
Mills Standards Track [Page i]

Network Working Group David L. Mills
Technical Report 06-1-2 University of Delaware
Category: Eclectic January 2006

Network Time Protocol Version 4
 Core Protocol Specification

Abstract

This document is a specification for the Network Time Protocol Version 4 (NTPv4), which is
used to synchronize the time for Internet hosts, routers and ancillary devices to Coordinated
Universal Time (UTC) as disseminated by national standards laboratories. It describes the core
state machine, including the state variables, transition functions and processing steps. It also
describes the fundamental on-wire protocol used to exchange time values between peers, servers
and clients. It describes how to calculate the clock offset, roundtrip delay and various statistics
used by the mitigation algorithms to calculate the maximum error and nominal error inherent in
these measurements.

This document does not describe the mitigation algorithms themselves, including the filter,
selection, clustering and combining algorithms used to develop the best estimates from the
available server population, nor does it describe the clock discipline algorithm used to adjust the
system clock time and frequency in response to measured time offsets. It does not describe the
server discovery schemes, such as the DNS pool scheme or the Manycast scheme, nor does it
discuss the Autokey public key authentication scheme. These are discussed in companion
documents.

This specification is the basis of the reference implementation available at www.ntp.org. It
includes all the procedures described in this document, as well as the mitigation algorithms,
clock discipline algorithm and discovery schemes referenced herein.

Keywords: network time synchronization, computer time synchronization, time synchronization
protocol

Sponsored by: Naval Surface Weapons Center (Dahlgren) Contract N00178-04-1-9001.

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page ii]

Table of Contents

1. Introduction...1
2. NTP Modes of Operation..2
3. Definitions ..3
4. Implementation Model..4
5. Data Representation..6
6. State Variables ..7

6.1 Structure Conventions ...7
6.2 Global Parameters ...8
6.3 Packet Header Variables ..8

7. On-Wire Protocol..11
8. Peer Process ..13

8.1 Peer Process State Variables, ...14
8.2 Peer Process Operations ..15
8.3 Clock Filter Algorithm ..18

9. System Process ...20
9.1 System Process State Variables ...20
9.2 System Process Operations..21

10. Poll Process...23
10.1 Poll Process State Variables...23
10.2 Poll Process Operations ...23

11. Poll Rate Control and the Kiss-o’-Death ..25
12. References...26
Appendix A.NTPv4 Packet Formats ...28

A.1 NTP Header Field Formats..28
A.2 NTPv4 Extension Field Formats ...29

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page iv]

List of Figures

Figure 1. Implementation Model..5
Figure 2. NTP Time Formats ...6
Figure 3. On-Wire Protocol..12
Figure 4. Receive Processing ...15
Figure 5. Client Packet Processing...16
Figure 6. Timestamp Processing ..17
Figure 7. Packet Processing ...17
Figure 8. Clock Filter Algorithm ...19
Figure 9. Accept Routine ...22
Figure 10. System Variables Processing ..22
Figure 11. Poll Update Routine..24
Figure 12. Poll Routine ..24
Figure 13. Poll Routine ..25
Figure 14. NTPv4 Header Format..28
Figure 14. NTPv4 Header Format..28
Figure 15. NTPv4 Extension Field Format ..29

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page v]

List of Tables

Table 1: Association and Packet Modes ...2
Table 2: Name Prefix Conventions...7
Table 3: Global Parameters...8
Table 4: Packet Header Variables...9
Table 5: Peer Process State Variables...14
Table 6: System Process State Variables ..21
Table 7: Poll Process State Variables ...23

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 1]

1. Introduction

This report constitutes a formal specification of the Network Time Protocol Version 4 (NTPv4)
core architecture, protocol and algorithms. NTP is used to synchronize the system clocks among
a set of distributed time servers and clients. This document defines the core architecture, on-wire
protocol, algorithms and data structures used by NTPv4 and is intended primarily for developers.
This and related documents collectively updates and obsoletes the Network Time Protocol
Version 3 Protocol (NTPv3) Specification RFC-1305 [6] and previous versions of the
specification. The core protocol continues to be compatible with all prior versions except the
original program (version 0). While certain minor changes have been made in some protocol
header fields, these do not affect the interoperation between NTPv4 and previous versions.

The NTP subnet model includes a number of widely accessible primary time servers
synchronized by wire or radio to national standards. The purpose of the NTP protocol is to
convey timekeeping information from these primary servers to secondary time servers via the
Internet. Crafted algorithms mitigate errors that may result from network disruptions, server
failures and possible hostile action. Intermediate servers are configured as a forest where time
values flow from the primary servers at the root via branching secondary servers toward clients
at the leaves of the forest.

The NTPv4 reference implementation available at www.ntp.org complies with this and related
specification documents. The new design overcomes significant shortcomings in the NTPv3
design, corrects certain bugs and incorporates new features. In particular, the reference
implementation uses floating double data types throughout, except for the first-order timestamp
differences required to calculate offset and delay. This results in time resolution better than one
nanosecond and frequency resolution better than one nanosecond per second.

Additional improvements include a new clock discipline algorithm which is more responsive to
system clock hardware frequency fluctuations and can hold accuracy within a few microseconds
with precision time sources and within a few hundred microseconds with poll intervals equal to
the maximum NTPv3 poll interval of 1024 seconds. With NTPv4 the poll interval can be
extended to 36 hours with only modest loss of accuracy. The new algorithm can calibrate the
intrinsic system clock frequency offset accurately within 15 minutes and increase the poll
interval more rapidly.

The reference implementation continues to support the IPv4 address family and in addition
supports the IPv6 address family and can operate with both families at the same time. It supports
over 44 reference clocks, including all known devices in use today plus many older devices that
might be found on eBay. It supports new server discovery schemes ant both symmetric key and
public key authentication [4].

This document describes only the core structure of NTP; other documents describe additional
protocol functions [1], mitigation algorithms [2] and the public key authentication protocol [4].
The NTP service model includes the modes of operation described in Section 2 and the data
types described in Sections 5 and 6. The implementation model described in Section 4 is based
on a multiple-process operating system architecture, although other architectures could be used

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 2]

as well. The on-wire protocol described in Section 7 is based on a returnable-time design which
depends only on measured clock offsets, but does not require reliable message delivery. The
synchronization subnet is a self-organizing, hierarchical master-slave network with
synchronization paths determined by a shortest-path spanning tree and defined metric. While
multiple masters (primary servers) may exist, there is no requirement for an election protocol.

This remaining sections of this document define the NTP core protocol, including state variables,
protocols and algorithms and is suitable for both a fully featured NTP as well as a subset usually
known as Simple Network Time Protocol (SNTP) [5]. SNTP is intended for primary servers
equipped with a reference clock, as well as clients with no dependent clients. The fully
developed NTP core protocol intended for intermediate servers with multiple upstream servers
and multiple downstream clients. Details specific to NTP packet formats used with the IPv4 and
IPv6 and User Datagram Protocol (UDP) are presented in Appendix A.

2. NTP Modes of Operation

NTP-capable hosts are described as servers, clients and peers. Servers retain no state after
returning the response to a client packet; clients and peers retain state in the form of a data
structure called an association. Persistent associations are mobilized when the service starts and
are never demobilized. Ephemeral associations are mobilized during operation, such as upon the
arrival of a broadcast message, and demobilized by timeout or error. Preemptable associations
are mobilized when or after the service starts and demobilized when deemed no longer useful for
synchronization. For the purposes of the core specification, only persistent processes are
assumed. The reference implementation includes suitable algorithms for ephemeral and
preemptable associations, but they are not incorporated in this specification.

