. A heuristic method is
used to estimate the fair share in CSFQ. In our previous
work CSFQIMP (CSFQ Improvement), we took the prob-
abilistic idea from SRED (Stabilized RED) and applied it
in CSFQ to estimate the fair share. The probabilistic ap-
proach achieves a comparable or even better performance
than the original heuristic approach. However, the conver-
gence speed of the probabilistic approach is slow. There-
fore, we propose a method to speed up the convergence of
the fair share estimate in this paper. The idea comes from
that the router randomly selects k packets instead of one
packet to compare with the incoming packet in SRED. We
show that the convergence speed is increased in the usual
cases. Simulation results show that the speedup approach
achieves a quick convergence compared with the original
probabilistic method in our previous work.

KEY WORDS
CSFQ, Fairness, Convergence, Network Management

1 Introduction

The current Internet provides a connectionless, best-effort,
and end-to-end packet service by using the IP protocol. The
majority of the Internet traffic, including HTTP, FTP, TEL-
NET, and email traffic, is carried by TCP protocol. With
the increasing greediness of unresponsive multimedia ap-
plications over the Internet, one must be concerned with
the fairness problem.

The fair bandwidth allocations can isolate flows and
protect well-behaved flows from ill-behaved ones. The def-
inition of flows is very flexible. In this paper, the flow is de-
fined by 5-tuple (source IP address, destination IP address,
source port, destination port, and protocol) in the packet

1This research is sponsored by the NSWCDD grant N00178-04-1-
9001. Views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies
or endorsements of NSWCDD or the US goverment.

header. In CSFQ [1] edge routers maintain the per-flow
state, and core routers are stateless. Edge routers measure
the per-flow rate and attach the flow rate as a label to each
packet header. Core routers measure the aggregate flow rate
and estimate the fair share. Then the incoming packets are
dropped probabilistically based on the packet label (flow
rate) and the estimated fair share. Therefore, the accuracy
of the estimated fair share is the key factor in determining
the performance of CSFQ. CSFQ uses a heuristic method
to estimate the fair share.

In order to stabilize its buffer occupation, SRED [2]
determines the dropping probability for each incoming
packet based on the estimated number of flows. A Zombie
list consists of a shift register that is much larger than the
router’s queue, and stores the recently seen packets. SRED
[2] uses a probabilistic method based on a Zombie list to
estimate the number of flows at the router.

Assume lots of flows shared the router, the estimated
fair share is approximately set to the link bandwidth di-
vided by the estimated number of flows. In our previous
work [3], we took the probabilistic idea from SRED and
applied it in CSFQ to estimate the fair share without the
Zombie list because CSFQ has an important characteristic
that each packet has its flow rate as a label in the packet
header. The probabilistic approach achieves a compara-
ble or even better performance than the original heuristic
approach. However, the convergence speed of the proba-
bilistic approach is slow, which makes the assumption that
traffics are stationary during the estimation period suspect.

Therefore, in this paper we propose a method to speed
up the convergence of the fair share estimate. The idea
comes from that the router randomly selects k packets in-
stead of one packet to compare with the incoming packet in
SRED. We show that the convergence speed is increased in
the usual cases. Simulation results show that the speedup
approach achieves a quick convergence compared with the
original probabilistic method in our previous work [3].

The remainder of the paper is structured as follows.
In the next section, CSFQ architecture is described in more
detail. In Section 3, we describe a probabilistic approach
for achieving the fair share in detail from our previous work
CSFQIMP [3]. In section 4, we describe the method to
speed up the convergence of estimated fair share. In Sec-
tion 5, we evaluate the performance of our method in com-

496-066 14

kirk

parison to the original probabilistic method from [3] by us-
ing simulations. Finally, we conclude in Section 6.

