
2004/08/24 17:06

1 A primer on kernel methods

Jean-Philippe Vert

Koji Tsuda

Bernhard Schölkopf

Kernel methods in general, and support vector machines (SVMs) in particular, are

increasingly used to solve various problems in computational biology. They offer

versatile tools to process, analyze, and compare many types of data, and offer state-

of-the-art performance in many cases. This self-contained introduction to positive

definite kernels and kernel methods aims at providing the very basic knowledge

and intuition that the reader might find useful in order to fully grasp the technical

content of this book.

1.1 Introduction

Kernel methods in general and SVMs in particular have been successfully applied

to a number of real-world problems and are now considered state-of-the-art in

various domains, although it was only fairly recently that they became part of the

mainstream in machine learning and empirical inference. The history of methods

employing positive definite kernels, however, can be traced back at least a few

decades. Aronszajn (1950) and Parzen (1962) were some of the first to employ these

methods in statistics. Subsequently, Aizerman et al. (1964) used positive definite

kernels in a way which was already closer to what people now call the kernel trick.

They employed radial basis function kernels to reduce a convergence proof for the

potential function classifier to the linear perceptron case. To do this, they had

to argue that a positive definite kernel is identical to a dot product in another

space (sometimes called the feature space), in which their algorithm reduced to the

perceptron algorithm. They did not, however, use the feature space view to design

new algorithms.

The latter was done some thirty years later by Boser et al. (1992), to construct the

SVMs, a generalization of the so-called optimal hyperplane algorithm. Initially, itKernel methods

2004/08/24 17:06

2 A primer on kernel methods

was thought that the main strength of SVMs compared to the optimal hyperplane

algorithm was that they allowed the use of a larger class of similarity measures.

Just as optimal hyperplanes, however, they were only used on vectorial data. But

soon it was noted (Schölkopf, 1997) that kernels not only increase the flexibility

by increasing the class of allowed similarity measures but also make it possible

to work with nonvectorial data. This is due to the fact that kernels automatically

provide a vectorial representation of the data in the feature space. The first examples

of nontrivial kernels defined on nonvectorial data were those of Haussler (1999)

and Watkins (2000) (see also Cristianini and Shawe-Taylor, 2000). Moreover, it

was pointed out (Schölkopf et al., 1998) that kernels can be used to construct

generalizations of any algorithm that can be carried out in terms of dot products,

and the last 5 years have seen a large number of “kernelizations” of various

algorithms (Graepel and Obermayer, 1998; Weston et al., 1999; Tsuda, 1999; Ruján

and Marchand, 2000; Herbrich et al., 2000; Fyfe and Lai, 2000; Rosipal and Trejo,

2001; Akaho, 2001; Harmeling et al., 2001; Girolami, 2002; Suykens et al., 2002;

Weston et al., 2003; Vert and Kanehisa, 2003; Kuss and Graepel, 2003).

Further threads of kernel work can be identified in approximation theory and

statistics (Berg et al., 1984; Micchelli, 1986; Wahba, 2002; Poggio and Girosi, 1990),

as well as in the area of Gaussian process prediction and related fields such as

kriging, where kernels play the role of covariance functions (see, e.g., Weinert,

1982; Williams, 1998; MacKay, 1998).

This chapter is structured as follows. Section 1.2 is devoted to the presentation

of kernels and some of their basic properties. Kernel methods are then introduced

in section 1.3, SVMs being treated in more detail in section 1.4. We then discuss

more advanced kernel topics relevant to this book, including the presentation of

several families of kernels in section 1.6, and an introduction to the emergent field

of kernel design in section 1.7.

1.2 Kernels

Kernels are the basic ingredient shared by all kernel methods. They provide a gen-

eral framework to represent data, and must satisfy some mathematical conditions.

These conditions give them a number of properties useful to bear in mind when it

comes to understanding the intuition behind kernel methods and kernel design.

1.2.1 The Issue of Data Representation

Let us denote by S = (x1, · · · ,xn) a set of n objects to be analyzed. We suppose

that each object xi is an element of a set X, which may, for example, be the set of

all possible images if one wants to analyze a set of images, or the set of all possible

molecules in a biological context. In order to design data analysis methods, the first

question to be addressed is how to represent the data set S for further processing.

2004/08/24 17:06

1.2 Kernels 3

1 0.5 0.3
0.5 1 0.6
0.3 0.6 1

K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ

Figure 1.1 Two different representations of the same dataset.
�

is supposed to be the set
of all oligonucleotides, and � is a data set of three particular oligonucleotides. The classic
way to represent � is first to define a representation φ(x) for each element of x ∈

�
, for

example, as a sequence of letters to represent the succession of nucleotides, and then to
represent � as the set φ(�) of representations of its elements (upper part). Kernel methods
are based on a different representation of � , as a matrix of pairwise similarity between its
elements (lower part).

The vast majority of data analysis methods, outside kernel methods, have a

natural answer to this question: first define a representation for each object, and

then represent the set of objects by the set of their representations. Formally, this

means that a representation φ(x) ∈ F is defined for each possible object x ∈ X,

where the representation can, for example, be a real-valued vector (F = Rp),

a finite-length string (F is then the set of all finite-length strings), or a more

complex representation that can be processed by an algorithm. The data set

S is then represented as the set of individual object representations, φ(S) =

(φ (x1) , · · · , φ (xn)), and the algorithm is designed to process such data. As an

example, if a protein is represented by a sequence of letters that corresponds to its

primary structure, then a set of proteins can be represented by a set of sequences.

Kernel methods are based on a radically different answer to the question of data

representation. Data are not represented individually anymore, but only through aKernel

representation set of pairwise comparisons. In other words, instead of using a mapping φ : X → F

to represent each object x ∈ X by φ(x) ∈ F, a real-valued “comparison function”

k : X × X → R is used, and the data set S is represented by the n × n matrix of

pairwise comparisons ki,j = k(xi,xj). All kernel methods are designed to process

such square matrices. The difference between both approaches is represented in

figure 1.1.

Several comments can already be made at this point. First, the representation

as a square matrix does not depend on the nature of the objects to be analyzed.

They can be images, molecules, or sequences, and the representation of a data set

is always a real-valued square matrix. This suggests that an algorithm developed to

process such a matrix can analyze images as well as molecules or sequences, as long

as valid functions k can be defined. This also suggests that a complete modularity

exists between the design of a function k to represent data on the one hand, and

the design of an algorithm to process the data representations on the other hand.

These properties turn out to be of utmost importance in fields like computational

2004/08/24 17:06

4 A primer on kernel methods

biology, where data of different nature need to be integrated and analyzed in a

unified framework.

Second, the size of the matrix used to represent a dataset of n objects is always

n× n, whatever the nature or the complexity of the objects. For example, a set of

ten tissues, each characterized by thousands of gene expression levels, is represented

by a 10 × 10 matrix, whatever the number of genes. Computationally, this is very

attractive in the case when a small number of complex objects are to be processed.

Third, there are many cases where comparing objects is an easier task than finding

an explicit representation for each object that a given algorithm can process. As an

example, many data analysis algorithms, such as least squares regression or neural

networks, require an explicit representation of each object x as a vector φ (x) ∈ R
p.

There is no obvious way to represent protein sequences as vectors in a biologically

relevant way, however, while meaningful pairwise sequence comparison methods

exist.

1.2.2 General Definition

As the reader might guess, the comparison function k is a critical component of any

kernel method, because it defines how the algorithm “sees” the data. Most kernel

methods described below can only process square matrices, which are symmetric

positive definite. This means that if k is an n× n matrix of pairwise comparisons,

it should satisfy ki,j = kj,i for any 1 ≤ i, j ≤ n, and c>kc ≥ 0 for any c ∈ Rn.1

This motivates the following definition:

Definition 1.1 A function k : X × X → R is called a positive definite kernel iff it

is symmetric, that is, k(x,x′) = k(x′,x) for any two objects x,x′ ∈ X, and positive

definite, that is,Positive definite

kernel n
∑

i=1

n
∑

j=1

cicjk(xi,xj) ≥ 0

for any n > 0, any choice of n objects x1, · · · ,xn ∈ X, and any choice of real

numbers c1, · · · , cn ∈ R.

From now on, we only focus on positive definite kernels, and simply call them

kernels. Definition 1.1 ensures that if k is a kernel, then any pairwise similarity

matrix built from k is symmetric positive definite.

Imposing the condition that a comparison function be a kernel clearly restricts

the class of functions one can use. For example, the local alignment scores widely

used in computational biology to assess the similarity between sequences are not in

general kernels (see chapter ??). However, this restriction is often worth the cost

1. In mathematics, such a matrix is usually called positive semidefinite, because c>kc
can be zero and not strictly positive. However, in this chapter, we follow the notation in
approximation theory (Wahba, 2002), which omits “semi” for simplicity.

2004/08/24 17:06

1.2 Kernels 5

because it opens the door to the use of kernel methods (see section 1.3). Moreover,

an increasing number of “tricks” are being developed to derive kernels from virtually

any comparison function (see section 1.7).

Before we describe kernel methods in more detail, however, let us try to get a

better intuition about kernels themselves. Kernels have several properties which one

should bear in mind in order to fully understand kernel methods, and to understand

the motivations behind the kernels developed in this book.

1.2.3 Kernels as Inner Product

Let us start with a simple example that leads to a fundamental property of kernels.

Suppose the data to be analyzed are real vectors, that is, X = Rp and any object is

written as x = (x1, · · · , xp)
>. One is tempted to compare such vectors using their

inner product: for any x,x′ ∈ Rp,Linear kernel

kL(x,x′) := x>x′ =

p
∑

i=1

xix
′
i. (1.1)

This function is a kernel. Indeed, it is symmetric (x>x′ = x′>x), and the positive

definiteness results from the following simple calculation, valid for any n > 0,

x1, · · · ,xn ∈ R
p, and c1, · · · , cn ∈ R:

n
∑

i=1

n
∑

j=1

cicjkL(xi,xj) =

n
∑

i=1

n
∑

j=1

cicjx
>
i xj = ||

n
∑

i=1

cixi||2 ≥ 0. (1.2)

The inner product between vectors is the first kernel we encounter. It is usually

called the linear kernel. An obvious limitation of this kernel is that it is only

defined when the data to be analyzed are vectors. For more general objects x ∈ X,

however, this suggests a way to define kernels in a very systematic manner, by first

representing each object x ∈ X as a vector φ(x) ∈ Rp, and then defining a kernel

for any x,x′ ∈ X by

k(x,x′) = φ(x)>φ(x′). (1.3)

Following the same line of computation as in (1.2), the reader can easily check that

the function k defined in (1.3) is a valid kernel on the space X, which does not need

to be a vector space.

Any mapping φ : X → Rp for some p ≥ 0 results in a valid kernel through (1.3).

Conversely, one might wonder whether there exist more general kernels than these.