There are three NTP protocol variants, client/server, peer and broadcast. Each is associated with
an association mode as shown in Table 1. In the client/server variant a client association sends
mode 3 (client) packets to a server, which returns mode 4 (server) packets. Servers provide
synchronization to one or more clients, but do not accept synchronization from them. A server
can also be a reference clock which obtains time directly from a standard source such as a GPS
receiver or telephone modem service. We say that clients pull synchronization from servers.

In the peer variant a peer can operate with either a symmetric active or symmetric passive
association. A symmetric active association sends mode 1 (symmetric active) packets to a
symmetric active peer association. Alternatively, a symmetric passive association can be
mobilized upon arrival of a mode 1 packet. That association sends mode 2 (symmetric passive)
packets and persists until error or timeout. We say that peers both push and pull synchronization

Association Mode Send Mode Receive Mode
symmetric active 1 1 or 2
symmetric passive 2 1
client 3 4
server 4 3
broadcast 5 N/A

Table 1: Association and Packet Modes

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 3]

to and from each other. For the purposes of this document, a peer operates like a client, so a
reference to server implies peer as well.

In the broadcast variant a broadcast association sends mode 5 (broadcast) packets which are
received by multiple broadcast client associations. Ordinarily, clients do not send packets to the
servers; however, it is useful to provide an initial volley where the client can exchange a number
of packets in order to calibrate the propagation delay and to run the Autokey security protocol,
after which the client reverts to listen-only mode. We say that broadcast servers push
synchronization to willing consumers.

Following conventions established by the telephone industry, the level of each server in the
hierarchy is defined by a number called the stratum, with the primary servers assigned stratum
one and the secondary servers at each level assigned one greater than the preceding level. As the
stratum increases from one, the accuracies achievable degrades somewhat depending on the
particular network paths and system clock stabilities. It is useful to assume that mean errors, and
thus a metric called the synchronization distance, increase approximately in proportion to the
stratum.

Drawing from the experience of the telephone industry, which learned such lessons at
considerable cost], the subnet topology should be organized to produce the lowest
synchronization distances, but must never be allowed to form a loop. In NTP the subnet topology
is determined using a variant of the Bellman-Ford distributed routing algorithm, which computes
the shortest distance spanning tree rooted on the primary servers. As a result of this design, the
algorithm automatically reorganizes the subnet to produce the most accurate and reliable time,
even when one or more primary or secondary servers or the network paths between them fail.

3. Definitions

A number of terms used throughout this document have a precise technical definition. A
timescale is a frame of reference where time is expressed as the value of a monotonic-increasing
binary counter with an indefinite number of bits. It counts in seconds and fraction with the
decimal point somewhere in the middle. The Coordinated Universal Time (UTC) timescale
represents mean solar time as disseminated by national standards laboratories. The local time is
represented by the system clock maintained by the operating system kernel. The goal of the NTP
algorithms is to minimize both the time difference and frequency difference between UTC and
the system clock. When these differences have been reduced below nominal tolerances, the
system clock is said to be synchronized to UTC.

The date of an event is the UTC time at which it takes place. Dates are ephemeral values which
always increase in step with reality and are designated with upper case T in this document. It is
convenient to define another timescale coincident with the running time of the program, or
daemon, that provides the synchronization function. This is convenient in order to determine
intervals for the various repetitive functions like poll events. Running time or epoch is usually
designated with lower case t.

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 4]

A timestamp T(t) represents either the UTC date or time offset from UTC at epoch t. Which
meaning is intended should be clear from context. Let T(t) be the time offset, R(t) the frequency
offset, D(t) the ageing rate (first derivative of R(t) with respect to t). Then, if T(t0) is the UTC
time offset determined at t = t0, the UTC time offset after some interval t is

, (1)

where e is a stochastic error term discussed later in this document. While the D(t) term is
important when characterizing precision oscillators, it is ordinary neglected for computer
oscillators.

It is important in computer timekeeping applications to assess the performance of the
timekeeping function. The NTP performance model includes four statistics which are updated
each time a client makes a measurement with a server. The offset θ represents the maximum-
likelihood time offset of the server clock relative to the system clock. The delay δ represents the
roundtrip delay between the client and server. The dispersion ε represents the maximum error
inherent in the measurement. It increases at a rate equal to the maximum disciplined system
clock frequency tolerance Φ, typically 15 PPM. The jitter ϕ, defined as the root-mean-square
(RMS) average of the most recent time offset differences, represents the nominal error in θ.

While the θ, δ, ε, and ϕ statistics represent measurements of the system clock relative to the
server clock, the NTP protocol includes mechanisms to accumulate the δ and ε quantities,
respectively Δ and Ε, relative to the primary reference clock. The system offset Θ and system
jitter ϑ statistics represent weighted averages of possibly several servers. All of these statistics
are available to the dependent applications in order to assess the performance of the
synchronization function. The detailed formulations of these quantities are given later in this
document.

4. Implementation Model

Figure 1 shows the implementation model for a typical client including an association dedicated
to each server and containing data used to mitigate between multiple servers and discipline the
system clock. A client sends an NTP packet to one or more servers and processes the replies as
received. The server interchanges addresses and ports, overwrites certain fields in the message
and returns the message immediately. Information included in the NTP message allows the client
to adjust the system clock time and frequency and update the error statistics.

The figure shows two processes for each association, a peer process to receive messages from
the server or reference clock driver and a poll process to transmit messages to the server or
reference clock driver. As each NTP message is received, the offset θ between the peer clock and
the system clock is computed along with the associated statistics δ, ε and ϕ.

T t t0+() T t0() R t0() t t0+() 1
2
---D t0() t t0+()2

e+ + +=

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 5]

The system process includes the selection and clustering algorithms which mitigate among the
various servers and reference clock drivers to determine the most accurate and reliable survivors
and cull the remainder on a statistical basis. The combining algorithm develops the final clock
offset as a statistical average of the survivors. The specific design described in [2] is required for
every NTP implementation operating as a client of upstream servers and simultaneously as a
server for downstream clients. The reference implementation includes these algorithms, but their
description is beyond the scope of this specification.

The clock discipline process includes engineered algorithms to control the time and frequency of
the system clock, here represented as a variable frequency oscillator (VFO). Timestamps struck
from this oscillator close the feedback loop which maintains the system clock time. Associated
with the clock discipline process is the clock adjust process, which runs once each second. It is
used to inject a computed time offset each second in order to maintain constant frequency. The
RMS average of past time offset differences represents the nominal error or system jitter ϑ. The
RMS average of past frequency offset differences represents the oscillator frequency stability or
frequency wander Ψ.

It is important that the dynamic behavior of the clock discipline algorithms be carefully
controlled in order to maintain stability in the NTP subnet at large. The algorithms together are
described as an adaptive parameter, hybrid phase/frequency-lock feedback loop. The specific
design described in [2]] is required for every NTP implementation operating as a client of
upstream servers and simultaneously as a server for downstream clients. The reference
implementation includes these algorithms, but their description is beyond the scope of this
specification.