2 CSFQ Architecture

2.1 Objectives

The primary objective is to achieve max-min fairness [4]
among the flows in a congested router. Consider a link
with capacity C serving N flows, the flow’s arrival rate is
ri(t), i = 1, ..., N . Let α(t) be the fair share rate at time
t and A(t) =

∑N
i=1 ri(t) be the total arrival rate. Max-

min fairness is then achieved when the fair share α(t) is
the unique solution to:

C =
N∑

i=1

min(ri(t), α(t)) (1)

If A(t) < C (no congestion happens), all packets pass
through the router unconstrained and the fair share α(t) is
set to maxi(ri(t)). On the other hand, the flow rate ri(t)
above the fair share α(t) is constrained to α(t), while the
flow rate ri(t) less than the fair share is unconstrained.

2.2 CSFQ Algorithm

To facilitate our discussion, let us introduce how CSFQ
achieves the above objective in three steps.
1) Measure the Flow Arrival Rate

The flow arrival rates ri(t) measured at the edge
routers are attached to the packet header as a label. The ex-
ponential average is used to calculate the flow arrival rate
and updated for each incoming packet. Let tk

i and lki be the
arrival time and the packet length of the kth packet of flow
i.

rnew
i = (1 − e−T k

i /K)
lki
T k

i

+ e−T k
i /Krold

i (2)

where T k
i = tki − tk−1

i is the packet inter-arrival time, and
K is a constant.
2) Link Fair Rate Estimation

CSFQ uses a heuristic algorithm to estimate the fair
share rate. Let us introduce three variables first: α, the es-
timated fair share rate; A, the estimated aggregate arrival
rate; F , the estimated rate of the accepted traffic. The ex-
ponential average is used to calculate A and F . Detailed
descriptions for A and F can be found in [1].

Assume C is the link capacity and Kc is a win-
dow size to filter out the inaccuracy due to the exponen-
tial smoothing. If A < C at all times during a time in-
terval of length Kc, the fair share α is set to the largest
rate of the active flows in the last Kc time units. On the
other hand, if A > C at all times during a time interval of
length Kc, the fair share rate α is updated by the formula
αnew = αold · C/F . Generally, the fair share α is updated
at the end of the interval Kc.

Moreover, to reduce the negative effects of buffer
overflow, another heuristic rule is used: α is decreased by
a small fixed percentage for each buffer overflow. But α
cannot be decreased more than 25% consecutively to avoid
overcorrection.
3) Packet Dropping and Label Rewriting

For each incoming packet, the router calculates a
dropping probability based on the packet label and the fair
share estimate: Prob = max(0, 1−α/p.label). The drop-
ping algorithm limits the flows to their fair share band-
width. Finally, the packets are relabeled using the mini-
mum of the current packet label and the router’s estimated
fair share α, because the packets beyond the fair share are
dropped at the routers and the original packet label is not
an accurate estimate of its actual flow rate.

3 Probabilistic Approach for Fair Band-
width Allocations

3.1 Estimate the Number of Flows in SRED

A probabilistic method to estimate the number of flows is
used in the algorithm SRED without maintaining the per-
flow state. SRED uses a Zombie list that is a large shift
register to store several thousand recently seen packets. For
each incoming packet, SRED randomly selects a packet
from the Zombie list and compares these two packets. If
they are from the same flow, it is called a ”hit”. Otherwise,
it is called a ”miss”. The router maintains a hit-frequency
count.

We assume that each arrival packet belongs to one of
the N flows. Let Pi be the probability that a packet be-
longs to flow i, and assume Pi is stationary over the time in
which the estimation is done. Then the hit probability for
an incoming packet is equal to:

Phit =
N∑

i=1

P 2
i (3)

Thus, if the flows have the the same traffic intensity, the hit
probability Phit is 1/N . The inverse of the hit probability
is an exact estimate of the number of flows. Even when the
flows have asymmetric traffic intensities, the inverse of the
hit probability is a reasonable estimate of the number of the
active flows.

After sampling n new arrival packets, there are m hits
total.

n · 1
N

≈ n · Phit = m (4)

The estimated number of flows is equal to n/m. When
there are tens of thousands of flows shared the router, the
estimated fair share is approximately set to the link band-
width divided by the estimated number of flows.