As the following classic result of Aronszajn (1950) shows, the answer is negative, at

2004/08/24 17:06

6 A primer on kernel methods

φ
X F

Figure 1.2 Any kernel on a space
�

can be represented as an inner product after the
space

�
is mapped to a Hilbert space � , called the feature space.

least if one allows R
p to be replaced by an eventually infinite-dimensional Hilbert

space2:

Theorem 1.2 For any kernel k on a space X, there exists a Hilbert space F and a

mapping φ : X → F such that

k(x,x′) = 〈φ(x), φ(x′)〉, for any x,x′ ∈ X, (1.4)

where 〈u, v〉 represents the dot product in the Hilbert space between any two points

u, v ∈ F.

This result, illustrated in figure 1.2, provides a first useful intuition about kernels:Feature space

they can all be thought of as dot products in some space F, usually called the

feature space. Hence, using a kernel boils down to representing each object x ∈ X

as a vector φ (x) ∈ F, and computing dot products. There is, however, an important

difference with respect to the explicit representation of objects as vectors, discussed

in subsection 1.2.1: here the representation φ (x) does not need to be computed

explicitly for each point in the data set S, since only the pairwise dot products are

necessary. In fact, there are many cases where the feature space associated with a

simple kernel is infinite-dimensional, and the image φ (x) of a point x is tricky to

represent even though the kernel is simple to compute.

This intuition of kernels as dot products is useful in order to provide a geometric

interpretation of kernel methods. Indeed, most kernel methods possess such an

interpretation when the points x ∈ X are viewed as points φ (x) in the feature

space.

1.2.4 Kernels as Measures of Similarity

In this book, as well as in the kernel methods community, kernels are often presented

as measures of similarity, in the sense that k (x,x′) is “large” when x and x′

2. A Hilbert space is a vector space endowed with a dot product (a strictly positive and
symmetric bilinear form), that is complete for the norm induced. � p with the classic inner
product is an example of a finite-dimensional Hilbert space.

2004/08/24 17:06

1.2 Kernels 7

are “similar.” This motivates the design of kernels for particular types of data or

applications, because particular prior knowledge might suggest a relevant measure

of similarity in a given context. As an example, the string and graph kernels

presented in chapters ?? and ?? are motivated by a prior intuition of relevant

notions of similarity: the fact that two biological sequences are similar when there

exist good alignments between them, on the one hand, and the fact that two graphs

are similar when they share many common paths, on the other.

The justification for this intuition of kernels as measures of similarity is not always

obvious, however. From subsection 1.2.3 we know that kernels are dot products in

a feature space. Yet the notion of dot product does not always fit one’s intuition of

similarity, which is more related to a notion of distance. There are cases where these

notions coincide. Consider, for example, the following kernel on X = Rp, called the

Gaussian radial basis function (RBF) kernel:RBF kernel

kG(x,x′) = exp

(

−d (x,x′)
2

2σ2

)

, (1.5)

where σ is a parameter and d is the Euclidean distance. This is a valid kernel (see

subsection 1.7.2), which can be written as a dot product kG (x,x′) = 〈φ (x) , φ (x′)〉
by theorem 1.2. The feature space is a functional space, and an explicit form of the

map φ is not obvious. By (1.5), we see that this kernel is a decreasing function of

the Euclidean distance between points, and therefore has a relevant interpretation

as a measure of similarity: the larger the kernel kG(x,x′), the closer the points x

and x′ in X.

For more general kernels k on a space X, basic linear algebra in the feature space

associated with k by theorem 1.2 shows that the following holds for any two objects

x,x′ ∈ X:

k(x,x′) =
||φ (x) ||2 + ||φ (x′) ||2 − d (φ (x′) , φ (x′))

2

2
, (1.6)

where d is the Hilbert distance defined by d(u, v)2 = 〈(u− v) , (u− v)〉 and ||.|| is

the Hilbert norm (||u||2 = 〈u, u〉). Equation (1.6) shows that the kernel k (x,x′)

measures the similarity between x and x′ as the opposite of the square distance

d (φ (x) , φ (x′))
2

between their images in the feature space, up to the terms ||φ (x) ||2
and ||φ (x′) ||2. If all points have the same length in the feature space, meaning

||φ (x) ||2 = k (x,x) = constant for all x ∈ X, then the kernel is simply a decreasing

measure of the distance in the feature space. This is, for example, the case for all

translation-invariant kernels of the form k (x,x′) = ψ (φ (x) − φ (x′)) such as the

Gaussian RBF kernel (1.5), because in this case k (x,x) = ψ(0) for any x ∈ X. For

more general kernels, one should keep in mind the slight gap between the notion of

dot product and similarity.

The conclusion of this section is that it is generally relevant to think of a

kernel as a measure of similarity, in particular when it is constant on the diagonal.

This intuition is useful in designing kernels and in understanding kernel methods.

2004/08/24 17:06

8 A primer on kernel methods

For example, methods like SVMs (see section 1.4), which predict the values of a

function at a given point from the observation of its values at different points, base

their prediction on the hypothesis that “similar” points are likely to have similar

values. The “similarity” between points mentioned here is precisely the similarity

determined by the kernel.

1.2.5 Kernels as Measures of Function Regularity

Let k be a kernel on a space X. In this section we show that k is associated with

a set of real-valued functions on X, Hk ⊂ {f : X → R}, endowed with a structure

of Hilbert space (in particular, with a dot product and a norm). Understanding

the functional space Hk and the norm associated with a kernel often helps in

understanding kernel methods and in designing new kernels, as we illustrate in

section 1.3.

Let us start with two examples of kernels and their associated functional spaces.

Consider first the linear kernel (1.1) on a vector space X = Rp. The corresponding

functional space is the space of linear function f : Rd → R:

Hk =
{

f(x) = w>x : w ∈ R
p
}

, (1.7)

and the associated norm is just the slope of the linear function,

||f ||Hk
= ||w|| for f(x) = w>x. (1.8)

As a second example, consider the Gaussian RBF kernel (1.5) on the same vector

space X = Rp. The associated functional space is the set of functions f : Rd → R

with Fourier transform f̂ that satisfies

N(f) =
1

(2πσ2)
p

2

∫

Rp

∣

∣

∣
f̂ (ω)

∣

∣

∣

2

e
σ2

2
||ω||2dω < +∞,

and the norm in Hk is precisely this functional: ||f ||Hk
= N(f). Hence Hk is a

set of functions with Fourier transforms that decay rapidly, and the norm ||.||Hk

quantifies how fast this decay is.

In both examples, the norm ||f ||Hk
decreases if the “smoothness” of f increases,

where the definition of smoothness depends on the kernel. For the linear kernel,

the smoothness is related to the slope of the function: a smooth function is a flat

function. For the Gaussian RBF kernel, the smoothness of a function is measured

by its Fourier spectrum: a smooth function has little energy at high frequencies.

These examples of smoothness turn out to be very general, the precise definition of

smoothness depending on the kernel considered. In fact, the notion of smoothness is

dual to the notion of similarity discussed in subsection 1.2.4: a function is “smooth”

when it varies slowly between “similar” points.

2004/08/24 17:06

1.2 Kernels 9

Let us now sketch the systematic construction of the functional space Hk from

the kernel k. The set Hk is defined as the set of function f : X → R of the form

f(x) =

n
∑

i=1

αik(xi,x), (1.9)

for n > 0, a finite number of points x1, · · · ,xn ∈ X, and a finite number of weights

α1, . . . , αn ∈ R, together with their limits under the norm:

||f ||2Hk
:=

n
∑

i=1

n
∑

j=1

αiαjk (xi,xj) . (1.10)

It can be checked that this norm is independent of the representation of f in

(1.9). Hk is in fact a Hilbert space, with a dot product defined for two elements

f(x) =
∑n

i=1 αik(xi,x) and g(x) =
∑m

j=1 α
′
ik(x

′
i,x) byReproducing

kernel Hilbert

space 〈f, g〉 =

n
∑

i=1

m
∑

j=1

αiα
′
jk
(

xi,x
′
j

)

.

An interesting property of this construction is that the value f (x) of a function

f ∈ Hk at a point x ∈ X can be expressed as a dot product in Hk,

f (x) = 〈f, k (x, .)〉. (1.11)

In particular, taking f (.) = k (x′, .), we derive the following reproducing property

valid for any x,x′ ∈ X:

k (x,x′) = 〈k (x, .) , k (x′, .)〉. (1.12)

For this reason, the functional space Hk is usually called the reproducing kernel

Hilbert space (RKHS) associated with k. The equality in (1.12) also shows that the

Hilbert space Hk is one possible feature space associated with the kernel k, when

we consider the mapping φ : X → Hk defined by φ (x) := k (x, .). Indeed, (1.4) is

exactly equivalent to (1.12) in this case. The construction of Hk therefore provides

a proof of theorem 1.2.

Aside from the technicalities of this section, the reader should keep in mind theRegularization

connection between kernels and norms on functional spaces. Most kernel methods

have an interpretation in terms of functional analysis. As an example, we show in

the next sections that many kernel methods, including SVMs, can be defined as

algorithms that, given a set of objects S, return a function that solves the equation

min
f∈Hk

R(f, S) + c||f ||Hk
, (1.13)

where R(f, S) is small when f “fits” the data well, and the term ||f ||Hk
ensures

that the solution of (1.13) is “smooth.” In fact, besides fitting the data well and

being smooth, the solution to (1.13) turns out to have special properties that are

useful for computational reasons, which are discussed in theorem 1.3.3 below.

2004/08/24 17:06

10 A primer on kernel methods

1.3 Some Kernel Methods

Having discussed the notions of data representation and kernels in section 1.2,

let us now turn our attention to the algorithms that process the data to perform

some particular tasks, such as clustering, computing various properties, inferring a

regression or classification function from its observation on a finite set of points,

and so on. We focus here on a class of algorithms called kernel methods, which

can roughly be defined as those for which the data to be analyzed only enter the

algorithm through the kernel function; in other words, algorithms that take as input

the similarity matrix defined by a kernel.

Recent years have witnessed the development of a number of kernel methods,

which we do not have the ambition to survey in full generality in this short

introduction. Historically, the first kernel method recognized as such is the SVM

(Boser et al., 1992), which has found many applications in computational biology

(see survey in chapter ??), and which we describe in detail in section 1.4. Before

this, let us try briefly to give a flavor of the two concepts that underlie most kernel

methods: the kernel trick and the representer theorem.

1.3.1 The Kernel Trick

The kernel trick is a simple and general principle based on the property of kernels

discussed in subsection 1.2.3, namely that they can be thought of as inner product.

It can be stated as follows.

Proposition 1.3 Any algorithm for vectorial data that can be expressed only inKernel trick

terms of dot products between vectors can be performed implicitly in the feature space

associated with any kernel, by replacing each dot product by a kernel evaluation.

The kernel trick is obvious but has huge practical consequences that were only

recently exploited. It is first a very convenient trick to transform linear methods,

such as linear discriminant analysis (Hastie et al., 2001) or principal component

analysis (PCA; Jolliffe, 1986), into nonlinear methods, by simply replacing the

classic dot product by a more general kernel, such as the Gaussian RBF kernel

(1.5). Nonlinearity is then obtained at no computational cost, as the algorithm

remains exactly the same. The operation that transforms a linear algorithm into a

more general kernel method is often called kernelization.