While not shown in the figure, the implementation model includes some means to set and adjust
the system clock. The operating system is assumed to provide two functions, one to set the time
directly, for example the Unix settimeofday() function, and another to adjust the time in small
increments advancing or retarding the time by a designated amount, for example the Unix
adjtime() function. In the intended design the clock discipline process uses the adjtime() function
if the adjustment is less than a designated step threshold, and the settimeofday() function if

Remote
Servers

Server 1

Server 2

Peer/Poll
1

Server 3

Peer/Poll
2

Peer/Poll
3

Selection
and

Clustering
Algorithms

Combining
Algorithm

Loop Filter

VFO

Clock Discipline
Process

System
Process

Peer/Poll
Processes

Clock Adjust
Process

Figure 1. Implementation Model

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 6]

above the step threshold. The manner in which this is done and the value of the step threshold is
not specified in this document.

5. Data Representation

All numeric values in packet headers are represented in twos complement format, with bits
numbered in big-endian fashion from zero starting at the left, or high-order, position. There are
three NTP formats used to represent time values, a 128-bit date format, a 64-bit timestamp
format and a 32-bit short format, as shown in Figure 2. The 128-bit date format is used where
sufficient storage and word size is available. It includes a 64-bit signed seconds field, which
represents time until the Sun grows cold, and a 64-bit fraction field, which resolves the second
within the time a photon takes to cross an atomic nucleus. Dates cannot be produced by NTP
directly, nor is there need to do so. When necessary, dates can be derived from external means,
such as the filesystem or dedicated hardware.

The 64-bit timestamp format is used in packet headers and other places with limited word size. It
includes a 32-bit signed seconds field, which represents the number of seconds since the base
date, and a 32 bit fraction field, which resolves the second within 232 picoseconds. The 32-bit
short format is used in delay and dispersion header fields where the full resolution and range of
the other formats are not necessary. It includes a 16-bit unsigned seconds field and a 16-bit
fraction field. The only operations permitted with short format values are addition and
multiplication by a constant.

As evident in the figure, the seconds field in the date format includes a 32-bit era field and a 32-
bit seconds within the era field. The base date is 0628:16h 7 February 2036 UTC, when all 128
bits are zero. The base era includes signed dates from about 68 years before the base date, 1968,
to about 68 years after the base date, 2104. In this era seconds in timestamp format are identical
to seconds in date format with the era number extended from the high order (sign) bit of the
timestamp. There are means available to disambiguate the era number when converting from
timestamp to date format in other eras, but these are beyond the scope of this specification.

Date values are represented in twos complement arithmetic relative to the base date. Values
greater than zero represent times after the base date; values less than zero represent times in
before it. Dates are signed values and operations on them can produce a result in the same or
different eras. Timestamps are signed values and the only operations permitted with them are

Seconds since 1900 Fraction

NTP Timestamp Format

0 31 32 63

Era Offset Fraction

NTP Date Format

0 63 64 127

Era Number

31 32

Seconds Fraction

NTP Short Format

0 15 16 31

Figure 2. NTP Time Formats

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 7]

twos complement subtraction, and addition or subtraction by a constant, yielding a 63-bit signed
result. In either format a value of zero is a special case representing unknown or unsynchronized
time. In either format the clock resolution is expressed as the number of significant bits of the
second fraction. In order to minimize bias and help make timestamps unpredictable to an
intruder, the nonsignificant bits should be set to a random bit string.

It is not the intent of this specification to require any specific number representation in the
implementation itself, just the representation in data exchanged between server and client.
However, it is critical that operations on dates be in 128-bit integer arithmetic and timestamps be
in 128-bit or 64-bit arithmetic and both preserve the full field width for internal storage.
However, it is convenient to represent timestamp differences, which are ordinarily small
compared to the timestamp magnitudes, and short format values in floating double arithmetic,
which is convenient for the sometimes intricate mathematical operations specified in this
document.

Some time values are represented in exponent format, including the precision, time constant and
poll interval values. These are in 8-bit signed integer format in log2 (log to the base 2) seconds.
The only operations permitted on them are increment and decrement. For the purpose of this
specification and to simplify the presentation, a reference to one of these state variables by
simple name means the exponentiated value, while reference explicate as exponent means the
actual value.

6. State Variables

The NTP protocol state machines described in following sections are defined using state
variables and transition functions. State variables are separated into classes according to their
function in packet headers, peer and poll processes, and the system process. Packet variables
represent the NTP header values in transmitted and received packets. Peer and poll variables
represent the contents of the association for each server separately. System variables represent
the state of the server as seen by its dependent clients. There are other variable classes assigned
to the clock discipline and clock adjust processes, but not described in this specification.

6.1 Structure Conventions

In order to disambiguate between different variables of the same name but used in different
processes, the following Unix-like structure member naming convention is adopted, as shown in
Table 2. Note that named variables are rendered in fixed-width font, while equation variables are
in italic sans-serif or Greek font. Each receive packet variable v is a member of the packet

Name Description
r. receive packet header variable
x. transmit packet header variable
p. peer state variable
s. system state variable

Table 2: Name Prefix Conventions

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 8]

structure r with fully qualified name r.v. In a similar manner x.v is a transmit packet variable
and s.v is a system process variable. There is a set of peer and poll variables p.v for each
association.

6.2 Global Parameters

In addition to the variable classes a number of global parameters are defined in this specification,
including those shown with values in Table 3. While these are the only parameters needed in this
specification, a much larger collection is necessary for the mitigation algorithms, clock discipline
process and related implementation dependent functions. Some of these parameter values are cast
in stone, like the NTP port number assigned by the IANA and the version number assigned this
specification. Others like the frequency tolerance, involve an assumption about the worst case
behavior of a host once synchronized and then allowed to drift when its sources have become
unreachable. The minimum and maximum parameters define the limits of state variables as
described in later sections. While shown with fixed values in this document, some
implementations may make them variables adjustable by configuration commands.

6.3 Packet Header Variables

The most important state variables from an external point of view are the packet header variables
described below. The NTP packet header follows the UDP and IP headers and the physical
header specific to the underlying transport network. It consists of a number of 32-bit (4-octet)
words, although some fields use multiple words and others are packed in smaller fields within a
word. The NTP packet header shown in Appendix A has 12 words followed by optional
extension fields and finally an optional message authentication code (MAC) consisting of the
key identifier and message digest fields.

The optional extension fields described in Appendix A are used by the Autokey security protocol
[4], which is not described here. The MAC is used by both Autokey and the symmetric key
authentication scheme described in Appendix A. As is the convention in other Internet protocols,
all fields are in network byte order, commonly called big-endian.

A list of the packet header variables is shown in Table 4 and described in detail below. The
packet header fields apply to both transmitted (x prefix) and received packets (r prefix). The
variables are interpreted as follows:

Name Value Description
PORT 123 NTP port number
VERSION 4 NTP version number
TOLERANCE 15 frequency tolerance (PPM)
MINPOLL 4 minimum poll exponent (16 s)
MAXPOLL 17 maximum poll exponent (36 h)
MAXDISP 16 maximum dispersion (s)
MINDIST .005 distance increment (s)
MAXDIST 1 distance threshold (s)
MAXSTRAT 16 maximum stratum number

Table 3: Global Parameters

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 9]

leap. 2-bit integer warning of an impending leap second to be inserted or deleted in the last
minute of the current month, with bit 0 and bit 1, respectively, coded as follows:

00 no warning
01 last minute of the day has 61 seconds
10 last minute of the day has 59 seconds
11 alarm condition (the clock has never been synchronized)

version. 3-bit integer indicating the NTP version number, currently 4.

mode. 3-bit integer indicating the mode, with values defined as follows:

0 reserved
1 symmetric active
2 symmetric passive
3 client
4 server
5 broadcast
6 NTP control message
7 reserved for private use

stratum. 8-bit integer indicating the stratum level, with values defined as follows:

0 unspecified or invalid
1 primary server (e.g., equipped with a GPS receiver)
2-255 secondary server (via NTP)

It is customary to map the value 0 in received packets to MAXSTRAT in the peer variable
stratum and to map stratum values of MAXSTRAT or greater to 0 in transmitted
packets. This allows reference clocks, which normally appear at stratum 0, to be

Name Formula Description
leap leap leap indicator (LI)
version version version number (VN)
mode mode mode
stratum stratum stratum
poll τ poll interval (log2 s)
precision ρ precision (log2 s)
rootdelay Δ root delay
rootdisp Ε root dispersion
refid refid reference ID
reftime reftime reference timestamp
org T1 origin timestamp
rec T2 receive timestamp
xmt T3 transmit timestamp
dst T4 destination timestamp
keyid keyid key ID
digest digest message digest

Table 4: Packet Header Variables

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 10]

conveniently mitigated using the same algorithms used for external sources. By
convention, stratum values equal to or greater than MAXSTRAT are considered
unspecified or invalid.

poll. 8-bit signed integer indicating the maximum interval between successive messages, in
log2 seconds. In the reference implementation the values can range from MINPOLL to
and including MAXPOLL.

precision. 8-bit signed integer indicating the precision of the system clock, in log2
seconds. For instance a value of −18 corresponds to a precision of about one
microsecond. The precision is normally determined when the service first starts up as the
minimum of several iterations of the time to read the system clock.

rootdelay. 32-bit unsigned integer indicating the total roundtrip delay to the reference
clock, in in NTP short format.

rootdisp. 32-bit unsigned integer indicating the total dispersion to the reference clock, in
NTP short format.

refid. 32-bit code identifying the particular server or reference clock. The interpretation
depends on the value in the stratum field. For stratum 0 (unspecified or invalid) this is a
four-character ASCII string called the kiss code used for debugging and monitoring
purposes. For stratum 1 (reference clock) this is a four-octet, left-justified, zero-padded
ASCII string assigned to the radio clock. While not enumerated in the NTP specification,
the following have been used as ASCII identifiers:

GOES Geosynchronous Orbit Environment Satellite
GPS Global Position System
PPS Generic pulse-per-second
IRIG Inter-Range Instrumentation Group
WWVB LF Radio WWVB Ft. Collins, CO 60 kHz
DCF77LF Radio DCF77 Mainflingen, DE 77.5 kHz
HBG LF Radio HBG Prangins, HB 75 kHz
MSF LF Radio MSF Rugby, UK 60 kHz
JJY LF Radio JJY Fukushima, JP 40 kHz, Saga, JP 60 kHz
LORC MF Radio LORAN C 100 kHz
TDF MF Radio Allouis, FR 162 kHz
CHU HF Radio CHU Ottawa, Ontario
WWV HF Radio WWV Ft. Collins, CO
WWVH HF Radio WWVH Kaui, HI
NIST NIST telephone modem
USNO USNO telephone modem
PTB, etc. European telephone modem

Above stratum 1 (secondary servers and clients) this is the reference identifier of the
server. If using the IPv4 address family, the identifier is the four-octet IPv4 address. If

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 11]

using the IPv6 address family, it is the first four octets of the MD5 hash of the IPv6
address.

reftime. 64-bit signed integer indicating the time when the system clock was last set or
corrected, in NTP timestamp format.

org. 64-bit signed integer indicating the time at the client when the request departed for the
server, in NTP timestamp format.

rec. 64-bit signed integer indicating the time at the server when the request arrived from the
client, in NTP timestamp format.

xmt. 64-bit signed integer indicating the time at the server when the response left for the
client, in NTP timestamp format.

dst. 64-bit signed integer indicating the time at the client when the reply arrived from the
server, in NTP timestamp format. Note: This value is not included in a header field; it is
determined upon arrival of the packet and made avaiable in the packet buffer data
structure.

keyid. 32-bit unsigned integer used by the client and server to designate a secret 128-bit
key. Together, the keyid and digest fields collectively are called message authentication
code (MAC).

digest. 128-bit bitstring computed by the keyed MD5 message digest algorithm described
in Appendix A.

7. On-Wire Protocol

The NTP on-wire protocol is the core mechanism to exchange time values between servers, peers
and clients. It is inherently resistant to lost or duplicate data packets. Data integrity is provided
by the IP and UDP checksums. No flow-control or retransmission facilities are provided or
necessary. The protocol uses timestamps, either extracted from packet headers or struck from the
system clock upon the arrival or departure of a packet. Timestamps are precision data and should
be restruck in case of link level retransmission and corrected for the time to compute a MAC on

transmit1.

The on-wire protocol uses four timestamps numbered T1 through T4 and three state variables
org, rec and xmt, as shown in Figure 3. This figure shows the most general case where each
of two peers, A and B, independently measure the offset and delay relative to the other. For

1. The reference implementation strikes a timestamp after running the MD5 algorithm and
adds the difference between it and the transmit timestamp to the next transmit times-
tamp.

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 12]

purposes of illustration the individual timestamp values are shown in lower case with subscripts
indicating the order of transmission and reception.

In the figure the first packet transmitted by A containing only the transmit timestamp T3 with
value t1. B receives the packet at t2 and saves the origin timestamp T1 with value t1 in state
variable org and the destination timestamp T4 with value t2 in state variable rec. At this time or
some time later B sends a packet to A containing the org and rec state variables in T1 and T2,
respectively and in addition the transmit timestamp T3 with value t3, which is saved in the xmt
state variable. When this packet arrives at A the packet header variables T1, T2, T3 and
destination timestamp T4 represent the four timestamps necessary to compute the offset and
delay of B relative to A, as described later.

Before the A state variables are updated, two sanity checks are performed in order to protect
against duplicate or bogus packets. A packet is a duplicate if the transmit timestamp T3 in the
packet matches the xmt state variable. A packet is bogus if the origin timestamp T1 in the packet
does not match the org state variable. In either of these cases the state variables are updated, but
the packet is discarded.

The four most recent timestamps, T1 through T4, are used to compute the offset of B relative to A

0

0.

0

0

t2 = clock

t3

t4

t5.t1

t5

t6

t7

org

rec

t3

t4

T3 ≠ t3?

t8

t5

t6

T3 ≠ t1?

t6

org

rec

t1

t2

t1

t2

t4

t3.

t2 t6

t5.

t1

0

0 t1

t2

t3.

T3 ≠ 0?

t4

t4

t3t2

t1 t5

t6

t8

t7

t4

t2 t3 t6 t7

t8

t6 = clock

t1 = clock t5 = clock

t4 = clock t8 = clock

t3 = clock t7 = clock

t1

t5

Packet
Variables

Peer B

State
Variables

Packet
Variables

Peer A

State
Variables

T1

T3

T2

T4

T1

T3

T2

T4

t7T1 = t3?xmt t30

t1xmt t5 T1 = t5?T1 = t1?

Figure 3. On-Wire Protocol

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 13]

(2)

and the roundtrip delay

. (3)

Note that the quantities within parentheses are computed from 64-bit signed timestamps and
result in signed values with 63 significant bits plus sign. These values can represent dates from
68 years in the past to 68 years in the future. However, the offset and delay are computed as the
sum and difference of these values, which contain 62 significant bits and two sign bits, so can
represent unambiguous values from 34 years in the past to 34 years in the future. In other words,
the time of the client must be set within 34 years of the server before the service is started. This
is a fundamental limitation with 64-bit integer arithmetic.