15

3.2 Estimate the Number of Flows in CSFQ

The probabilistic idea is taken from SRED and applied to
estimate the number of flows in CSFQ without the Zombie
list. We assume that each arrival packet belongs to one
of the N flows and the probability that an arriving packet
belongs to a given flow is independent of all other packets.
Let ri be the rate of flow i stored in the packet label and
A be the aggregate flow rate measured at the router. Let
P̂i = ri/A denote the proportion of traffic that belongs to
flow i. We assume that P̂i is stationary over the time in
which the estimation is done. This means that we can view
P̂i as the probability that an incoming packet belongs to
flow i.

For n new arrival packets, there are n ·Pi packets that
belong to flow i, i = 1, . . . , N and

∑N
i=1 Pi = 1 (Pi is the

actual probability). When a packet from flow i arrives at the
router, the probability Pi is approximated by P̂i = ri/A.
After the n · Pi packets that belong to flow i arrive at the
router, the sum of the probability P̂i for these n ·Pi packets
is equal to (n ·Pi) · P̂i ≈ n · Pi

2 . Furthermore, since there
are N flows, the sum of the probability P̂i for each flow i
is equal to n · Pi

2 where i = 1, . . . , N .
However, it is impossible to compute n · Pi

2 for each
flow i since the core router does not maintain the per-flow
state and the packets cannot be classified into the different
flows. But if we sum probability P̂i for all n packets with-
out classifying them, we can get a sum m:

m = nP 2
1 + nP 2

2 + · · · + nP 2
N = n

N∑
i=1

P 2
i = nPhit (5)

This is the same as the formula (4) used in SRED. The es-
timated number of flows is equal to n/m. Assume lots of
flows share the router, the estimated fair share is approx-
imated set to the link bandwidth divided by the estimated
number of flows.

One problem encountered by this method is an inac-
curacy when the traffic density is vastly different. Thus, we
consider n accepted packets instead of n incoming pack-
ets at the routers. The incoming packets are classified into
three classes: successfully transmitted packets, dropped
packets due to dropping policy and dropped packets due
to queue overflows. The accepted packets include the suc-
cessfully transmitted packets and the dropped packets due
to queue overflows at the routers. Not surprising, consider-
ing the accepted packets reduces the impact of heavy flows
and improves the estimated accuracy. Moreover, the es-
timated number of flows converges to the actual number
of flows after several iterations. The following example is
given to show the convergence process.

Let us consider the case that two aggregate flows ar-
rive at a core router. The bandwidth of the core router is
5, 000 packets/sec and the packet size is fixed. The first
aggregate flow consists of 500 flows with the flow rate 10
packets/sec each. The second aggregate flow consists of 5
flows with the flow rate 1, 000 packets/sec each. Thus, the

aggregate arrival rate A is 10, 000 packets/sec. The P̂i for
each flow in the first aggregate flow is 1/1000 and the P̂i

for each flow in the second aggregate flow is 1/10. We set
the initial value of the estimated fair share is 5, 000 pack-
ets/sec. The estimated number of flows is updated once
each second at the core router.

The estimated number of flows converges to 505 after
12 iterations. Figure 1 gives the convergence process of the
estimate. This shows that the probabilistic method is rea-
sonable and converges if the flows are stationary. However,
the convergence speed is slow.

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14

The number of iteration
Th

e
es

tim
at

io
n

of
 th

e
nu

m
be

r
of

 fl
ow

s
Figure 1. The convergence of the estimated number of
flows

4 Speeding up the Convergence of Estimated
Fair Share

In SRED, when there are tens of thousands of flows, the
convergence speed of the estimated number of flows is slow
due to lots of misses. In general, we can choose k > 1
packets from the Zombie list, and compare all of them with
the incoming packet. Not surprisingly, the convergence of
the estimated number of flows speeds up. Since the reverse
of the hit probability is the estimated number of flows, we
only study the convergence of the hit probability in the fol-
lowing sections.

4.1 The convergence of the hit probability
for choosing one packet in SRED

The hit probability for an incoming packet is equal to
Phit =

∑N
i=1 P 2

i for choosing one packet from the Zom-
bie list to compare. RATE [5] provides a method to es-
timate the sampling size in order to achieve the required
estimated accuracy. Let us determine a sample size T that
the estimate P̂hit ∈ (Phit− β

2 , Phit + β
2) with the probabil-

ity greater than α. In other words, we are willing to tolerate
an error of ± β

2 with the probability less than α. Zα is used
to denote the α percentile for the unit normal distribution.
For example, if α = 99.99%, then Zα = 4.0.