Second, the combination of the kernel trick with kernels defined on nonvectorial

data permits the application of many classic algorithms on vectors to virtually any

type of data, as long as a kernel can be defined. As an example, it becomes natural to

perform PCA on a set of sequences, thanks to the availability of kernels for sequences

such as those discussed in chapter ?? or chapter ??, or to search for structure-

activity relationships on chemical compounds using least squares regression without

computing an explicit representation of molecules as vectors, thanks to the graph

kernel presented in chapter ??.

2004/08/24 17:06

1.3 Some Kernel Methods 11

xφ()

φ()xd(x,x)

φ
X F

x

x

Figure 1.3 Given a space
�

endowed with a kernel, a distance can be defined between
points of

�
mapped to the feature space � associated with the kernel. This distance can

be computed without explicitly knowing the mapping φ thanks to the kernel trick.

1.3.2 Example: Computing Distances between Objects

Let us illustrate the kernel trick on the very simple problems of computing distances

between points and clouds of points, which we attempt in general sets X endowed

with a kernel k. Recall from theorem 1.2 that the kernel can be expressed as a

dot product k(x,x′) = 〈φ(x), φ(x′)〉 in a dot product space F for some mapping

φ : X → F.

As a starter consider two objects x1,x2 ∈ X, such as two sequences or two

molecules. These points are mapped to two vectors φ (x1) and φ (x2) in F, so it is

natural to define a distance d (x1,x2) between the objects as the Hilbert distance

between their images,

d (x1,x2) := ||φ (x1) − φ (x2) ||. (1.14)

This definition is illustrated in figure 1.3. At first sight, it seems necessary to

explicitly compute the images φ (x1) and φ (x2) before computing this distance.

However, the following simple equality shows that the distance (1.14) can be

expressed in terms of dot products in F:

||φ (x1) − φ (x2) ||2 = 〈φ (x1) , φ (x1)〉 + 〈φ (x2) , φ (x2)〉 − 2〈φ (x1) , φ (x2)〉. (1.15)

Applying the kernel trick in (1.15) and plugging the result into (1.14) shows that

the distance can be computed only in terms of the kernel,

d (x1,x2) =
√

k (x1,x1) + k (x2,x2) − 2k (x1,x2). (1.16)

The effect of the kernel trick is easily understood in this example: it is possible to

perform operations implicitly in the feature space. This is of utmost importance

for kernels that are easy to calculate directly, but correspond to complex feature

spaces, such as the Gaussian RBF kernel (1.5).

Let us now consider the following slightly more general problem. Let S =

(x1, · · · ,xn) be a fixed finite set of objects, and x ∈ X a generic object. Is it

possible to assess how “close” the object x is to the set of objects S?

2004/08/24 17:06

12 A primer on kernel methods

φ
X F

m

Figure 1.4 The distance between the white circle and the set of three black circles in
the space

�
endowed with a kernel (on the left) is defined as the distance in the feature

space between the image of the white circle and the centroid m of the images of the black
circles. The centroid m might have no preimage in

�
. This distance can nevertheless be

computed implicitly with the kernel trick.

This question might be of interest in different contexts. For example, in binary

classification, one observes two sets of objects S1 and S2 having two different

properties, and one is asked to predict the property of a new object x. A natural

way to achieve this is to predict that x has the property of the objects in S1 if it

is closer to S1 than S2, and the other property otherwise. A second example was

recently proposed by Gorodkin et al. (2001) in the context of multiple sequence

alignment. Given a set of biological sequences to align jointly, the authors proposed

a pairwise alignment score as a kernel from which they derived a ranking of the

sequences, from the most central to the most peripheral with respect to the whole

set. This ranking can then be used to improve a greedy multiple alignment.

Having mapped the data set S and the object x in the feature space with the

function φ, a natural way to measure the distance from x to S is to define it as the

Euclidean distance between φ (x) and the centroid of S in the feature space, where

the centroid is defined as

m =
1

n

n
∑

i=1

φ (xi) .

In general, there is no reason why m should be the image of an object x ∈ X by φ,

but still it is well defined as an element of F. As illustrated in figure 1.4, we can

now define the distance from x to S as follows:

dist(x, S) = ||φ(x) −m|| = ||φ(x) − 1

n

n
∑

i=1

φ(xi)||. (1.17)

Expanding the square distance (1.17) in terms of dot products in the feature space

as we did in (1.15), and using the kernel trick, we obtain

dist(x, S) =

√

√

√

√k(x,x) − 2

n

n
∑

i=1

k(x,xi) +
1

n2

n
∑

i=1

n
∑

j=1

k(xi,xj). (1.18)

2004/08/24 17:06

1.3 Some Kernel Methods 13

This shows that the distance from x to S can be computed entirely from the values

of the kernels between pairs of points in {x} ∪ S, even though it is defined as a

distance in the feature space between φ(x) and a point m that does not necessarily

even have a preimage φ−1(m) in X.

As a slight generalization to (1.18), interested readers can now easily verify that

the kernel trick allows them to define the following functional as a distance between

two sets of points S1 and S2:
√

1

|S1|2
∑

x,x′∈S1

k(x,x′) +
1

|S2|2
∑

x,x′∈S2

k(x,x′) − 2

|S1||S2|
∑

x∈S1,x′∈S2

k(x,x′).

1.3.3 The Representer Theorem

The kernel trick is straightforward when one thinks of kernels as inner products

(see subsection 1.2.3), and is a convenient guideline to deriving kernel methods

from linear algorithms. When one thinks of kernels as regularization operators (see

subsection 1.2.5), a simple but deep theorem can help understand many kernel

methods in a different light. This theorem, called the representer theorem, was first

stated less generally by Kimeldorf and Wahba (1971):

Theorem 1.4 Let X be a set endowed with a kernel k, and S = {x1, · · · ,xn} ⊂ XRepresenter

theorem a finite set of objects. Let Ψ : Rn+1 → R be a function of n+ 1 arguments, strictly

monotonic increasing in its last argument. Then any solution of the problem

min
f∈Hk

Ψ (f (x1) , · · · , f (xn) , ||f ||Hk
) , (1.19)

where (Hk, ||.||Hk
) is the RKHS associated with k, admits a representation of the

form

∀x ∈ X, f (x) =

n
∑

i=1

αik (xi,x) . (1.20)

Proof With the notations of theorem 1.4, let us call ξ (f, S) the function to be

minimized in (1.19), and let

HS

k =

{

f ∈ Hk : f (x) =

n
∑

i=1

αik (xi,x) , (α1, · · · , αn) ∈ R
n

}

⊂ Hk .

Any function f ∈ Hk can be decomposed as f = fS + f⊥, where fS ∈ HS

k is the

orthogonal projection of f onto the subspace HS

k and f⊥ ⊥ HS

k . By (1.11) it follows

that f⊥ (xi) = 〈f⊥, k (xi, .)〉 = 0 for i = 1, · · · , n, because each function k (xi, .)

is an element of HS

k and f⊥ is orthogonal to each element of HS

k by definition.

Therefore f (xi) = fS (xi) for each i = 1, · · · , n. Moreover, Pythagoras theorem in

Hk states that ||f ||2
Hk

= ||fS||2Hk
+ ||f⊥||Hk

. This shows that ξ (f, S) ≥ ξ (fS, S),

with equality iff ||f⊥||Hk
= 0, or f⊥ = 0, because Ψ is strictly monotonic increasing

2004/08/24 17:06

14 A primer on kernel methods

in its last argument. As a result, any minimum f of ξ (f, S) must belong to HS

k ,

which concludes the proof.

Theorem 1.4 shows the dramatic effect of regularizing a problem by including

a dependency in ||f ||Hk
in the function to optimize. As pointed out in subsec-

tion 1.2.5, this penalization makes sense because it forces the solution to be smooth,

which is usually a powerful protection against overfitting of the data. The repre-

senter theorem shows that this penalization also has substantial computational

advantages: any solution to (1.19) is known to belong to a subspace of Hk of di-

mension at most n, the number of points in S, even though the optimization is

carried out over a possibly infinite-dimensional space Hk. A practical consequence

is that (1.19) can be reformulated as an n-dimensional optimization problem, by

plugging (1.20) into (1.19) and optimizing over (α1, · · · , αn) ∈ R
n.

Most kernel methods can be seen in light of the representer theorem. Indeed,

as we show in the next examples, they often output a function of the subspace

HS

k ; indeed one can often explicitly write the functional that is minimized, which

involves a norm in Hk. This observation can serve as a guide to choosing a kernel

for practical applications, if one has some prior knowledge about the function the

algorithm should output: it is in fact possible to design a kernel such that a priori

desirable functions have a small norm.

1.3.4 Example: Kernel Principal Component Analysis

PCA (Jolliffe, 1986) is a powerful method to extract features from a set of vectorsPCA

and to visualize them. Let us first suppose that X = Rp and S = (x1, . . . ,xn) is a

set of centered vectors,

n
∑

i=1

xi = 0.

The orthogonal projection onto a direction w ∈ Rp is the function hw : X → R

defined by

hw (x) = x> w

||w|| . (1.21)

As illustrated in figure 1.5, PCA finds successive directions w1, . . . ,wp for which

the projections hwi
have maximum empirical variance and wi is orthogonal to

w1, . . . ,wi−1, for i = 1, . . . , p. Here the empirical variance of a projection hw is

defined by

ˆvar (hw) :=
1

n

n
∑

i=1

hw (xi)
2 =

1

n

n
∑

i=1

(

x>
i w
)2

||w||2 . (1.22)

There may be ambiguity in this definition if two different directions have the same

empirical variance, which we will not discuss further in the hope of keeping the

attention of the reader on the kernelization of PCA.

2004/08/24 17:06

1.3 Some Kernel Methods 15

ww 21

Figure 1.5 For centered vectorial data, principal component analysis (PCA) finds the
orthogonal directions of largest variations.

Let us now rephrase PCA in terms of functional optimization (Schölkopf and

Smola, 2002). Let kL be the linear kernel (1.1), and Hk the RKHS (1.7) associated

with kL. Given any direction w ∈ Rd, we use (1.8) to associate the function fw ∈ Hk

defined by fw (x) = w>x, with norm ||fw|| = ||w||. Here, ||fw|| is understood as

the norm of f in Hk , while ||w|| is the Euclidean norm of w in R
d. The empirical

variance (1.22) of the projection onto w can therefore be expressed in terms of fw;

∀w ∈ R
p, ˆvar (hw) =

1

n||fw||2
n
∑

i=1

fw(xi)
2.

Moreover, orthogonality of two directions w,w′ ∈ R
p is equivalent to the orthog-

onality of the corresponding functions fw, f
′
w ∈ Hk with respect to the dot prod-

uct of Hk. Linear PCA can therefore be rephrased as finding successive functions

f1, . . . , fp ∈ Hk defined recursively as follows: for i = 1, . . . , p, fi maximizes the

functional

∀f ∈ Hk , Ψ (f) :=
1

n||f ||2
n
∑

j=1

f(xj)
2, (1.23)

under the constraints of orthogonality with respect to f1, . . . , fi−1. Here again, the

definition has some ambiguity if several functions have the same value.