In implementations where floating double arithmetic is available, the first-order differences can
be converted to floating double and the second-order sums and differences computed in that
arithmetic. Since the second-order terms are typically very small relative to the timestamps
themselves, there is no loss in significance, yet the unambiguous range is increased from 34
years to 68 years. Additional considerations on these issues, as well as the behavior when
moving beyond the prime era, are discussed in online white papers at www.ntp.org but beyond
the scope of this specification.

In some scenarios where the frequency offset between the client and server is relatively large and
the actual propagation time small, it is possible that the delay computation becomes negative. For
instance, if the frequency difference is 100 PPM and the interval T4 − T1 is 64 s, the apparent
delay is −6.4 ms. Since negative values are misleading in subsequent computations, the value of
δ should be clamped not less than the system precision defined below.

The discussion above assumes the most general case where two symmetric peers independently
measure the offsets and delays between each other. In the case of a stateless server, the protocol
can be simplified. A stateless server copies T3 and T4 from the client packet to T1 and T2 of the
server packet and tacks on the transmit timestamp T3 before sending it to the client.

8. Peer Process

The peer process runs the on-wire protocol to determine the clock offset and roundtrip delay and
in addition computes statistics variables used by the system and poll processes. Peer variables are
instantiated in the association data structure when the structure is initialized and updated by
arriving messages. There is peer process and association for each server.

θ T B() T A()
1
2
--- T2 T1–() T3 T4–()+[]=–=

δ T ABA() T4 T1–() T3 T2–()–= =

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 14]

8.1 Peer Process State Variables,

Table 5 summarizes the common names, formula names and a short description of each peer
variable, all of which have prefix p. The following configuration variables are normally
initialized when the association is mobilized, either from a configuration file or upon arrival of
the first packet for an ephemeral association.

p.srcadr. IP address of the remote server or reference clock. Reference clock addresses
are by convention in IPv4 format with prefix 127.127.t.u, where t is the device driver
number and u the instantiation number. This becomes the destination IP address in
packets sent from this association.

p.srcport. UDP port number of the server or reference clock. This becomes the
destination port number in packets sent from this association. When operating in
symmetric modes (1 and 2) this field must contain the NTP port number PORT assigned
by the IANA. In other modes it can contain any number consistent with local policy.

p.dstadr. IP address of the client. This becomes the source IP address in packets sent
from this association.

Name Formula Description
Configuration Variables
srcaddr source address
srcport source port
dstaddr destination address
dstport destination port
keyid key ID
Packet Variables
leap leap indicator
version version number
pmode packet mode
stratum stratum
ppoll peer poll interval
rootdelay ΔR root delay
rootdisp ΕR root dispersion
refid reference ID
reftime reference timestamp
Timestamp Variables
t t epoch
org origin timestamp
rec receive timestamp
xmt transmit timestamp
Statistics Variables
offset θ clock offset
delay δ roundtrip delay
disp ε dispersion
jitter ϕ jitter

Table 5: Peer Process State Variables

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 15]

p.dstport. UDP port number of the client, ordinarily the NTP port number PORT
assigned by the IANA. This becomes the source port number in packets sent from this
association.

p.keyid. Symmetric key ID This identifies the 128-bit MD5 key used to generate and
verify the MAC. The client and server or peer can use different values, but they must map
to the same key.

The variables defined below are updatesd from the packet header as each packet is received.
They are interpreted in the same way as the as the packet variables of the same names.

p.leap, p.version, p.pmode, p.stratum, p.ppoll, p.rootdelay,
p.rootdisp, p.refid, p.reftime

It is convenient for later processing to convert the NTP short format values for p.rootdelay
and p.rootdisp to floating double in the association itself.

The p.org, p.rec, p.xmt variables represent the timestamps computed by the on-wire
protocol described previously. The p.offset, p.delay, p.disp, p.jitter variables
represent the current time values and statistics produced by the peer process. The offset and
delay are computed by the on-wire protocol; the dispersion and jitter are calculated as described
below. Strictly speaking, the epoch p.t is not a timestamp. It records the system timer when
these values are computed and is used to insure strict monotonic ordering for the clock
discipline.

8.2 Peer Process Operations

Figure 4 shows the peer process code flow upon the arrival of a packet. There is no specific
method required for access control, although it is recommended that implementations include a
match-and-mask scheme similar to many others now in widespread use, as well as in the
reference implementation. Format checks require correct field length and alignment, acceptable
version number (1-4) and correct extension field syntax.

pmode = 3? yes client packet
yes

yes

auth OK?

format OK?

access OK?

receive

no access deny

no format error

match assoc

no auth error
yes

no

Figure 4. Receive Processing

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 16]

There is no specific requirement for authentication; however, if authentication is implemented,
the symmetric key scheme described in Appendix A must be supported. For the most vulnerable
applications the Autokey public key scheme described in [4] is recommended. If this is a client
(mode 3) packet, the server constructs a server (mode 4) packet and returns it to the client
without retaining state. The server packet is constructed as shown in Figure 5. If the
p.rootdelay and p.rootdisp system variables are stored in floating double, they must be
converted to NTP short format first. Note that, if authentication fails, the server returns a special
message called a crypto-NAK. This message includes the normal NTP header data shown in the
figure, but with a MAC consisting of four octets of zeros. The client is free to accept or reject the
message in this case.

If any other packet mode, symmetric active (1), symmetric passive (2), server (4) or broadcast
(5) the association table is searched for matching source address and source port. If the packet
matches an association, the code flows as shown in Figure 6. If the packet matches no
association and the mode is symmetric active or broadcast, the expected behavior is to mobilize
an ephemeral association and proceed as in the figure. The means for doing this are beyond the
scope of this specification.

The packet timestamps are carefully checked to avoid invalid, duplicate or bogus packets, as
shown in the figure. Note that a crypto-NAK is considered valid only if it survives these tests.
Next, the peer variables are copied from the packet header variables as shown in Figure 7. The
reference implementation includes a number of data range checks and discards the packet if the
ranges are exceeded; however, the header fields are copied even if this occurs, since they are
necessary in symmetric modes to construct the subsequent poll message.

Packet Variable Variable
x.leap ← s.leap
x.version ← r.version
x.mode ← 4
x.stratum ← s.stratum
x.poll ← r.poll
x.precision ← s.precision
x.rootdelay ← s.rootdelay
x.rootdisp ← s.rootdisp
x.refid ← s.refid
x.reftime ← s.reftime
x.org ← r.xmt
x.rec ← r.dst
x.xmt ← clock
x.keyid ← r.keyid
x.digest ← md5 digest

client packet

copy header

compute
MD5 digest

transmit
packet

xmt = T3

copy T1,T2

T3 = clock

auth OK?

NAK

yes no

exit

Figure 5. Client Packet Processing

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 17]

The 8-bit p.reach shift register in the poll process is used to determine whether the server is
reachable or not and provide information useful to insure data are fresh and have not become
stale. The reach register is shifted left by one bit when a packet is sent. In this process the
rightmost bit is set to zero. As valid packets arrive, the rightmost bit is set to one. If the register
contains any nonzero bits, the server is considered reachable; otherwise, it is unreachable. Since
the peer poll interval might have changed since the last packet, the poll_update routine in the poll
process is called to redetermine the host poll interval.

The on-wire protocol calculates the clock offset θ and roundtrip delay δ from the four
timestamps in the packet. While it is in principle possible to do all calculations except the first-
order timestamp differences in fixed-point arithmetic, it is much easier to do this in floating
double arithmetic and this will be assumed in the following description. The dispersion statistic

yesT3 = xmt?
no

duplicate

T1 = 0? or
T2 = 0?