Theorem 1: Let Y (T) represents the number of hits

16

after T samples. For large T ,

√
T [

Y (T)
T

− Phit] ∼ N [0, Phit(1 − Phit)] (6)

where N [a, b] represents a normal distribution with mean a
and variance b.
Proof: Let yj , j = 1, . . . , T be Bernoulli distribution ran-
dom variables with a hit (success) probability Phit and
a miss (failure) probability 1 − Phit. Assume yj , j =
1, . . . , T are independent identical distribution random
variables. Then, Y (T) =

∑T
j=1 yj is a binomial distri-

bution random variable with the parameter T and the hit
(success) probability Phit. The mean of Y (T) is TPhit,
and the variance of Y (T) is TPhit(1 − Phit). According
to the central limit theorem, the binomial random variable
Y (T) with a large T is approximated by a normal distribu-
tion. �
Since Y (T) represents the number of hits after T samples,
P̂hit = Y (T)

T is the maximum likelihood estimator for Phit.
The α percentile confidence interval is given by

P̂hit ± Zα

√
Phit(1 − Phit)

T
(7)

Then

2 · Zα

√
Phit(1 − Phit)

T
= β (8)

The maximum value of Phit(1 − Phit) is 0.25 when
Phit = 0.5. In order to satisfy the accuracy requirement,
the minimum sample size T is given by

T =
Z2

α

β2
(9)

After T packets are sampled, the estimate of P̂hit for
Phit belongs to the interval P̂hit ∈ (Phit − β

2 , Phit + β
2)

with a probability greater than α.

4.2 The convergence of the hit probability
for choosing k packets in SRED

For an incoming packet, the probability that the packet be-
longs to flow i is Pi. In the case of choosing k packets
from the Zombie list and comparing all of them with the
incoming packet, the probability that there is at least one of
the k packets belonging to flow i is Pzi = 1 − (1 − Pi)k.
Since there are tens of thousands of flows in the router, it
is reasonable to assume that the probability Pi is generally
small. Thus, the probability Pzi can be approximated by
Pzi ≈ kPi. Furthermore, the hit probability that the in-
coming packet belongs to the flow i is kP 2

i . Then the hit
probability for an incoming packet is equal to the sum of
the hit probability for each flow:

Phitk =
N∑

i=1

kP 2
i = kPhit (10)

Theorem 2: Let Y (T) represents the number of hits
after T samples. For large T ,

√
T [

Y (T)
T

− Phitk] ∼ N [0, Phitk(1 − Phitk)] (11)

Proof: Same as Theorem 1. �
Theorem 3: Let Xn be a sequence of statistics such

that

√
n [

Xn

n
− θ] → X ∼ N [0, σ2(θ)] (12)

Let f be a differentiable function of one variable. Then

√
n [f(

Xn

n
) − f(θ)] → f(X) ∼ N [0, σ2(θ)(f ′(θ))2]

(13)
Proof: See Rao [6] for the details of the proof. �

In this case, θ is equal to Phitk , and f(θ) is equal to
Phit. Then,

f(θ) =
1
k
θ (14)

From Theorem 3,

√
T [

Y (T)
k · T − Phit] ∼ N [0,

1
k2

k Phit(1 − kPhit)] (15)

Since Y (T) represents the number of hits after T

samples, P̂hit = Y (T)
kT is the maximum likelihood estima-

tor for Phit. The α percentile confidence interval is given
by

P̂hit ± Zα

√
1
k2

kPhit(1 − kPhit)
T

(16)

Then

2 · Zα
1
k

√
kPhit(1 − kPhit)

T
= β (17)

The maximum value of kPhit(1−kPhit) is 0.25 when
Phit = 1

2k . In order to satisfy the accuracy requirement, the
minimum sample size T is given by

T =
Z2

α

k2β2
(18)

To achieve the same estimated accuracy of the hit
probability, the sample size of choosing k packets is 1

k2 of
the sample size of choosing one packet for each incoming
packet. In other words, although the convergence speed is
not increased by k2 due to nonlinearity, we can say that the
convergence speed is increased in the usual cases.