The functional (1.23) satisfies the conditions of theorem 1.4: it is a strictly

decreasing function of ||f ||, and only depends on the values that f takes on

the points x1, . . . ,xn. Theorem 1.4 shows that the successive directions fi, for

i = 1, . . . , p, admit a representation

∀x ∈ X, fi (x) =

n
∑

j=1

αi,jk (xj ,x) , (1.24)

for some αi = (αi,1, . . . , αi,n)
> ∈ Rn [indeed, the proof of theorem 1.4 remains valid

when the optimization (1.19) is performed on a subspace of Hk, such as a subspace

2004/08/24 17:06

16 A primer on kernel methods

defined by orthogonality conditions]. Combining (1.24) and (1.10), we can express

the norm ||fi|| in terms of αi using matrix notations,

||fi||2 = α>
i kαi, (1.25)

which with (1.24) yields

n
∑

i=1

fi (xi)
2

= α>
i k

2αi. (1.26)

Plugging (1.25) and (1.26) into (1.23), we obtain a dual formulation of PCA

which consists in finding α1, . . . , αp ∈ Rn defined recursively: for i = 1, . . . , p,

αi maximizes the function

α>k2α

nα>kα
, (1.27)

under the constraints αikαj = 0, for j = 1, . . . , i − 1. The principal components

are then recovered by (1.24).

Classic linear algebra (Schölkopf et al., 1998) shows that the solutions αi of this

problem are precisely the eigenvectors of k. In order to recover the projections

(1.21) onto the principal directions, the eigenvector αi of k with eigenvalue λi must

be scaled to ensure 1 = ||wi|| = α>
i kαi = λi||αi||2, or ||αi|| = 1/

√
λi. Of course

this conputation is only valid if the data are centered in the feature space. This is

not a restriction, however, because any kernel matrix k can be transformed into a

matrix k̃ corresponding to the inner products of the same points after centering in

the feature space, using the kernel trick. The reader can check that k̃ is obtained

by the formula k̃ = (I − e/n)k(I − e/n), where I is the identity matrix and e is the

singular matrix with all entries equal to 1.

This representation of PCA only involves the diagonalization of the n×n matrix

of pairwise comparisons with the linear kernel. It can therefore be kernelized by

simply replacing this matrix with the same n × n matrix of pairwise comparisons

obtained from a different kernel. In that case, linear PCA is performed implicitly

in the corresponding feature space. The resulting method, called kernel PCA, isKernel PCA

a useful tool to extract features from a set of objects in a space endowed with a

kernel. For example, PCA involving a kernel defined on strings can be a useful

visualization tool for sets of biological sequences. By projecting the sequences onto

the first two or three principal components, one can observe the structure of the

set of points, such as the presence of clusters or outliers, as shown in figure 1.6.

1.4 Support Vector Machines

Suppose that the data set S consists of a series of objects x1, . . . ,xn ∈ X, together

with a series of labels y1, . . . , yn ∈ Y associated with the objects. SVMs are kernel

2004/08/24 17:06

1.4 Support Vector Machines 17

PC2

PC1

Figure 1.6 An example of kernel PCA. A set of 74 human tRNA sequences is analyzed
using a kernel for sequences (the second-order marginalized kernel based on SCFG (Kin
et al., 2002)). This set of tRNAs contains three classes, called Ala-AGC (white circles),
Asn-GTT (black circles) and Cys-GCA (plus symbols). This plot shows the 74 sequences
projected onto the first two principal components. By visual inspection, the three classes
appear to be well separated in the feature space associated with the kernel. See also Vert
(2002) for another example of kernel PCA application to biological data.

methods to learn a function f : X → Y from S, which can be used to predict the

label of any new object x ∈ X by f (x).

In this tutorial we only consider the simple case where each object is classifiedPattern

recognition into one of two classes, indicated by the label y ∈ {−1,+1}. This simple problem,

called binary classification or pattern recognition in the machine learning com-

munity, turns out to be very useful in practice. Examples of pattern recognition

problems in computational biology include predicting whether a protein is secreted

or not from its amino acid sequence, predicting whether a tissue is healthy from a

gene profiling experiment, or predicting whether a chemical compound can bind a

given target or not from its structure. In each case, a positive prediction is asso-

ciated with the label +1, and a negative prediction with the label −1. In order to

perform pattern recognition, one needs a data set of objects with known tags, such

as a database of proteins known to be secreted or not, in order to learn a prediction

function that can then be applied to proteins without annotation.

As usual with kernel methods, we begin with a description of the algorithm when

objects are vectors, X = Rp. In this case, the SVM tries to separate the two classes

of points using a linear function of the form f (x) = w>x + b, with w ∈ Rp and

b ∈ R. Such a function assigns a label +1 to the points x ∈ X with f (x) ≥ 0, and

a label −1 to the points x ∈ X with f (x) < 0. The problem is therefore to learn

such a function f from a data set of observations S.

2004/08/24 17:06

18 A primer on kernel methods

H1

H2

Figure 1.7 The hyperplane H1 discriminates the white circles from the black ones with
1 mistake. The hyperplane H2 separates these points with 5 mistakes. The empirical risk
minimization principle states that one should choose a hyperplane with a minimal number
of errors on the training set, which is H1 in this case

For a candidate function f (x) = w>x + b, one can check for each observation

(xi, yi) whether it is correctly classified by f , that is, whether yif (xi) ≥ 0 or not.

A natural criterion to choose f might be to minimize the number of classification

errors on S; the number of indices i ∈ [1, n] such that yif (xi) ≥ 0. This general

principle, called empirical risk minimization, is illustrated in figure 1.7. This can,Empirical risk

minimization for example, be accomplished using the linear perceptron. As shown in figure 1.8,

however, this usually does not define a unique solution, even when it is possible to

perfectly separate the points.

SVMs are unique in that they focus more on the confidence of the classifications

than on the number of misclassifications. This emphasis stems from general results

on learning theory, developed in particular by Vapnik and Chervonenkis since the

late 1960s (Vapnik and Chervonenkis, 1968, 1971, 1974). One way to formalize it

with linear classifiers is shown in figure 1.9. The linear function f (x) = w>x + b

defines two half-spaces of points classified positively and negatively with large

confidence, namely the sets h+ = {x : f (x) ≥ 1} and h− = {x : f (x) ≤ −1}.
The distance between these two half-spaces, called the margin, is exactly equal to

2/||w||. If possible, one might require all points in the training set S to be correctlyMargin

classified with strong confidence by a linear function f with largest possible margin.

This would correspond to the problem of maximizing 2/||w|| under the constraints

yi

(

w>x + b
)

≥ 1 for i = 1, . . . , n. In order to accommodate the cases when the

training set cannot be correctly separated by a linear hyperplane, SVMs slightly

modify this problem by softening the constraints using the continuous hinge loss

function shown in figure 1.10,Hinge loss

c (f,x, y) = max (0, 1− yf (x)) . (1.28)

2004/08/24 17:06

1.4 Support Vector Machines 19

Figure 1.8 Even when the training data are linearly separable, the empirical risk
minimization principle does not define a unique solution.

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

w.x+b=−1

w.x+b=+1

w.x+b > +1

w.x+b < −1

w.x+b=0

Figure 1.9 An affine function f(x) = w>x+ b defines two half-spaces where points are
classified with large confidence: h+ = {x : f(x) ≥ 1} for the positive points (black circles)
and h− = {x : f(x) ≤ −1} (white circles). The distance between the half-spaces is equal
to 1/‖w‖.

2004/08/24 17:06

20 A primer on kernel methods

c(f,x,y)

yf(x)

1
Figure 1.10 The hinge loss function. As long as yf(x) ≥ 1, the point x is correctly
classified by the function f with large confidence and the hinge loss is null. When
yf(x) < 1, x is either correctly classified with small confidence (0 ≤ yf(x) < 1), or
misclassified (yf(x) < 0). In these cases the hinge loss is positive, and increases as
1 − yf(x). SVMs find a linear separating function with a large margin and small average
hinge loss on the training set.

If a point (x, y) is correctly classified by f with large confidence, then c (f,x, y) = 0.

If this is not the case, then c (f,x, y) increases with the distance from x to the correct

half-space of large confidence.

SVMs combine the requirements of large margin (i.e., small ||w||), and few

misclassifications or classifications with little confidence on the training set, by

solving the problem

argmin
f(x)=w>

x+b

1

2
||w||2 + C

n
∑

i=1

c(f,xi, yi), (1.29)

where C is a parameter that controls the tradeoff between the two requirements.

Larger values of C might lead to linear functions with smaller margin but more

examples correctly classified with strong confidence (the choice of this parameter is

discussed in subsection 1.5.3).

Stated as (1.29), the reader might observe that this problem is very close to the

minimization of a functional on a RKHS satisfying the hypothesis of theorem 1.4,

with the slight difference that we consider here affine functions f , and not only

linear functions of the form (1.7). It turns out that the representer theorem can be

adapted to this case (see, e.g., theorem 4.3 in Schölkopf and Smola, 2002), and any

w solution of (1.29) has an expansion as a linear combination of x1, . . . ,xn. Let us

now directly demonstrate this property and highlight several interesting properties

of the solution of (1.29).

2004/08/24 17:06

1.4 Support Vector Machines 21

1.4.1 Solving the Optimization Problem

The hinge loss function (1.28) is not differentiable, so direct minimization of (1.29)

is not straightforward. To overcome this issue let us introduce n new variables

ξ1, . . . , ξn, called slack variables, and rewrite (1.29) as the problem of minimizing:

argmin
w,b,ξ1,...,ξn

1

2
||w||2 + C

n
∑

i=1

ξi, (1.30)

under the constraints ξi ≥ c(f,xi, , yi) for i = 1, . . . , n. These two problems are

equivalent, because the minimization of (1.30) with respect to ξi is obtained when

ξi takes its minimal value, namely c(f,xi, yi). By definition of the hinge loss (1.28),

the constraint ξi ≥ c(f,xi, yi) is equivalent to the two constraints ξi ≥ 0 and

ξi ≥ 1 − yi(w
>xi + b). We have therefore shown that (1.29) is equivalent to the

quadratic programming problem

min
w,b,ξ1,...,ξn

1

2
||w||2 + C

n
∑

i=1

ξi, (1.31)

under the constraints

for i = 1, . . . , n,

{

ξi ≥ 0,

ξi − 1 + yi(w
>xi + b) ≥ 0.

(1.32)

This constrained optimization problem can be processed using Lagrange mul-

tipliers, which are written as α = (α1, . . . , αn) ≥ 0 for each of the constraintsLagrange

multipliers yi (w.xi + b) ≥ 1 − ξi, and β = (β1, . . . , βn) ≥ 0 for each of the constraints ξi ≥ 0.

