Statistical Parsing
Chapter 14

Lecture #9

October 2012

Parse Disambiguation

« In the previous chapter we have seen several
instances of parsing ambiguity: coordination
ambiguity and attachment ambiguity

« So far — we return every parse and let later modules
deal with the ambiguity

« Can we use probabilistic methods to choose most
likely interpretation?

Probabilistic Parsing

* Probabilistic Context Free Grammar: a probabilistic
grammar which favors more common rules

« Augment each rule with its associated probability

* Modify parser so that it returns most likely parse
(CKY Algorithm)

* Problems and augmentations to the basic model

Probability Model

» Attach probabilities to grammar rules — representing
the probability that a given non-terminal on the rule’s
LHS will be expanded to the sequence on the rule’s
LHS.

* The expansions for a given non-terminal sum to 1

— VP ->verb .55
— VP ->verb NP .40
— VP ->verb NP NP .05

* Probability captures P(RHS | LHS)

Figure 14.1
Grammar Lexicon
S — NPVP 80| Det — that [.10] | a [.30] | the [.60]
§ — Aux NP VP .15 Noun — book [.10] | flight [.30]
§— VP 05 | meal [.15] | money [.05]
NP — Pronoun .35 | flights [40] | dinner [.10]
NP — Proper-Noun .30] Verb — book [.30] | include [.30]
NP — Det Nowinal .20] | prefer;|.40]
NP — Nominal ik Pronoun — I[.40] | she [.05]
Neominal — Neun .75 | me [.15] | you [.40]
Nominal — Nominal Neun .20 Proper-Noun — Houston [.60]
Nominal — Nowminal PP [.05 | NWA [.40]
VP — Verb 35 Anx — does .60 | can [40]
VP — Verb NP .20] Preposition — from [.30] | 1o [.30]
VP — Verb NP PP 10] | om [20] | near.15]
VP — Verb PP .15 | throwugh [.05]
VP — Verb NP NP 05
VP — VPPP .15
PP — Preposition NP 1.0]
Copyright ©2009 by Pearson Educaion, I
Y S g o, S aon e S s

Al ights reserved.

Using a PCFS

* A PCFS can be used to estimate a number of useful
probabilities concerning a sentence and its parse
trees

— Probability of a particular parse tree (useful for
disambiguation)

— Probability of a sentence or piece of a sentence (useful for
language modeling)
How?
« A derivation (tree) consists of the set of grammar
rules that are in the tree
* The probability of a tree is just the product of the
probabilities of the rules in the derivation.

Figure 14.2

5 5
VP VP
Verb NP
Verb NP 13

Book ey Nominal
Book Det Nominal Nominal
the Nominal Noun N
the Noun Noti
Noun flight
dinner flight
dimner

Copyright ©2000 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

m Speech and Language Processing, Second Edition
Daniel Jurafsky and James H. Martin Allfights reserved

Figure 14.2 continued

Rules P Rules P
5 — VP 05 H — VP 05
VP — Verb NP 20 vi — Werb NP NP .10

NP —%

Jet Nominal .20 NP — Det Nominal .20

— Nominal Noun 20 NP — Nominal 15

Nominal — Noun 75 Nominal — Noun 5
Nominal — Noun 5

Verh - ook 30 Verh + ook 0
Det + the 60 Det + the 60
Noun — dinner 10 Noun « dinner 10
Notin « flights 40 Mot + flights 40

‘Copyright ©2009 by Pearson Education, Inc.
m Speech and Language Processing, Second Edition Unper Saddle River, New Jersey 07458
Daniel Jurafsky and James H. Martin Alltights reserved.

Probability Model
P(T,S)=P(T)P(S|T)=P(T);since P(S|T) =1

P(T,S)=P(T)=11p(r)

P(T\e) =.05*.20*.20*.20* .75 * .30 * .60 * .10 * .40
=22x10°%

P(Tygn) =.05*.10* 20 * 15 * .75 * 75* .30 * .60 * .10 * .40
=6.1x107

Probability Model

* The probability of a word sequence P(S) is the
probability of its tree in the unambiguous case (i.e.,
where there is exactly one tree).

« In the case where there is ambiguity (multiple trees)
the probability of the sequence is the sum of the
probabilities of the trees.

Parsing to get most likely parse

» Can do with a simple extension of our parsing
algorithms — book does CKY (and indicates that is
most used version).

« Essentially — give each constituent that is in the table
a probability (they refer to this as another dimension
in the table), when a new constituent , C, is found to
be added to the table at cell [I, J], only add it if that
cell either does not contain a constituent C or if the
probability of this new constituent is less than the
probability of the existing one (in which case, you
overwrite the old one).

e Assuming rule is C ->cl c2

* New prob = prob(rule) x prob(cl) x prob(c2)

Figure 14.3

Tunction PROBABILISTIC-CK Y (words, grammar) returns most probable parse
and its probability
for j-— from | to LENGTH(words) do
forall { A| A — words|j] & granmar)
table[j—1, j,Al—P(A — words|j|)
for i—rom j — 2 downte 0 do
for ki+1to j—1do
forall { A| A — BC £ gramnnar,
and rableli. kB = 0and table[k, j,C] = 0}
It (rablefi j.A] - (A — BC) = rabie[ikB] = rable[k j.C]) then
table(i jA]— P(A — BC) x table[i & B] = tablelkj.C]
back]i j {k.B,C}
return BUILD_TREE(back{1, LENGTH(words), 8]), rable[1, LENGTH{words), 5]

Copyright €200 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

“ Speech and Language Processing, Second Edition
Daniel Jurafsky and James H. Martin Allrights reserved.