T1 = xmt?

yes

no

mode = 5

packet

T3 = 0? yes format error

no

auth error

yes

no

yes

yes

no
auth = NAK?

org = T3

rec = T4

match assoc

no

exit

org = T3

rec = T4

Figure 6. Timestamp Processing

Peer Packet
Variables Variables
p.leap ← r.leap
p.mode ← r.mode
p.stratum ← r.stratum
p.ppoll ← r.ppoll
p.rootdelay ← r.rootdelay
p.rootdisp ← r.rootdisp
p.refid ← r.refid
p.reftime ← r.reftime

ok
header?

packet

bad header error

)]()[(θ 43122
1 TTTT −+−=

)()(δ 2314 TTTT −−−=

4 1ε ρ ρ ()R T TΦ= + + −

clock_filter

poll_update

copy header

reach |= 1

Figure 7. Packet Processing

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 18]

ε(t) represents the maximum error due to the oscillator tolerance and time since the last
measurement. It is initialized

(4)

when the measurement is made at t0. Here ρR is the peer precision in the packet header
r.precision and ρ the system precision s.precision, both expressed in seconds. These
terms are necessary to account for the uncertainty in reading the system clock in both the server
and the client. The dispersion then grows at constant rate TOLERANCE (Φ) s/s; in other words, at
time t, . With the default value Φ = 15 PPM, this amounts to about 1.3 s

per day. With this understanding, the argument t will be dropped and the dispersion represented
simply as ε.

The remaining statistics are computed by the clock filter algorithm as described in the next
section.

8.3 Clock Filter Algorithm

The clock filter algorithm grooms the stream of on-wire data to select the samples most likely to
represent the correct time. It is not the purpose of this document to specify the particular
algorithms used for this and the other mitigation and discipline functions, but for interoperability
purposes it is necessary to specify the statistics available to these algorithms and the manner in
which they are developed. There is considerable latitude in the details of the fully implemented
algorithm; only the core algorithm is prescribed here.

There are two statistics associated with the on-wire protocol, dispersion ε and jitter ϕ. These are
produced by the clock filter algorithm and used by the mitigation algorithms to determine the
best and final offset used to discipline the system clock. They are also used to determine the
server health and whether it is suitable for synchronization. The core processing steps of this
algorithm are shown in Figure 8.

The clock filter algorithm saves the most recent sample tuples (θ, δ, ε, t) in an 8-stage shift
register in the order that packets arrive. Here t is the system timer at the sample time, not the peer
variable of the same name. The following scheme is used to insure sufficient samples are in the
register and that old stale data are discarded. Initially, the tuples of all stages are set to the
dummy tuple (0, MAXDISP, MAXDISP, 0). As valid packets arrive, the (θ, δ, ε, t) tuples are
shifted into the register causing old samples to be discarded, so eventually only valid samples
remain. If the two low order bits of the reach register are zero, indicating two poll intervals have
expired with no valid packets received, the poll process calls the clock filter algorithm with the
dummy tuple just as if the tuple had arrived from the network. If this persists for eight poll
intervals, the register returns to the initial condition.

In the next step, the shift register stages are copied to a temporary list and the list sorted by
increasing δ. Let j index the stages starting with the lowest δ. If the sample epoch t0 is not later

ε t0() ρR ρ Φ+ + T4 T1–()=

ε t() ε t0() Φ+ t t0–()=

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 19]

than the last valid sample epoch p.t, exit without affecting the current peer variables.
Otherwise, let εj be the dispersion of the jth entry, then

(5)

is the peer dispersion p.disp. Note the overload of ε, whether input to the clock filter or
output, the meaning should be clear from context.

The observer should note (a) if all stages contain the dummy tuple with dispersion MAXDISP (16
s), the computed dispersion is a little less than 16 s, (b) each time a valid tuple is shifted into the
register, the dispersion drops by a little less than half, depending on the valid tuples dispersion,
(c) after the fourth shift the dispersion is usually a little less than 1 s, which is the assumed value
of the MAXDIST parameter. That parameter can be changed to yield more or fewer samples are
required in order to discipline the clock.

Let the first stage offset in the sorted list be θ0; then, for the other stages in any order, the jitter is
the RMS average

, (6)

where n is the number of valid tuples in the register. In order to insure consistency and avoid
divide exceptions in other computations, the ϕ is bounded from below by the system precision ρ

no

Copy filter to a temporary list. Sort the
list by increasing δ. Let θi, δi, εi, ti be

the ith entry on the sorted list.

Shift sample θ, δ, ε, t into filter shift
register

clock_filter

1 2
0

i

(θ θ)
7 iϕ = −∑

1

εε
2

i

i
i

+
=∑0δ δ=0θ θ=

yes
t0 > t

exit

0t t=

Figure 8. Clock Filter Algorithm

ε
εj

2
j 1+

j 0=

7

∑=

ϕ 1
n 1–
------------ θ0 θj–()2

j 1=

n 1–

∑=

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 20]

expressed in seconds. While not in general considered a major factor in ranking server quality,
jitter is a valuable indicator of fundamental timekeeping performance and network congestion
state.

Of particular importance to the mitigation algorithms is the peer synchronization distance, which
is computed from the root delay and root dispersion. The root delay is

(7)

and the root dispersion is

. (8)

Note that ε and therefore increase at rate Φ. These quantities and the peer synchronization
distance

(9)

are recalculated as necessary. The peer distance is used by the mitigation algorithms as a metric
to evaluate the quality of time available from each server.

9. System Process

The system process implements the mitigation algorithms, including the selection, clustering and
combining algorithms. They sort the truechimers from the falsetickers, toss off outliers and
combine the survivors to produce the single most cherished offset for the clock discipline
process. As the mitigation algorithms are discussed in another report [2], for the purposes of this
specification the only function of the system process is to select one of the associations managed
by the peer processes as the system peer, and update the system variables from the peer
variables. Later, the system variables are used by the poll processes to construct and send packets
to the servers and clients.

9.1 System Process State Variables

The system variables associated with the system process are summarized in Table 6, which gives
the variable name, formula name and short description. They define the state of the host
operating as a server to dependent clients. The leap, stratum, reftid and reftime have
the same format and interpretation as the peer variables of the same name. The remaining
variables with prefix s are defined below.

s.timer. 32-bit unsigned integer system timer counting the seconds since the service was
started.

δ' ΔR δ+=

ε' ER ε ϕ+ +=

ε'

λ δ'
2
---- ε'+=

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 21]

s.t. 32-bit unsigned integer value of the system timer at the last update.

s.tc. 8-bit signed integer representing the time constant determined by the clock discipline
algorithm, in log2 seconds.

s.precision. 8-bit signed integer representing the system precision in log2 seconds.

s.roodelay. 32-bit NTP short format or floating double representing the roundtrip delayb
beteen the client and primary server reference clock.

s.rootdisp. 32-bit NTP short format or floating double representing the root dispersion
accumulated on the path to the primary server reference clock.

s.offset. 64-bit floating double clock offset as computed by the combining algorithm.

s.jitter. 64-bit floating double jitter as computed by the combining algorithm.

Initially, all variables are cleared to zero, then the s.leap is set to 11 (unsynchronized) and
s.stratum is set to MAXSTRAT. The s.precision is determined as log2 of the minimum
time in several iterations to read the system clock. The remaining statistics are determined as
described below.