We can then introduce the Lagrangian,

L(w, b, ξ,α,β) =
1

2
||w||2 + C

n
∑

i=1

ξi −
n
∑

i=1

αi

[

ξi − 1 + yi

(

w>xi + b
)]

−
n
∑

i=1

βiξi.

(1.33)

In order to solve (1.31) we need to find the unique saddle point of L, which is a

minimum with respect to (w, b, ξ) and a maximum with respect to (α,β) ≥ 0.

For fixed (α,β) let us first minimize the Lagrangian as a function of (w, b, ξ).

This is done by setting the partial derivatives to 0;

∂L

∂w
(w, b, ξ,α,β) = w −

n
∑

i=1

yiαixi = 0, (1.34)

∂L

∂b
(w, b, ξ,α,β) =

n
∑

i=1

yiαi = 0, (1.35)

∂L

∂ξi
(w, b, ξ,α,β) = C − αi − βi = 0, for i = 1, . . . , n. (1.36)

2004/08/24 17:06

22 A primer on kernel methods

With (1.34) we recover the representer theorem that states w is a linear combination

of the x1, . . . ,xn. More precisely, we get

w =

n
∑

i=1

yiαixi. (1.37)

Plugging (1.37) into (1.33) and using (1.35), we obtain the value of the Lagrangian

when minimized with respect to (w, b,x),

∀(α,β) ≥ 0, inf
w,b,ξ

L(w, b, ξ,α,β) = −1

2

n
∑

i=1

n
∑

j=1

yiyjαiαjx
>
i xj +

n
∑

i=1

αi, (1.38)

under the constraints (1.35) and (1.36) on α and β (if these constraints are not

fulfilled, the infimum is equal to −∞).

The function (1.38) has to be maximized with respect to α ≥ 0 and β ≥ 0. But

β does not appear in this function, so we just need to maximize (1.38) as a function

of α and to check that there exists some β ≥ 0 for which (1.36) holds. This is the

case iff αi ≤ C for i = 1, . . . , N , because only in this case can we find βi ≥ 0 such

that βi + αi = C.

As a result, the initial problem (1.31) is equivalent to the following dual problem:

find α = (α1, . . . , αn) which minimizesDual problem

W (α) = −1

2

n
∑

i=1

n
∑

j=1

yiyjαiαjx
>
i xj +

n
∑

i=1

αi, (1.39)

under the constraints
{

∑n

i=0 yiαi = 0,

0 ≤ αi ≤ C for i = 1, . . . , n.

Once α is found one recovers the other dual vector β with the constraint

βi = C − αi, for i = 1, . . . , N.

The vector w is then obtained from (1.37). In order to recover b, we can use the

Karush-Kuhn-Tucker conditions which state that the constraints corresponding to

non-zero Lagrange multipliers are met at the saddle point of the Lagrangian. As a

result, for any 0 ≤ i ≤ n with 0 < αi < C (which implies β > 0), the constraints

ξi = 0 and ξi − 1 + yi (w.xi + b) hold. We thus obtain

b = yi − w>xi = yi −
n
∑

j=1

yjαjx
>
j xi. (1.40)

Figure 1.11 shows a typical linear function learned by an SVM, together with

the Lagrange multipliers αi and βi associated to each point. The constraint αi < C

implies βi > 0, and therefore ξi = 0. These points are are correctly classified

with large confidence. The constraints 0 < αi < C imply βi > 0, and therefore

2004/08/24 17:06

1.4 Support Vector Machines 23

α=0

0<α< C

α=C

Figure 1.11 A linear function learned by an SVM to discriminate black from white
circles, and the corresponding Lagrange multipliers � . Each point correctly classified with
large confidence (yf(x) > 1) has a null multiplier. Other points are called support vector.
They can be on the boundary, in which case the multiplier satisfies 0 ≤ α ≤ C, or on the
wrong side of this boundary, in which case α = C.

w>xi+b = yi. These points are correctly classified, but at the limit of the half-space

of large confidence. Points not correctly classified with large confidence correspond

to ξi > 0, and therefore βi = 0 and αi = C.

The points with positive Lagrange multiplier αi = 0 are called support vectors.

From (1.37) we see that w is a linear combination of the support vectors alone.Support vectors

Moreover, the solution found by the SVM does not change when non-support vectors

are removed from the training set. Thus the set of support vectors contains all the

information about the data set used by SVM to learn a discrimination function.

This can easily be seen when it comes to predicting the class of a new object x ∈ X.

Indeed we must then form the linear function

f (x) = w>x + b =

n
∑

i=1

yiαix
>
i x + b, (1.41)

and predict that the class of x is −1 or +1 depending on the sign of this function.

The sum in (1.41) only involves support vectors.

1.4.2 General SVMs

From (1.39), (1.40), and (1.41), we see that learning a linear classifier and predicting

the class of a new point only involves the points in the training set through their dot

products. The kernel trick can therefore be applied to perform the SVM algorithm

in the feature space associated with a general kernel. It can be stated as follows:

find α = (α1, . . . , αn) which minimizes

W (α) = −1

2

n
∑

i=1

n
∑

j=1

yiyjαiαjk (xi,xj) +

n
∑

i=1

αi, (1.42)

2004/08/24 17:06

24 A primer on kernel methods

φ
X F

Figure 1.12 SVMs perform a linear discrimination of a training set of labeled points in
the feature space associated with a kernel. The resulting separation can be nonlinear in
the original space.

under the constraints
{

∑n

i=0 yiαi = 0,

0 ≤ αi ≤ C for i = 1, . . . , n.

Next, find an index i with 0 < αi < C, and set:

b = yi −
n
∑

j=1

yjαjk (xj ,xi) .

The classification of a new object x ∈ X is then based on the sign of the function

f (x) =

n
∑

i=1

yiαik (xi,x) + b. (1.43)

The resulting function, although linear in the feature space associated with the

kernel, can of course be nonlinear if the initial space is a vector space and the

kernel is nonlinear. An example of nonlinear separation is illustrated in figure 1.12.

1.4.3 Variants and Extensions

Many variants of the basic SVM algorithm presented in the preceding sections have

been proposed. Among the many variants surveyed in Schölkopf and Smola (2002),

let us mention here a few directions to generalize the basic SVM algorithm. First,

in the case of binary classification, several interesting modifications are obtained

by changing the function (1.29) being optimized. Different norms on w together

with different cost functions lead to interesting variants, which can be more or less

difficult to solve. Lack of space prevents us from being exhaustive, so we will have

to skip interesting approaches such as the leave-one-out machine (Weston, 1999;

Weston and Herbrich, 2000) and the Bayes point machines (Ruján and Marchand,

2000; Herbrich et al., 2001; Rychetsky et al., 2000), as well as algorithms for tasks

which are different from pattern recognition, such as regression estimation (Vapnik,

1995) and novelty detection (Schölkopf et al., 2001).

2004/08/24 17:06

1.4 Support Vector Machines 25

1.4.4 ν-SVMs

An alternative realization of a soft margin SVM (1.29) uses the ν-parametrization

(Schölkopf et al., 2000). In this approach, the parameter C is replaced by ν ∈ [0, 1],

which can be shown to lower- and upper-bound the number of examples that will

be support vectors and that will come to lie on the wrong side of the hyperplane,

respectively. In many situations, this provides a more natural parameterization

than that using the somewhat unintuitive parameter C. The so-called ν-SVM

uses a primal objective function with the error term 1
νm

∑

i ξi − ρ, and separation

constraintsν-SVM

yi · ((w · xi) + b) ≥ ρ− ξi, i = 1, . . . ,m. (1.44)

The margin parameter ρ is a variable of the optimization problem. The dual

can be shown to consist of maximizing the quadratic part of (1.39), subject to

0 ≤ αi ≤ 1/(νm),
∑

i αiyi = 0 and the additional constraint
∑

i αi = 1.

1.4.5 Linear Programming Machines

The idea of linear programming (LP) machines is to use the kernel expansion

f(x) =
∑m

i=1 υik(x, xi) + b [cf. (1.43)] as an ansatz for the solution, but to use

a different regularizer, namely the `1 norm of the coefficient vector (Mangasarian,

1965; Frieß and Harrison, 1998; Mattera et al., 1999; Bennett, 1999; Weston et al.,

1999). The main motivation for this is that this regularizer is known to induce

sparse solutions. This amounts to the objective function

Rreg[g] :=
1

m
‖υ‖1 + C Remp[g], (1.45)

where ‖υ‖1 =
∑m

i=1 |υi| denotes the `1 norm in coefficient space, using the soft

margin empirical risk,

Remp[g] =
1

m

∑

i

ξi, (1.46)

with slack terms

ξi = max{1 − yif(xi), 0}. (1.47)

We thus obtain the LP problem

min
α,ξ∈Rm,b∈R

1

m

m
∑

i=1

(αi + α∗
i) + C

m
∑

i=1

ξi, (1.48)

subject to
{

yif(xi) ≥ 1 − ξi,

αi, α
∗
i , ξi ≥ 0.

2004/08/24 17:06

26 A primer on kernel methods

Here, the `1-norm has been componentwise split into positive and negative parts,

that is, υi = αi − α∗
i . The solution differs from (1.43) in that each expansion

pattern no longer necessarily has a weight αiyi with a sign equal to its class label;

nor do the expansion patterns lie on or beyond the margin — in LP machines they

can basically be anywhere, a feature which is reminiscent of the relevance vector

machine (Tipping, 2001).

LP machines can also benefit from the ν-trick. In this case, the programming

problem can be shown to take the following form (Graepel et al., 1999b):

min
α,ξ∈Rm,b,ρ∈R

1

m

m
∑

i=1

ξi − νρ, (1.49)

subject to

1
m

m
∑

i=1

(αi + α∗
i) = 1,

yif(xi) ≥ ρ− ξi,

αi, α
∗
i , ξi, ρ ≥ 0.

1.5 SVMs in Practice

A number of SVM implementations are freely or commercially available: ForSVM

implementations instance, SVM light,3 LIBSVM, 4 and mySVM 5 are popular in the machine learning

community, and a more complete and up-to-date list is available on the kernel

method community website http://www.kernel-machines.org. While newcomers

may feel that these programs can solve the learning tasks automatically, it in

fact remains challenging to apply SVMs in a fully automatic manner. Questions

regarding the choice of kernel, of parameters, of data representation, or of different

flavors of SVMs, remain largely empirical in real-world applications. While default

setting and parameters are generally useful as a starting point, big improvements

can result from careful tuning of the algorithm. As an example, Hsu et al. (2003)

report an accuracy improvement from 36% to 85.2% by an appropriate tuning.

1.5.1 Multiclass Problems

The basic SVM algorithm for pattern recognition is designed for classification of

objects into two classes, but many real-world applications deal with more than two

classes. This is, for example, the case when one wants to assign a function or a

structure to a protein sequence, or a disease family to a tissue from gene expression

3. Available from http://svmlight.joachims.org/
4. Available from http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
5. Available from http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/

2004/08/24 17:06

1.5 SVMs in Practice 27

experiments. One way to use SVMs in this context is to apply an implementation

that specifically solves multiclass problems (see, e.g., chapter ??). However, these

implementations remain rare and cannot handle more than a few classes.