4.3 Speeding up the convergence of esti-
mated number of flows in CSFQ

To speed up the convergence, a factor k is multiplied with
the probability P̂i to emulate choosing k packets to com-
pare with the incoming packet. When we sum the proba-
bility kP̂i for all n packets without classifying them into
the different flows, we can get a sum m:

17

m = nkP 2
1 + nkP 2

2 + · · · + nkP 2
N = nk

N∑
i=1

P 2
i (19)

Then,

Phit =
N∑

i=1

P 2
i =

m

nk
(20)

However, if the factor k is multiplied with the probability
P̂i for each packet, the sum m is divisible by the factor
k. The factor k will be canceled in the numerator and the
denominator.

Let us carefully study the case of choosing k pack-
ets in SRED. If the incoming packet belongs to flow i and
the probability Pi is small, the probability that there is at
least one packet of the k packets belonging to flow i is ap-
proximately kPi. Thus, the number of hits for flow i is
approximately increased by k. On the other hand, if the
probability Pi is large, the probability that there is at least
one packet of the k packets belonging to flow i is not in-
creased by k since the probability is not increased linearly.
Thus, the number of hits for flow i is not increased by k.

Therefore, the incoming packets are roughly classi-
fied into two classes based on the packet label and the es-
timated fair share. If the incoming packet label is less than
the estimated fair share, we consider the real packet as k
virtual packets with the same packet label. It means that P̂i

multiplies a factor k, and the number of incoming packets
(In fact, the number of virtually incoming packets) is added
by k . On the other hand, if the incoming packet label is
greater than the estimated fair share, we consider the real
packet as k/x (x = 2 or 3 empirically) virtual packets with
the same packet label. The factor x depends on the packet
label and the estimated fair share. Further research includes
finding the proper factor x for each incoming packet. The
detailed pseudo code is given in the next section.

Let us see the example again. The factor k is equal to
3. The estimated number of flows converges to 505 after
5 iterations. Figure 2 gives the convergence process of the
estimate. The convergence process speeds up.

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14

The number of iteration

Th
e

es
tim

at
io

n
of

 th
e

nu
m

be
r

of

flo
w

s

Figure 2. The convergence of the estimated number of
flows

Estimate_ (p, dropped) // is the estimated fair share.
// is initialized to the packet label when the queue size
// first reaches the threshold (1/4 of the buffer size)

A = estimate_rate (A , p); //estimate aggregate arrival rate
if (dropped == TRUE)

return;
if (A > C) //congestion

if (pkt_label <)
m = m + k * pkt_label / A;
n_last_step = n_last_step + k;

else
m = m + k/3 * pkt_label / A;
n_last_step = n_last_step + k/3;

else //uncongestion
m = m + pkt_label / A;

n++; // enqueueing number of packets
if (n == 1./5*SAMPLE_SIZE)

N = (n_last_step + n_last)/ (m + m_last);
if (n == SAMPLE_SIZE)

n_last = n_last_step; //update n_last and m_last
m_last = m;
n = 0; n_last_step = 0; //initialize n, m, n_last_step for
m = 0; // the next sampling period

return = C / N;

Figure 3. Pseudo of fair share estimate

4.4 Implementation of the Speedup Method

Let us define n as the sampling size and the time to ac-
cept these n packets as a sampling period. After n packets
are accepted by the router, the estimated fair share band-
width is updated. In this paper the sampling size n is de-
fined as the number of packets transmitted successfully in
the output link for a 0.1s interval. Since the packet size
is fixed at 1000 bytes and the link bandwidth is 10Mbps,
the sampling size n is about 1, 000 in the simulations. Fur-
ther research includes determining n from T appeared in
the sections 4.1 and 4.2 to achieve a better performance.