9.2 System Process Operations

Each time the clock filter algorithm runs, the selection algorithm in the system process scans all
associations and chooses the best or the best combination as the survivors. While the design of
these algorithms is not detailed here, it is necessary to establish the criteria for acceptance. Figure
9 summarizes these criteria. Of the survivors one is selected as the system peer, here represented
by (θ, δ, ε, ϕ). Following past practice, an update is discarded if its time of arrival p.update is
not strictly later than the last update used s.update. If so, s.update, s.leap, s.refid
and s.reftime are updated from the corresponding peer variables. Then, s.stratum is set
to p.stratum plus one. The remaining variables are updated as shown in Figure 10. As before,
it is desirable to compute these values using floating double arithmetic.

Name Formula Description
leap leap leap indicator
stratum stratum stratum
precision ρ precision
offset Θ combined offset
rootdelay Δ root delay
rootdisp Ε root dispersion
jitter ϑ combined jitter
refid refid reference ID
reftime reftime reference time

Table 6: System Process State Variables

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 22]

The combining algorithm produces the weighted clock offset Θ, which is passed to the clock
discipline, and the weighted peer jitter ϑp, which is a component of the system jitter. If there is

only one survivor, the offset passed to the clock discipline algorithm is and the system

jitter is . Otherwise, the selection jitter ϑs is computed as in (6), where θ0 represents the
offset of the system peer and j ranges over the survivors. The system jitter

. (10)

is passed to dependent applications programs as the nominal system clock error. The root delay Δ
and root dispersion Ε statistics are relative to the primary server reference clock and thus
inherited from each server along the path.

The system process includes a timer interrupt facility which drives the clock adjust process and
also the peer timers in each association. When suitably configured, the operating system

no

all no

no
exit (NO)

accept

reach == 0?

yesrefid = addr?

leap = 11?
stratum >=
MAXSTRAT?

yes

any yes server not synchronized

root distance exceeded

server/client sync loop

λ >=
MAXDIST?

no

exit (YES)

yes server not reachable

Figure 9. Accept Routine

1
2 2 1 3 4θ [() ()]T T T T= − + −

4 1 3 2δ () ()T T T T= − − −

4 1ε ρ ρ ()R T T= + + Φ −

Σ

)θcombine(Θ j=

δΔΔ += R

Ε Ε ε θR ϑ= + + +Σ

Peer Variables
Client

System Variables

1 2
0(θ θ)

1 jS
jm

ϕ = −
− ∑

Σ

2 2
p sϑ ϑ ϑ= +

RΕ

RΔ

Server

1 2
0(θ θ)

1 i
in

ϕ = −
− ∑

ρR

Figure 10. System Variables Processing

Θ θ=

ϑ ϕ=

ϑ ϑp
2 ϑs

2
+=

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 23]

interrupts the daemon at one-second intervals. The system timer begins at zero when the service
starts and increments at each interrupt. At each interrupt the clock adjust process is called to
incorporate the clock discipline time and frequency adjustments, then the associations are
scanned to determine if the system timer equals or exceeds the p.next state variable defined in
the next section. If so, the poll process is called to send a packet and compute the next p.next
value.

10. Poll Process

Each association supports a poll process that runs at regular intervals to construct and send
packets in symmetric, client and broadcast associations. It runs continuously, whether or not
servers are reachable.

10.1 Poll Process State Variables

The poll process variables are allocated in the association data structure along with the peer
process variables. Table 7 shows the variable names, formula names and short definition.
Following is a detailed description of these variables, all of which carry the p prefix.

p.hpoll. 8-bit signed integer representing the poll exponent, in log2 seconds. The actual
poll interval is 1 shifted left by the poll exponent. When the server is reachable, the value
follows the clock discipline time constant s.tc. When not reachable the value is slowly
increased to reduce the network load.

p.next. 32-bit unsigned integer. When the poll_update routine is called, this is set as the
system timer value for the next packet sent.

p.reach. 8-bit integer used as a shift register. Each time a packet is sent, the register is
shifted left one bit, with zero entering from the right and overflow bits discarded. If the
register is nonzero, the server is reachable; otherwise, the server is unreachable.

p.unreach. 32-bit unsigned integer If the server is reachable, the value is set to zero; if
not, it increases at each poll interval.

10.2 Poll Process Operations

The poll_update routine shown once on Figure 11 is called when a valid packet is received and
immediately after a poll message is sent. First, the routine recomputes the p.hpoll variable, as

Name Formula Description
hpoll host poll exponent
next next poll time
reach reach register
unreach unreach counter

Table 7: Poll Process State Variables

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 24]

the clock discipline time constant s.tc might have changed. Then it computes the value of the
poll timer when the next poll message should be sent. The various clamps are set so that the
interval will be the minimum of the host poll interval and peer poll interval, but not less than
MINPOLL.

Once each second the poll routine shown ni Figure x is called. If the time to the next poll
messages is computed and compared to the system timer. If the value is greater than the system
timer, the routine exits and returns to the caller. Otherwise, it calls the poll routine to send a
packet and sets p.last to the value of the system timer. Next, the p.reach is variable shifted
left by one bit, with zero replacing the rightmost bit.

The poll interval management is particularly relevant in the case of symmetric modes when the
clock discipline time constants may be different for each peer. Each peer sends its current host
poll exponent in the x.poll packet header variable. Then, each peer sets the actual host poll
exponent to the minimum of p.hpoll and the peer poll exponent p.ppoll saved from the last
received packet. The time to the next poll is determined from the minimum value. Thus the clock
discipline can be oversampled, but not undersampled.

Not shown on the figure is the mechanism to back off the poll interval if the server becomes
unreachable. If p.reach is nonzero, the server is reachable and p.unreach is set to zero;
otherwise, p.unreach is incremented by one for each poll. The p.unreach increases up to a
maximum set by the UNREACH parameter. Once reaching the maximum, p.hpoll is increased
by one, which doubles the poll interval. The p.hpoll increases up to a maximum set by the

hpoll = max[(MINPOLL,
min(MAXPOLL, τ))]

poll_update

exit

next = last + {1 <<
max[MINPOLL, min(ppoll, hpoll)]}

Figure 11. Poll Update Routine

poll

last = timer

exit

transmit
yesno

timer < next

reach <<= 1

Figure 12. Poll Routine

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 25]

MAXPOLL parameter. At the first message from the server, p.hpoll is reset to s.poll and
operation resumes normally.

When a packet is sent from an association, some header values are copied from the peer variables
left by a previous packet and others from the system variables. Figure 13 includes a flow diagram
and a table showing which values are copied to each header field. In those implementations using
floating double data types for root delay and root dispersion, these must be converted to NTP
short format. All other fields are either copied intact from peer and system variables or struck as
a timestamp from the system clock.

11. Poll Rate Control and the Kiss-o’-Death

In order to protect the network against unreasonable resource demands, it is necessary to
carefully manage the poll interval. Polls should be sent at the longest interval consistent with the
required accuracy. As a general rule, the minimum headway between successive client packets
must never be less than two seconds and the mean headway never less than 16 seconds.
Implementations should include a feature similar to that described in Section 10 that backs off
the poll interval after some time when the server has not been heard.

As with any ubiquitous public service, NTP time servers and related networks are vulnerable to
overload. NTP servers have a very low resource profile; some servers today service several
thousand packets per second and don’t even get warm. However, rates like that can consume
significant network resources. In practice, the usual scenario has been, in a cast of thousands,
only a handful of offenders send at rates in the order of once per a second or more.