The most widely used method for multiclass problems involves reformulating

them as a number of binary classification problems, and solving these problems

with binary SVMs. The resulting SVMs must then be combined to form a multiclass

prediction algorithm. The most common way to perform this split and combination

is called the One-against-all scheme. It consists in first finding a discriminationOne-against-all

between each class and all the others, thus transforming a problem with N classes

into N binary problems. The scores output by each SVM are then combined by a

max rule: an object is assigned to the class corresponding to the SVM that outputs

the largest score. As an example, let us consider a three-class classification problem

with the following training set labels:

y = (1, 1, 1, 2, 2, 2, 3, 3, 3).

In the one-against-all scheme this problem is decomposed as three binary problems

with the following class assignments:

y1 = (1, 1, 1,−1,−1,−1,−1,−1,−1)

y2 = (−1,−1,−1, 1, 1, 1,−1,−1,−1)

y3 = (−1,−1,−1,−1,−1,−1, 1, 1, 1)

(1.50)

Three SVMs are trained on the three class labels respectively. When an unknown

sample is classified, the outputs of SVMs are compared and the sample is assigned

to the class with the largest output.

We conclude this subsection by noting that several other methods for multiclass

problems have been proposed.

In pairwise classification, one classifier is learned for each possible pair of classes

(see Friedman, 1996; Schmidt and Gish, 1996; Kreßel, 1999).

In error-correcting output codes, a set of classifiers is trained, each one solving

the task of separating the union of certain classes from the complement. By

cleverly choosing the classes, the outputs of several such classifiers code the class

membership of a given test point rather robustly (Allwein et al., 2000)

Multiclass objective functions capture a multiclass problem by defining an ob-

jective function that simultaneously trains all the classifiers involved (Weston and

Watkins, 1999). While this may be the most elegant approach, it tends to be too

expensive to train all classifiers simultaneously, if the problem size is large.

1.5.2 Kernel Normalization

When the data set is a set of vectors, it is often effective to linearly scale each

attribute to zero mean and unit variance, and then apply the Gaussian RBF kernel

2004/08/24 17:06

28 A primer on kernel methods

or polynomial kernel (Hsu et al., 2003). The main advantage of this normalization

is to avoid attributes in larger numeric ranges dominating those in smaller ranges.

For more general kernels such as string or graph kernels, the kernel matrix is often

directly obtained without feature vectors. In this case, it is considered effective to

normalize the kernel matrix such that all the diagonal elements are 1. If kij denotes

the (i, j)th element of a kernel matrix k, this normalization is

k′ij =
kij

√

kiikjj

.

More advanced methods for kernel normalization are described by Schölkopf et al.

(2002)

1.5.3 Parameter Setting

In order to use a basic SVM for binary classification, two kinds of parameters have

to be determined:

The regularization parameter C of the SVM

The kernel and its parameters

A proper choice of these parameters is crucial to the good performance of the

algorithm. A temptation to be avoided is to set the parameters based on the

performance of the SVM on the training set, because this is likely to lead to

overfitting: the performance increases on the training set used, but decreases on

new samples.

A standard way to fix parameters is to use cross-validation. Let us denote byCross-validation

γ a parameter of a kernel to be set, for instance, the width of the Gaussian RBF

kernel, and C the parameter of the algorithm. Given specific values of C and γ,

the k-fold cross-validation error is calculated as follows: first of all, the training

set Z = {xi, yi}n
i=1 is randomly divided into k subsets Z1, · · · ,Zk of approximately

equal size. The SVM is trained on k− 1 subsets and its error rate on the remaining

subset is computed. Repeating this process k times such that each subset is tested

once, the cross-validation error is determined by the average of the test errors.

When k = n, the cross-validation error is especially called the leave-one-out error.

In this scheme C and γ are determined so as to minimize the cross-validation

error. This goal is approximately achieved by a Grid search. A set of candidateGrid search

values are chosen both for C and γ, and the cross-validation error is computed

for every possible combination of them. If nc and nγ are the number of candidate

values, then the cross-validation error is computed ncnγ times, which means that

the SVM is trained kncnγ times in total. Typically, users do not have any idea

about the optimal values for C and γ, so the candidate values must cover a very

large domain. Hsu et al. (2003) suggest the candidate values be determined as

an exponentially growing sequence (e.g., C = 2−5, 2−3, · · · , 215, γ = 2−15, · · · , 23).

When there are more than two parameters, the grid search becomes difficult as the

2004/08/24 17:06

1.6 More Kernels 29

number of grid points grows exponentially. In such cases, one can use a gradient

search to minimize an upper bound on the leave-one-out error (Chapelle et al.,

2002).

Model selection can lead to costly computations. For example, when k = nc =

nγ = 10, the SVM must be trained 1000 times to choose C and γ, which might

be prohibitive for large data sets. However, this process can be easily parallelized,

which alleviates the burden of cross-validation.

1.6 More Kernels

In section 1.3, we presented some of the possibilities for data analysis offered by

kernel methods. They are completely modular, in the sense that each method can

be applied to any kernel. In this section we present classic or recently developed

kernels that the reader might find it useful to be aware of.

1.6.1 Kernels for Vectors

A few kernels for vectors have gained considerable attention in the SVM community.

The linear kernel which we already met,

kL (x,x′) = x>x′,

is a particular instance of the polynomial kernels defined for d ≥ 0 byPolynomial

kernels
kPoly1(x,x

′) =
(

x>x′
)d
,

or

kPoly2(x,x
′) =

(

x>x′ + c
)d
,

where d is the degree of the polynomial and c is a constant in the second kernel.

The polynomial kernel kPoly1 of degree 2 corresponds to a feature space spanned by

all products of 2 variables, that is,
{

x2
1, x1x2, x

2
2

}

. It is easy to see that the kernel

kPoly2 of degree 2 corresponds to a feature space spanned by all products of at

most 2 variables, that is,
{

1, x1, x2, x
2
1, x1x2, x

2
2

}

. More generally the kernel kPoly1

corresponds to a feature space spanned by all products of exactly d variables, while

the kernel kPoly2 corresponds to a feature space spanned by all products of at most

d variables.

The Gaussian RBF kernelGaussian RBF

kernel
kG(x,x′) = exp

(

−||x− x′||2
2σ2

)

,

2004/08/24 17:06

30 A primer on kernel methods

where σ is a parameter, is one of the most frequently used kernels in practice,

thanks to its capacity to generate nonparametric classification functions. Indeed,

the discriminant function learned by an SVM has the form

f(x) =

n
∑

i=1

yiαi exp

(

−||xi − x||2
2σ2

)

and is therefore a sum of Gaussian centered on the support vectors. Almost any

decision boundary can be obtained with this kernel. Observe that the smaller the

parameter σ, the more peaked the Gaussians are around the support vectors, and

therefore the more complex the decision boundary can be. Larger σ corresponds to

a smoother decision boundary.

The sigmoid kernel is defined bySigmoid kernel

k(x,x′) = tanh
(

κx>x′ + θ
)

,

where κ > 0 and θ < 0 are parameters respectively called gain and threshold. The

main motivation behind the use of this kernel is that the decision function learned

by an SVM,

f(x) =
n
∑

i=1

αiyi tanh
(

κx>
i x + θ

)

,

is a particular type of two-layer sigmoidal neural network. In fact the sigmoid kernel

is not always positive definite, but has still been successfully used in practice.

1.6.2 Kernels for Strings

Computational biology is a field rich in strings, such as peptide or nucleotide strings.

As a result, much work has been devoted recently to the problem of making kernels

for strings, as illustrated in chapters ??, ??, and ??.

String kernels differ in the information about strings they encode, their implemen-

tation, and their complexity. In order to give a flavor of string kernels, we present

a particular string kernel proposed by Lodhi et al. (2002) in the context of natural

language processing, which is one of the earliest string kernels. The basic idea is

to count the number of subsequences up to length n in a sequence, and compose a

high-dimensional feature vector by these counts. The string kernel is defined as a

dot product between such feature vectors.

More precisely, let Σ be the set of symbols. A string s of length |s| is defined as

s = s1, . . . , s|s| ∈ Σ|s|. The set of all strings is X =
⋃∞

i=0 Σi. An index set i of length

l is an l-tuple of positions in s,

i = (i1, . . . , il), 1 ≤ i1 < . . . < il ≤ |s|,

2004/08/24 17:06

1.6 More Kernels 31

and we denote by s[i] = si1 , . . . , sil
the subsequence of s corresponding to the

indices in i. Let us define the weight of the index set i by

λl(i), where l(i) = il − i1 + 1,

where λ < 1 is a predetermined constant. Thus, for a given subsequence length l,

the weight decreases exponentially with the number of gaps in the subsequence.

For each sequence u ∈ Σk, where k is fixed, let us now define a feature Φu : X → R

as

∀s ∈ X, Φu(s) =
∑

i:s[i]=u

λl(i).

Considering all sequences u of length n, we can map each sequence s ∈ X to a |Σ|n-

dimensional feature space by the mapping s→ (Φu(s))u∈Σn . We can then define a

kernel for strings as the dot product between these representations,

∀s, t ∈ X, kn(s, t) =
∑

u∈Σn

∑

i:u=s[i]

λl(i)
∑

j:u=t[j]

λl(j)

=
∑

u∈Σn

∑

i:u=s[i]

∑

j:u=t[j]

λl(i)+l(j). (1.51)

Calculating each feature is hopeless because of the high dimensionality. However, it

has been shown that a recursive algorithm can calculate kn efficiently with a time

complexity O(n|s||t|) (Lodhi et al., 2002), using dynamic programming.

1.6.3 The Fisher Kernel

Probabilistic models are convenient to represent families of complex objects that

arise in computational biology. Typically, such models are useful when one wants to

characterize a family of objects x that belong to a big set X, but only span a very

small subset of X. The models can then be used to infer a probability distribution

on X concentrated on the objects observed or likely to be observed. For example,

hidden Markov models (HMMs) are a central tool for modeling protein families

or finding genes from DNA sequences (Durbin et al., 1998). More complicated

models called stochastic context-free grammars (SCFGs) are useful for modeling

RNA sequences (Sakakibara et al., 1994).

The success of a particular probabilistic model requires that the distribution of

actual objects be well characterized by that model. The Fisher kernel (Jaakkola

and Haussler, 1999) provides a general principle to design a kernel for objects well

modeled by a probabilistic distribution, or more precisely a parametric statistical

model. Denote by p(x|θ), x ∈ X,θ ∈ <p a parametric statistical model with a

p-dimensional parameter θ on the measurable space;

∀θ ∈ Θ,

∫

X

p(x|θ)dx = 1.

2004/08/24 17:06

32 A primer on kernel methods

Moreover, (x, θ) → p(x|θ) is required to be smooth enough for all following

computations to make sense.