S — NPVP 80 Det — the 40
NP — Det N .30 Det — a .40
VP — VNP .20 N — meal .01

V. — includes .05 N — flight .02

Copyright ©2000 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

“ Speech and Language Processing, Second Edition
Daniel Jurafsky and James H. Martin Allights reserved.

Learning PCFG Rule
Probabilities

1. Learn from a treebank, a corpus of already parsed
sentences

— So for example, to get the probability of a particular VP rule
just count all the times the rule is used and divide b the
number of VPs overall

2. Count by parsing with a non-probabilistic parser.
— Issue is ambiguity — inside-out-algorithm - sort of boot-strap
— parse a sentence, compute a probability for each parse,
use these probabilities to weight the counts, re-estimate the
rule probabilities, and so on, until our probabilities
converge.

Figure 14.4
Det 40 NP 304008
- 0034
121} 0.2 0.3 (0.4} 0.5
N 02
na 113 [1.4] 1.5
V. 05
B3 [24] 3.5
[34) (EE]
4.5
The fight inchudes a meal
“ ‘Speech and Language Processing, Second Edition O el R N vy 7408
Daniel Jurafsky and James H. Martin " Al ights reserved.

Problems with PCFGs

* Probability model we are using is just based on the
rules in the derivation... and these are context free
rules
— Poor independence assumptions miss structural

dependencies between rules since cannot take into account
in the derivation a rule is used.

— Lack of sensitivity to lexical dependencies
« Do have probability associated with N-> bank
« But verb subcategorization and prepositional phrase
attachment might depend on the particular words being used.

« Use lexical heads as part of rule — then you run into problems
with sparse data — so need to make independence
assumptions to reduce amount of data needed.

Structural Dependencies between

Rules

NP -> det NN .28
NP -> Pronoun .25

* These probabilities should depend on where the NP
is being used:

| Pronoun Non-Pronoun
Subject [91% 9%
Object | 34% 66%

* SolutionSplit non-terminal into 2 (e.g., using parent
annotation NP"S vs NPAVP) and learn rule
probabilities for split rules.

Figure 14.8

NP VP NF'S VP'S

PRP VED NP PRP VBD NP'VP

| | : |
I weed DT NN ! need DT NN

| |
a flight a flight

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

“ Speech and Language Processing, Second Edition
Daniel Jurafsky and James H. Martin Al ights reserved,

Figure 14.5

-] 5
NP VP NP VP
NN§ NNS - yED NP
VBD NP FP |
workers workers dimped NP jd

dumped NNS P NP
NNS P NP
sacks info DT NN
sacks into DT NN

a in
a bin
‘Copyright ©2000 by Pearson Education, Inc.
Speech and Language Processing, Second Edition right 62005 by Peatson Educaon, nc,
oo e oo Sao . o S

Figure 14.6 - KFM added to slide

Note: if we prefer the rule for VP attachment then it will be
incorrect for sentences like “fishermen caught tons of herring”

5
NP Vp-
NNS VB NP- PP
warkers NNS P NP
dumped inte DT NN

sacks a bin

Seems lexical in nature: affinity between the verb “dumped” and
the preposition “into” is greater than the affinity between the noun
“sacks’ and the preposition ““into”

Al rights reserved.

“ ‘Speech and Language Processing, Second Edition Copyright ©2009 by Pearson Education, inc.

Upper Saddle River, New Jersey 07458

Daniel Jurafsky and James H. Martin Al ights reserved

Lexical Dependencies

* Must add lexical dependencies to the scheme and
condition the rule probabilities on the actual words
* What words?
— Make use of the notion of the head of a phrase
— The head is intuitively the most important lexical item in the
phrase — and there are some rules for identifying
« Head of an NP is its noun
« Head of a VP is its verb
* Head of a sentence comes from its VP
« Head of a PP is its preposition

— Use a lexicalized grammar in which each non-terminal in the
tree is annotated with its lexical head

Figure 14.10
[TOP

Sidumped VBD)

NPiworkers NNS) VP{dumped VBD)

NNS{workers NNS)

workers
VED(damped VBD) NP{sacks. NNS) PPiinso.P)
dumped NNS{sacks NNS)
Piisto.P) NP{ban NN)
sacks
iz DTaDT) N¥(binNN)
a b
Imtermal Rudes Lexical Rules
TOP + S{dumped VB NNS{workers, NN5) — workers
Sidumped VBIY NP{werkers. NS} VPidwmped VBD) VBN dummped, VISD) duasped
NPiworkers KNS} — NNS(workers NX5) NNS(acks NNS) — sacks
VPidumped VBD) — VBDidemped, VBD) NPisac]) PPinto,F} | Plinto.P) - o
PPlmo Py Pl F) NP DTiaDT) a
NPibin. NN . DT(aDT) NN(hinNN) NN{bin NN} - bin
Copyright ©2009 by Pearson Education, Inc.
Speech and Language Processing, Second Edition th e River. New Jersey 07458
m Daniel Jurafsky and James H. Martin lpper Saddle River, New Jersey

Al ights reserved

Issues with Learning

* Not likely to have significant counts in any treebank
to actually learn these probabilities.

» Solution: Make as many independence assumptions
as you can and learn from these

« Different modern parsers make different
independence assumptions — E.g., Collins parser
have head and dependents on left are assumed
independent of each other and independent of
depends on right (which make similar assumptions
about the left dependents)

Summary

.

Probabilistic Context-Free Grammars
— Help us deal with ambiguity by preferring more likely parses

* Grammar rules have attached probabilities which
capture the probability of the rule’s RHS given its LHS
(probabilities of all rules with same LHS sum to 1)

* We can compute the probability of a tree (product of the
probabilities of the rules used)

« Can parse using augmented algorithms
« Can learn probabilities from a tree bank

¢ PCFGs have problems with independence assumptions
and with lack of lexical conditioning

* Some solutions exist — problems of data sparcity