During the congestion time (A > C), the speedup
method is used. If the incoming packet label is less than
the estimated fair share, P̂i multiplies a factor k and the
number of virtually incoming packets is increased by k.
If the incoming packet label is greater than the estimated
fair share, P̂i multiplies a factor k/3 and the number of
virtually incoming packets is increased by k/3. The fac-
tor k may take the value from 3 to 15 empirically. During
the uncongestion time (A ≤ C), the incoming packet is
equal to one virtually incoming packet. Further research
includes choosing the proper value k and evaluating the
performance of choosing different k.

However, setting a constant estimated fair share for
the current sampling period may result in an oscillation of
the throughput of the flow. To solve the oscillation prob-
lem, BLACK (for BLACKlist unresponsive flows) [7] gives
hints that the n and m in the previous sampling period need
to be considered to improve the estimated accuracy. There-
fore, we further divide the sampling size into five equal
length segments. In the current sampling period, when the

18

number of the really accepted packets is q (q = 1, 2, 3, 4, 5)
times the segment size, we update the fair share based on
the information from both the current and previous sam-
pling periods. The equation (21) is used to update the num-
ber of flows:

N =
n last step + n last

m + m last
(21)

where m last and n last are the value of m and the num-
ber of virtually accepted packets in the last sampling period
respectively; m and n last step are the accumulated sum
of P̂i (in fact kP̂ or k

3 P̂ or P̂) and the number of virtually
accepted packets in the current period respectively.

When the number of the really accepted packets n is
equal to the sampling size, the value of m last and n last
are updated to the m and n last step of the current period.
This modification responds quickly to changing dynamics
in the flow rates. The pseudo code reflecting this algorithm
is described in Figure 3.

5 Simulations

In this section we evaluate our proposal using the ns-2 sim-
ulator. The speedup method is compared with the original
heuristic method and our previous probabilistic method in
a series of experiments. We call the probabilistic method
as CSFQIMP and call the speedup method as CSFQIMPK.
We compare the estimated fair share of the three methods
in the following experiments. Due to the space limitation,
we are unable to show all our simulation evaluations.

Flow 0

Flow 1

Flow N-1

Sources

Router

Sink

Figure 4. Single congested link

The simulation set-up used in this paper is identical to
that in reference [1]. Unless otherwise specified, we use the
same parameters as those in CSFQ. Each output link has a
latency of 1ms, a buffer of 64kB, and a buffer threshold is
16kB. The averaging constant used in estimating the flow
rate is K = 100ms. The packet size is fixed at 1k bytes, and
the simulation time is 10s. The sampling size n is 1, 000.
The factor k is 9. Detailed descriptions of other simulation
parameters of CSFQ can be found in [1].

5.1 Single Congested Link

The topology of the first set of simulations is shown in Fig-
ure 4. The single congested link is shared by N flows, and

we evaluate the estimated fair share with two experiments.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2 4 6 8 10

E
st

im
at

io
n

of
 fa

ir
B

an
dw

id
th

 (M
bp

s)

Time

FAIR
CSFQ

CSFQIMP
CSFQIMPK

Figure 5. Fair share estimation

In the first experiment, 32 CBR (Constant Bit Rate)
flows, indexed from 0, share the 10Mbps bottleneck link.
The flow rate of flow i is (i + 1) times more than its fair
share, i.e. (i+1)·10/32Mbps. Figure 5 shows the estimated
fair share over a 10−s interval. CSFQIMPK performs bet-
ter than CSFQIMP. It converges faster and estimates more
accurate than CSFQIMP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10

E
st

im
at

io
n

of
 fa

ir
B

an
dw

id
th

 (M
bp

s)

Time

FAIR
CSFQ

CSFQIMP
CSFQIMPK

Figure 6. Fair share estimation

In the second experiment, we evaluate the impact of
an CBR flow (Flow ID = 0) on a set of 31 TCP flows. The
flow rate of the CBR flow is 10Mbps, which tries to occupy
all of the link capacity. Figure 6 shows the estimated fair
share over a 10−s interval. CSFQIMPK converges much
faster and more accurate than CSFQIMP.