Given a sample S = (x1, . . . ,xn), suppose a parameter θ̂ is estimated to model

S, for example, by maximum likelihood. The Fisher kernel is then defined as

∀x,x′ ∈ X, k(x,x′) = ∇θ log p(x|θ̂)>J−1∇θ log p(x′|θ̂),

where

∇θ =

(

∂

∂θ1
, · · · , ∂

∂θp

)>

is a gradient vector with respect to θ and J is the Fisher information matrix;

J =

∫

x∈X

∇θ log p(x|θ̂)∇θ log p(x|θ̂)>p(x|θ̂)dx.

The Fisher kernel can be understood intuitively when the parametric model is an

exponential family. An exponential family of densities is written as

p(x|θ) = exp(θ>s(x) + φ(θ)),

where s : X → <p is a vector-valued function and φ is a normalization factor

to ensure that
∑

x∈X
p(x|θ) = 1. The function s, commonly called “sufficient

statistics,” plays a role of feature extraction from x, because p(x|θ) depends on x

solely through s. The Fisher kernel can recover this “hidden” feature of x because

∇θ log p(x|θ̂) = s(x) + ∇θφ(θ̂),

and the second term is a constant independent of x. Usually the Fisher kernel

is applied to complicated probability distributions which do not belong to the

exponential family (e.g., HMMs). However, the Fisher kernel can still effectively

reveal the features implicitly used in a probabilistic model (see Tsuda et al., 2004,

for details).

The first application of the Fisher kernel was in the context of the protein remote

homology detection, in combination with SVMs, where it outperformed all other

state-of-the-art methods (Jaakkola et al., 2000). Extensions to the Fisher kernel

idea can be seen, for example, in Tsuda et al. (2002a,b), Sonnenburg et al. (2002),

and Seeger (2002).

1.7 Designing Kernels

As suggested in the previous section, a wide choice of kernels already exists. Many

data or applications may still benefit from the design of particular kernels, adapted

specifically to a given task. In this section, we review several useful results and

principles when one wants to design a new kernel, or even “learn” a kernel from the

observed data.

2004/08/24 17:06

1.7 Designing Kernels 33

1.7.1 Operations on Kernels

The class of kernel functions on a set X has several useful closure properties. It

is a convex cone, which means that if k1 and k2 are two kernels, then any linear

combination,

λ1k1 + λ2k2,

with λ1, λ2 ≥ 0 is a kernel.

The set of kernels is also closed under the topology of pointwise convergence,

which means that if one has a family of kernel (ki)i∈N
that converges in a pointwise

fashion to a function,

∀x,x′ ∈ X, lim
n→∞

kn (x,x′) = k (x,x′) ,

then k is a kernel.

Other useful properties include closure under the pointwise multiplication, also

called the Schur product (Schur, 1911): if k1 and k2 are two kernels, then

k (x,x′) := k1 (x,x′) k2 (x,x′)

is also a kernel. From this and the closure under pointwise limit we can deduce a

useful corollary: if f(z) =
∑∞

i=0 aizi is holomorphic in {z ∈ C : |z| < ρ}, and if k

is a kernel such that |k (x,x′) | < ρ for any x,x′, then f ◦ k is a valid kernel. As

an example, for any kernel k, exp(k) is a valid kernel, and for any bounded kernel

|k| < ρ, (ρ− x)
−1

is a valid kernel.

On the other hand, other operations on kernels are in general forbidden. For

example, if k is a kernel, then log(k) is not positive definite in general, and neither

is kβ for 0 < β < 1. In fact these two operations are linked by the following result:

kβ is positive definite for any β > 0 iff log (k) is conditionally positive definite:Conditionally

positive definite n
∑

i,j=1

cicj log(k (xi,xj)) ≥ 0

for any n > 0, x1, . . . ,xn ∈ X and c1, . . . , cn ∈ R with the additional constraint

that
∑n

i=1 ci = 0. Such a kernel is called infinitely divisible. These considerations

are, for example, discussed in chapter ??.

1.7.2 Translation-Invariant Kernels and Kernels on Semi-Groups

When X = R
p, the class of translation-invariant kernels is defined as the class of

kernels of the form

∀x,x′ ∈ X, k (x,x′) = ψ (x − x′) ,

for some function ψ : Rp → R. The Gaussian kernel (1.5) is an example of a

translation-invariant kernel. These kernels are particular examples of group kernels :Group kernel

2004/08/24 17:06

34 A primer on kernel methods

if (X, .) is a group,6 then group kernels are defined as functions of the form

k (x,x′) = ψ
(

x−1x′
)

, with ψ : X → R. Conditions on ψ to ensure that k is a

symmetric positive definite kernel have been studied in relation to harmonic analysis

on groups and semigroups; the interested reader should consult Berg et al. (1984)

for a complete treatment of these conditions for Abelian groups and semigroups. In

the case (X, .) = (Rp,+), the classic Bochner theorem states that if ψ is continuous,

then k is a valid kernel iff ψ is the Fourier transform of a nonnegative finite measure.

This is, for example, the case for the Gaussian RBF kernel. If (X, .) is a discrete

Abelian semi-group, then k is a kernel iff ψ is the Fourier transform of a non-

negative Radon measure. Such results can be extended to more general groups and

semi-groups, and suggest principled ways to design kernels on sets with a group

structure, such as the set of permutations, or on sets endowed with a group action.

These kernels are related to the diffusion kernel presented in chapter ??, which can

be considered an efficient way to compute a group kernel if the graph is considered

as the Cayley graph of a group.

1.7.3 Combining Kernels

Rather than design a kernel from scratch, one might be tempted to generate a

kernel from a family of available kernels. In such cases, multiple kernel matrices

k1, k2, · · · , kc for the same set of objects are available. We might then wish to

use kernel methods to combine this heterogeneous information; in other words, we

would like to design a single kernel k from several basic kernels k1, . . . , kc. A simple

way to achieve this is to take the sum of the kernels:

k =

c
∑

i=1

ki.

This is clearly a valid kernel that can be interpreted as taking the direct product

of the feature spaces of the basic kernels as a feature space. This approach was

proposed in Pavlidis et al. (2002) in the context of functional genomics, and

validated as a useful way to integrate heterogeneous data.

A slight generalization of this approach is to take a weighted sum,

k =

c
∑

i=1

µiki.

A nontrivial question is how to chose the weights automatically. Several approaches

have been pioneered recently and are presented in forthcoming chapters: semidefi-

nite programming in chapter ??, kernel canonical correlation analysis in chapter ??,

and an information geometry-based approach in chapter ??.

6. A group is a set with an associative operation, a neutral element, and such that any
element has an inverse. If the operation is commutative, the group is called Abelian.

2004/08/24 17:06

1.7 Designing Kernels 35

1.7.4 From Similarity Scores to Kernels

Another typical situation which arises when designing a kernel in computational

biology, as well as in other fields, is when one has a “good” function to measure

the similarity between objects, but which is unfortunately not a kernel. Such an

example is, for instance, treated in detail in chapter ??, where a kernel for biological

sequences is built to mimic well-known measures of similarity between sequences.

Other examples include the design of a kernel for molecular 3D structures from

measures of structural similarity (see chapter ??).

Again, there is no single answer but rather a number of approaches that have

been proposed and tested recently. Let X be a set and s : X × X → R a measure

of similarity. One principled way to convert s into a valid kernel is called the

empirical kernel map (Tsuda, 1999). It consists in first choosing a finite set ofEmpirical kernel

map objects t1, · · · , tr ∈ X called templates. An object x ∈ X is then represented by a

vector of similarity with respect to the template samples:

x ∈ X → φ (x) = (s(x, t1), . . . , s(x, tr))
> ∈ R

p.

The kernel is then defined as the dot product between two similarity vectors:

∀x,x′ ∈ X, k (x,x′) = φ (x)
>
φ (x) =

r
∑

i=1

s (x, ti) s (x′, ti) .

Liao and Noble (2002) successfully applied this technique to transform an alignment

score between protein sequences into a powerful kernel for remote homology detec-

tion However, one drawback of this method is that the results depend on the choice

of template samples, as well as the fact that it can be computationally prohibitive.

In some cases, all objects to be processed by kernel methods are known in advance.

This is the case, for example, when kernel PCA is performed on a finite set of

objects, or when an SVM is trained in a transductive framework, that is, when the

unannotated objects to be classified are known in advance. A good example of a

transductive problem is in functional genomics on an organism: given the knowledge

we have about the functions of some genes of an organism, can we predict the

functions of the unannotated genes, which we know in advance because we know

the whole genome.

In such cases, the problem boils down to making a symmetric positive definite

matrix kernel matrix out of a pairwise similarity matrix. A natural way to perform

this is by eigendecomposition of the similarity matrix (which is supposed to be

symmetric), and removal of negative eigenvalues (Graepel et al., 1999a; Roth et al.,

2003). Recently Roth et al. (2003) pointed out that this method preserves clustersRemoval of

negative

eigenvalues

in data, and showed promising experimental results in classifying protein sequences

based on the FASTA scores.

2004/08/24 17:06

36 A primer on kernel methods

1.8 Conclusion

This short introductory tour of positive definite kernels and kernel methods only

contains a very brief and partial summary of a field that has a long history, but

was only recently investigated in depth in the context of empirical inference and

machine learning. As highlighted by the different chapters of this book, this field is

very active nowadays, with promising applications in computational biology.

2004/08/24 17:06

References

M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the

potential function method in pattern recognition learning. Automation and

Remote Control, 25:821–837, 1964.

S. Akaho. A kernel method for canonical correlation analysis. In Proceedings of

the 2000 Workshop on Information-Based Induction Sciences (IBIS2000), 17–18

July 2000, Izu, Japan, pages 123–128, 2001.

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: a

unifying approach for margin classifiers. Journal of Machine Learning Research,

1:113–141, 2000.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68:337–404, 1950.

K. P. Bennett. Combining support vector and mathematical programming methods

for induction. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances

in Kernel Methods—SV Learning, pages 307–326, Cambridge, MA, MIT Press,

1999.

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups:

Theory of Positive Definite and Related Functions. New York, Springer Verlag,

1984.

B. E. Boser, I. M. Guyon, and V. Vapnik. A training algorithm for optimal

margin classifiers. In D. Haussler, editor, Proceedings of the Fifth Annual ACM

Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, ACM

Press, 1992.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple

parameters for support vector machines. Machine Learning, 46(1):131–159, 2002.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis—

Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK, Cambridge

University Press, 1998.

J. H. Friedman. Another approach to polychotomous classification. Technical re-

port, Department of Statistics and Stanford Linear Accelerator Center, Stanford

University, Stanford, CA, 1996.

T.-T. Frieß and R. F. Harrison. Linear programming support vector machines for

pattern classification and regression estimation and the set reduction algorithm.

2004/08/24 17:06

38 References

TR RR-706, University of Sheffield, Sheffield, UK, 1998.

C. Fyfe and P. L. Lai. ICA using kernel canonical correlation analysis. In

Proceedings of International Workshop on Independent Component Analysis and

Blind Signal Separation (ICA2000), pages 279–284, Helsinki, 2000.

M. Girolami. Mercer kernel based clustering in feature space. IEEE Transactions

on Neural Networks, 13, 2002.