In order to deflect such attacks a mechanism is necessary for servers to detect which clients are
offending and how to respond to them. The reference implementation maintains a least-recently-
used (LRU) cache ordered by time since the last packet received. Each entry in the cache

poll

last = timer

exit

transmit
yesno

timer < next

reach <<= 1

Figure 13. Poll Routine

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 26]

includes the client IP address, headway since the last packet from that address and average
headway of past packets. If the headway is less than 2 s or the average headway is less than 15 s,
a packet called the kiss-o’-death (KoD) is returned to the client. A KoD packet is recognized as a
leap value of 11 and stratum 0. The reference ID field in KoD packets contains a four-character
string called the kiss code. Upon receiving a KoD packet with designated kiss code, the client is
expected to cease operation and send a message to the system log and/or operator.

Not all kiss codes are fatal; some provide useful diagnostic information, such as various
cryptographic misconfiguration. To resist a clogging attack, KoD messages are throttled at no
more than one per second. As experience with the KoD scheme is ongoing and there is merit in
exploring the scheme in a wider scope of applications, compliance with the KoD is highly
recommended, but not required in this specification. While somewhat naive in concept, effective
compliance with this behavior might involve router and operating system intervention and
beyond the control of a casual hacker. In particular, routers can intercept a KoD and blacklist the
sender. This may be a topic for future standardization.

12. References

1. Burbank, J. (Ed.), J. Martin (Ed.) and D. Mills (Ed.). The Network Time Protocol Version 4
protocol specification, Network Working Group Request for Comments RFC-XXXX),
Johns-Hopkins University, TBA.

2. Kasch, W. (Ed.), J. Burbank (Ed.) and D. Mills (Ed.). The Network Time Protocol Version 4
algorithm specification. Network Working Group Request for Comments RFC-XXX, Johns
Hopkins University, TBA.

3. Mills, D.L. Computer Network Time Synchronization - the Network Time Protocol. CRC
Press, March 2006, 290 pp.

4. Mills, D.L. The Autokey security architecture, protocol and algorithms. Electrical and Com-
puter Engineering Technical Report 06-1-1, University of Delaware, January 2006, 59 pp.

5. Mills, D., D. Plonka and J. Montgomery. Simple network time protocol (SNTP) version 4 for
IPv4, IPv6 and OSI. Network Working Group Report RFC-4330, University of Delaware,
December 2005, 27 pp.

6. Mills, D.L., Network Time Protocol (Version 3) specification, implementation and analysis.
Network Working Group Request for Comments RFC-1305, University of Delaware, March
1992.

7. Plonka, D. Requirements for Network Time Protocol Version 4. Network Working Group
Request for Comments RFC-XXXX, University of Wisconsin, TBA.

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 27]

8. Rivest, R. The MD5 message-digest algorithm. Network Working Group Request for
Comments RFC-1321. MIT Laboratory for Computer Science and RSA Data Security, Inc.,
April 1992, 21 pp.

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 28]

Appendix A. NTPv4 Packet Formats

The NTP packet consists of a number of 32-bit (4 octet) words in network byte order. The packet
consists of three components, the header itself, one or more optional extension fields and an
optional message authentication code (MAC). The header component is identical to the NTPv3
header and previous versions. The optional extension fields are used by the Autokey public key
cryptographic algorithms described in [4]. The optional MAC is used by both Autokey and the
symmetric key cryptographic algorithms described in the main body of this report.

A.1 NTP Header Field Formats

The NTP header format is shown in Figure 14, where the size of some multiple-word fields is
shown in bits if not the default 32 bits. The header extends from the beginning of the packet to
the end of the Transmit Timestamp field. The format and interpretation of the header fields is in
the main body of this report. When using the IPv4 address family these fields are backwards
compatible with NTPv3. When using the IPv6 address family on an NTPv4 server with a NTPv3
client, the Reference Identifier field is a random value and a timing loop might not be detected.
The incidence of this, which would be considered a birthday event, will be very rare.

Packet Variable Variable
x.leap ← s.leap
x.version ← p.version
x.mode ← p.hmode
x.stratum ← s.stratum
x.poll ← p.hpoll
x.precision ← s.prec
x.rootdelay ← s.rootdelay
x.rootdisp ← s.rootdisp
x.refid ← s.refid
x.reftime ← s.reftime
x.org ← p.org
x.rec ← p.rec
x.xmt ← clock
x.keyid ← p.keyid
x.digest ← md5()

poll

copy header

compute
MD5 digest

transmit
packet

exit

copy T1,T2

T3 = clock

xmt = T3

Figure 14. NTPv4 Header FormatFigure 14. NTPv4 Header Format

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 29]

The message authentication code (MAC) consists of a 32-bit Key Identifier followed by a 128-
bit Message Digest. The message digest, or cryptosum, is calculated as in RFC-1321 [8] over the
fields shown in the figure.

A.2 NTPv4 Extension Field Formats

In NTPv4 one or more extension fields can be inserted after the header and before the MAC,
which is always present when extension fields are present. The extension fields can occur in any
order; however, in some cases there is a preferred order which improves the protocol efficiency.
While previous versions of the Autokey protocol used several different extension field formats,
in version 2 of the protocol only a single extension field format is used.

An extension field contains a request or response message in the format shown in Figure 15. All
extension fields are zero-padded to a word (4 octets) boundary. The Length field covers the
entire extension field, including the Length and Padding fields. While the minimum field length
is 4 words (16 octets), a maximum field length remains to be established. The reference
implementation discards any packet with an extension field length more than 1024 octets.

The presence of the MAC and extension fields in the packet is determined from the length of the
remaining area after the header to the end of the packet. The parser initializes a pointer just after
the header. If the Length field is not a multiple of 4, a format error has occurred and the packet is
discarded. The following cases are possible based on the remaining length in words.

Stratum PollLI ModeVN

Root Delay

Root Dispersion

Reference Identifier

Reference Timestamp (64)

Originate Timestamp (64)

Receive Timestamp (64)

Transmit Timestamp (64)

Message Digest (128)

Key Identifier

Cryptosum

MAC
(Optional)

Extension Field 1 (optional)

Extension Field 2… (optional)

Precision

0 2 5 8 16 24 31

Figure 15. NTPv4 Extension Field Format

TR 06-1-2 NTPv4 Core Protocol Specification January 2006

Mills Standards Track [Page 30]

0 The packet is not authenticated.
1 The packet is an error report or crypto-NAK.
2, 3, 4 The packet is discarded with a format error.
5 The remainder of the packet is the MAC.
>5 One or more extension fields are present.

If an extension field is present, the parser examines the Length field. If the length is less than 4 or
not a multiple of 4, a format error has occurred and the packet is discarded; otherwise, the parser
increments the pointer by this value. The parser now uses the same rules as above to determine
whether a MAC is present and/or another extension field. An additional implementation-
dependent test is necessary to ensure the pointer does not stray outside the buffer space occupied
by the packet.

In the Autokey Version 2 format, the 8-bit Code field specifies the request or response operation,
while the 6-bit Version Number (VN) field is 2 for the current protocol version. The R bit is lit
for a response and the E bit lit for an error. The Timestamp and Filestamp fields carry the
seconds field of an NTP timestamp. The Timestamp field establishes the signature epoch of the
data field in the message, while the Filestamp field establishes the generation epoch of the file
that ultimately produced the data that is signed. The optional Value field carries the data and the
optional Signature field the signature that validates the data. Further details are in [4].