5.2 Multiple Congested Links

The second set of simulations is run with the topology
shown in Figure 7. The purpose is to analyze how the
throughput of a well-behaved flow is affected when the flow
traverses more than one congested link. Due to the space
limitation, we only show the case that the well-behaved
flow is a TCP flow and there are 5 congested links. The

19

CBR-1

Source

Router 1

Sink

CBR-20

TCP-0

Sources

CBR-21

Router 2

CBR-40

Sinks

CBR-1-CBR-20

CBR-(2K)1

Router K

CBR-(2K)20

Router K+1

CBR-(2K)1-CBR-(2K)20

TCP-0

Figure 7. Multiple congested links

cross traffic enters the path in one of the routers and exits
at the next. The CBR sources that formed the cross traffic
are now replaced with ON/OFF sources. The burst (ON)
and idle (OFF) time periods are both exponentially distrib-
uted with the same average 0.5 sec. Figure 8 shows the
estimated fair share of each congested link for CSFQ, CS-
FQIMP, and CSFQIMPK respectively. As expected, CS-
FQIMPK is better than CSFQIMP.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10

E
st

im
at

e
of

 F
ai

r S
ha

re

Time

fair share
Congested link 1
Congested link 2
Congested link 3
Congested link 4
Congested link 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10

E
st

im
at

e
of

 F
ai

r S
ha

re

Time

fair share
Congested link 1
Congested link 2
Congested link 3
Congested link 4
Congested link 5

Figure 8. (a) Fair share estimate of CSFQIMP for 5 con-
gested links (b) Fair share estimate of CSFQIMPK for 5
congested links

6 Conclusion

In the paper [3] we propose a probabilistic approach for
achieving fair bandwidth allocations in CSFQ. However,
the convergence speed of the estimate is slow, which makes
the stationary assumption suspect. Thus, there are a num-
ber of situations that the probabilistic method cannot han-
dle well due to an inaccuracy in estimating the number of
flows.

In this paper we propose a method to speed up the
convergence of estimating the number of flows. The idea
comes from that the router randomly selects k packets in-
stead of one packet to compare with the incoming packet
in SRED. We discuss its design goals and present the per-
formance simulations and experiments that demonstrate
its performance compared to the existing scheme in var-
ious scenarios. The speedup approach achieves satisfac-
tory performance. Further research includes determining
the speedup factor k/x for each incoming packet based on
the flow rate and the estimated fair share.

It is interesting to note that TCP flows are difficult to
achieve the fair share bandwidth in CSFQ due to the TCP’s
congestion control mechanism. Further research includes
developing a rate-based transport protocol that can achieve
the fairness where the routers are responsible for estimating
the fair share and allocating the bandwidth.

References

[1] I. Stoica, S. Shenker, and H. Zhang, Core-stateless
fair queueing: a scalable architecture to approximate
fair bandwidth allocations in high-speed networks,
IEEE/ACM Transactions on Networking, 11(1), 2003,
33-46.

[2] T. J. Ott, T. V. Lakshman, and L. H. Wong, SRED: Sta-
bilized RED, Proc. of IEEE INFOCOM’99, New York,
USA, 1999, 1346-1355.

[3] P. Wang and D. Mills, A probabilistic approach for
achieving fair bandwidth allocations in CSFQ, Proc.
of IEEE NCA’05, Cambridge, MA, USA, 2005, Ac-
cepted.

[4] D. Bertsekas and R. Gallager, Data Networks (New
York: Prentice Hall, 1987).

[5] M. Kodialam, T. V. Lakshman, and S. Mohanty, Runs
based traffic estimator (RATE): A simple, memory ef-
ficient scheme for per-flow rate estimation, Proc. of
IEEE INFOCOM’04, Hong Kong, China, 2004.

[6] C. R. Rao, Linear Statistical Inference and its Applica-
tions (New York: John Wiley and Sons Inc., 1973).

[7] M. Labrador, and S. Banerjee, Black: Detection and
preferential dropping of high bandwidth unresponsive
flows, Proc. of IEEE ICC’03, Anchorage, Alaska,
USA, 2003, 664-668.

20