J. Gorodkin, R.B. Lyngso, and G.D. Stormo. A mini-greedy algorithm for faster

structural RNA stem-loop search. In H. Matsuda, S. Miyano, T. Takagi, and

L. Wong, editors, Genome Informatics 2001, pages 184–193. Tokyo, Universal

Academy Press, 2001.

T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classification

on pairwise proximity data. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors,

Advances in Neural Information Processing Systems, volume 11, pages 438–444.

Cambridge, MA, MIT Press, 1999a.

T. Graepel, R. Herbrich, B. Schölkopf, A. J. Smola, P. L. Bartlett, K. Müller,

K. Obermayer, and R. C. Williamson. Classification on proximity data with

LP-machines. In Ninth International Conference on Artificial Neural Networks,

Conference Publications No. 470, pages 304–309, London, Institution of Electrical

Engineers (IEE), 1999b.

T. Graepel and K. Obermayer. Fuzzy topographic kernel clustering. In Proceedings

of the Fifth GI Workshop Fuzzy Neuro Systems, pages 90–97, Munich, Germany,

March 19–20, 1998.

S. Harmeling, A. Ziehe, M. Kawanabe, B. Blankertz, and K.-R. Müller. Nonlinear

blind source separation using kernel feature spaces. In T.-W. Lee, editor,

Proceedings of the International Workshop on Independent Component Analysis

and Blind Signal Separation (ICA2001), pages 102–107, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer Series in Statistics. New York, Springer Verlag, 2001.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-

CRL-99-10, Department of Computer Science, University of California at Santa

Cruz, 1999.

R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines. Journal of

Machine Learning Research, 1:245–279, August 2001.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for

ordinal regression. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuur-

mans, editors, Advances in Large Margin Classifiers, pages 115–132, Cambridge,

MA, MIT Press, 2000.

C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector clas-

sification. Technical report, Department of Computer Science and Information

Engineering, National Taiwan University, 2003.

2004/08/24 17:06

References 39

T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for

detecting remote protein homologies. Journal of Computational Biology, 7(1-2):

95–114, 2000.

T.S. Jaakkola and D. Haussler. Exploiting generative models in discriminative

classifiers. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors, Advances in

Neural Information Processing Systems 11, pages 487–493. Cambridge, MA, MIT

Press, 1999.

I.T. Jolliffe. Principal Component Analysis. New York, Springer-Verlag, 1986.

G.S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.

Journal of Mathematical Analysis and Applications, 33:82–95, 1971.

T. Kin, K. Tsuda, and K. Asai. Marginalized kernels for RNA sequence data

analysis. In R.H. Lathtop, K. Nakai, S. Miyano, T. Takagi, and M. Kanehisa,

editors, Genome Informatics 2002, pages 112–122. Tokyo, Universal Academic

Press, 2002.

U. Kreßel. Pairwise classification and support vector machines. In B. Schölkopf,

C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods—Support

Vector Learning, pages 255–268, Cambridge, MA, MIT Press, 1999.

M. Kuss and T. Graepel. The geometry of kernel canonical correlation analysis.

Technical Report 108, Max-Planck-Institut für biologische Kybernetik, Tübingen,

Germany, 2003.

L. Liao and W. S. Noble. Combining pairwise sequence similarity and support vector

machines for remote protein homology detection. In G. Myers, S. Hannenhalli,

D. Sankoff, S. Istrail, P. Pevzner, and M. Waterman, editors, Proceedings of

the Sixth Annual International Conference on Computational Molecular Biology

(RECOMB), pages 225–232, New York, ACM Press, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text

classification using string kernels. Journal of Machine Learning Research, 2:419–

444, 2002.

D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor,

Neural Networks and Machine Learning, pages 133–165. Berlin, Springer-Verlag,

1998.

O. L. Mangasarian. Linear and nonlinear separation of patterns by linear program-

ming. Operations Research, 13:444–452, 1965.

D. Mattera, F. Palmieri, and S. Haykin. Simple and robust methods for support

vector expansions. IEEE Transactions on Neural Networks, 10(5):1038–1047,

1999.

C. A. Micchelli. Algebraic aspects of interpolation. Proceedings of Symposia in

Applied Mathematics, 36:81–102, 1986.

E. Parzen. Extraction and detection problems and reproducing kernel Hilbert

spaces. Journal of the Society for Industrial and Applied Mathematics. Series

A, On control, 1:35–62, 1962.

2004/08/24 17:06

40 References

P. Pavlidis, J. Weston, J. Cai, and W. S. Noble. Learning gene functional classifica-

tions from multiple data types. Journal of Computational Biology, 9(2):401–411,

2002.

T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of

the IEEE, 78(9), September 1990.

R. Rosipal and L. J. Trejo. Kernel partial least squares regression in reproducing

kernel Hilbert space. Journal of Machine Learning Research, 2:97–123, 2001.

V. Roth, J. Laub, J.M. Buhmann, and K.-R. Müller. Going metric: Denoising

pairwise data. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in

Neural Information Processing Systems 15, pages 817–824. Cambridge, MA, MIT

Press, 2003.

P. Ruján and M. Marchand. Computing the Bayes kernel classifier. In A. J. Smola,

P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large

Margin Classifiers, pages 329–347, Cambridge, MA, MIT Press, 2000.

M. Rychetsky, J. Shawe-Taylor, and M. Glesner. Direct Bayes point machines. In

P. Langley, editor, Proceedings of the 17th International Conference on Machine

Learning, San Francisco, Morgan Kaufmann, 2000.

Y. Sakakibara, M. Brown, R. Hughey, I.S Mian, K. Sjölander, R.C. Underwood,

and D. Haussler. Stochastic context free grammars for tRNA modeling. Nucleic

Acids Research, 22:5112–5120, 1994.

M. Schmidt and H. Gish. Speaker identification via support vector classifiers.

In Proceedings of the International Conference on Acoustics, Speech and Signal

Processing (ICASSP 96), pages 105–108, Atlanta, May 1996.

B. Schölkopf. Support vector learning. Munich, Oldenbourg Verlag, 1997.

B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.

Estimating the support of a high-dimensional distribution. Neural Computation,

13:1443–1471, 2001.

B. Schölkopf, A. Smola, R.C. Williamson, and P.L. Bartlett. New support vector

algorithms. Neural Computation, 12:1207–1245, 2000.

B. Schölkopf and A. J. Smola. Learning with Kernels. Cambridge, MA, MIT Press,

2002.

B. Schölkopf, A.J. Smola, and K.-R. Müller. Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and W. S. Noble. A kernel approach

for learning from almost orthogonal patterns. In T. Elomaa, H. Mannila, and

H. Toivonen, editors, Proceedings of ECML 2002, 13th European Conference on

Machine Learning, Helsinki, Finland, August 19-23, 2002, volume 2430 of Lecture

Notes in Computer Science, pages 511–528. Heidelberg, Springer Verlag, 2002.

I. Schur. Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich

vielen Veränderlichen. Journal für die Reine und Angewandte Mathematik, 140:

1–29, 1911.

2004/08/24 17:06

References 41

M. Seeger. Covariance kernels from Bayesian generative models. In T. G. Diet-

terich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information

Processing Systems 14, Cambridge, MA, MIT Press, 2002.

S. Sonnenburg, G. Rätsch, A. Jagota, and K.-R. Müller. New methods for splice

site recognition. In J.R. Dorronsoro, editor, Artificial Neural Networks—ICANN

2002, pages 329–336. Heidelberg, Springer Verlag, 2002.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle.

Least Squares Support Vector Machines. River Edge, NJ, World Scientific, 2002.

M.E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal

of Machine Learning Research, 1:211–244, 2001.

K. Tsuda. Support vector classification with asymmetric kernel function. In M. Ver-

leysen, editor, Proceedings of the Seventh European Symposium on Artificial Neu-

ral Networks, pages 183–188, 1999.

K. Tsuda, S. Akaho, M. Kawanabe, and K.-R. Müller. Asymptotic properties of

the Fisher kernel. Neural Computation, 16:115–137, 2004.

K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.R. Müller. A new

discriminative kernel from probabilistic models. Neural Computation, 14:2397–

2414, 2002a.

K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences.

Bioinformatics, 18:S268–S275, 2002b.

V. N. Vapnik. The Nature of Statistical Learning Theory. New York, Springer

Verlag, 1995. ISBN 0-387-94559-8.

V.N. Vapnik and A.Y. Chervonenkis. Uniform convergence of frequencies of

occurence of events to their probabilities. Doklady Akademii nauk SSSR, 181:

915–918, 1968.

V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative fre-

quencies of events to their probabilities. Theory of Probability and Its Applica-

tions, 16(2):264–280, 1971.

V.N. Vapnik and A.Y. Chervonenkis. Theory of Pattern Recognition [In Russian].

Moscow, Nauka, 1974.

J.-P. Vert. A tree kernel to analyze phylogenetic profiles. Bioinformatics, 18:S276–

S284, 2002.

J.-P. Vert and M. Kanehisa. Graph-driven features extraction from microarray

data using diffusion kernels and kernel CCA. In S. Becker, S. Thrun, and

K. Obermayer, editors, Advances in Neural Information Processing Systems,

volume 15, pages 1425–1432. Cambridge, MA, MIT Press, 2003.

G. Wahba. Soft and hard classification by reproducing kernel Hilbert space

methods. Proceedings of the National Academy of Sciences of the United States

of America, 99(26):16524 – 16530, 2002.

2004/08/24 17:06

42 References

C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett, B. Schölkopf,

and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39–50,

Cambridge, MA, 2000. MIT Press.

H. L. Weinert, editor. Reproducing Kernel Hilbert Spaces—Applications in Statis-

tical Signal Processing. Stroudsburg, PA, Hutchinson Ross, 1982.

J. Weston. Leave-one-out support vector machines. In Proceedings of the 16th

International Joint Conference on Artificial Intelligence, pages 727–733. San

Francisco, Morgan Kaufmann, 1999.

J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik. Kernel depen-

dency estimation. In S. Thrun S. Becker and K. Obermayer, editors, Advances

in Neural Information Processing Systems 15, pages 873–880. Cambridge, MA,

MIT Press, 2003.

J. Weston, A. Gammerman, M. Stitson, V.N. Vapnik, V. Vovk, and C. Watkins.

Support vector density estimation. In B. Schölkopf, C.J.C. Burges, and A.J.

Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages

293–305. MIT Press, Cambridge, MA, 1999.

J. Weston and R. Herbrich. Adaptive margin support vector machines. In A.J.

Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in

Large Margin Classifiers, pages 281–296, Cambridge, MA, 2000. MIT Press.

J. Weston and C. Watkins. Multi-class support vector machines. In M. Verleysen,

editor, Proceedings of the Seventh European Symposium on Artificial Neural

Networks. Brussels, D Facto, 1999.

C. K. I. Williams. Prediction with Gaussian processes: From linear regression to

linear prediction and beyond. In M.I. Jordan, editor, Learning and Inference in

Graphical Models. Boston, Kluwer Academic Publishers, 1998.

