
DIFFUSION OF CARRIERS

Diffusion currents are present in semiconductor devices which

generate a spatially non-uniform distribution of carriers. The

most important examples are the p-n junction and the bipolar

transistor,whose functions are based upon the diffusion of minority

carriers within bulk regions of the opposite type.

To be specific, let us consider a non-uniform distribution of

excess holes, op(x) = p(x) - PO' within an n-type region as illus-

trated in Fig. 4-17. Where op(x) is positive, the recombination

rate for holes will be larger than the constant thermal generation

rate~ If no additional source of holes were present, the excess

population op(x) would thus decay by recombination until p(x) =

Po everywhere at equilibrium. At equilibrium, the lower recombina-

tion rate just balances thermal generation. The nonequilibrium

distribution op(x) shown in the figure is maintained constant in

time, .however, by injecting more holes at a uniform rate through

the boundary of the n-region at x=O. The way in which this is

achieved provides the operating basis for p-n junctions. For now,

we simply want to consider the consequences of having this sort

of non-uniform minority carrier distribution, regardless of how

it is created.

Whenever p(x) depends upon spatial location, the random thermal

motion of the carriers will tend to even out the distribtion. The

holes near the top 6f the valence band behave exactly like indepen-
*

dent classical particles with an effective mass m .p The average
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thermal velocity of these holes in thus given by equating their

1 *- 2 1
mean kinetic energy 2 mpVth to 2kT, so that:

10 -1= 3xlO em s x (1)

6 -1= 6.7xlO cms x

Although the holes are moving very rapidly with Vth ~ 107 cm s-l

through the crystal, they don't go very far in any direction be-

fore "being scattered. At room temperature, collisions with lattice

vibrations limit their mean-free paths to distances of order:

~ ~ 100 R to 1000 R (2)

Another way to characterize these velocity-changing collisions is

by a collision time T defined according to:c

(3)

Each hole undergoes random motion at an average velocity Vth

between collisions. An example of the path traced out by one

such carrier is shown in Fig. 3-20. If the spatial distribution

of holes is uniform, it will not be altered by this random motion.

If the distribution is non-uniform, however, the random motion of
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individual particles will result in a net flow from regions of

high concentration toward regions of lower concentration.

The magnitude of the diffusion current is proportional to the

concentration gradient:

J (diff) = -q D dp-(x)P P dx
(4)

and D
P

this result on the basis of our simple model of random thermal

is known as the diffusion coefficient. We can understand

motion by the following argument. Consider the point x = Xo in

the non-uniform hole distribution illustrated here.

p(x) .

)
I

xo-t/2 XO+t/2
Xo .

The average hole ~rossing Xo in the +x direction had its last

collision at (xO- t/2), whereas the average hole crossing Xo in

J (diff)
P

x

the -x direction had its last collision at (XO+t/2). In effect,

one-half of the holes at x = (xO- t/2) take their next step to the

right, while one-half of the holes at x = (XO+t/2) go left. Since

all the holes have the same average thermal velocity Vth' the net

particle current at Xo is given by:
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J (di f f) 1
( - £ / 2 ) V - 1:.p (x 0 + £ / 2 ) VthP = 2 p Xo th 2

(5)

The quantity in brackets is just dp(x)/dx, since the mean-free path

£ is a very small distance. Comparing this result with Eq. (4),

diffusion coefficient is found to be:

D
P

1- 1 £2= -v £ = - -2 th 2 T c

(6)

The units of Dare cm2 s-l, and using the above expressionsfor
p

yields an estimate for typical values of the diffusionVth and £

coefficient:

2 -1 2 -1
D IV 10 cm s to 100 cm s

p
(7)

Note that J (diff) here representsan electric current density,p
equal to the particle density - D dp/dx multiplied by the charge

0.. p
+q for each hole. The same arguments apply to electrons as well

as holes, of course, except that the charge is -q per carrier:

J (diff) = (-q)
[
-D <:in(X»

)n n dx
(8)

= +q D dno{x)n dx

The mean-free path for electronswill in general be different from

that for holes, so that Dn is not identical to D .
P
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There is a direct relationship between mobility and diffusion

coefficient, called the Einstein relation, that can be illustrated

within the context of our simple model. Acceleration of holes by

an electric field is characterized by the equation of motion:

m* dv
p dt = q E

(9)

But the velocity of each hole is increased in the direction of the

field only over an interval of order TC between collisions. After

each collision, the velocity distribution is randomized and the

acceleration along the field must start over again. This yields

an average drift velocity super-imposed on the random thermal

motion:

oV - nEd O f
- ~ Tr1 t * cm

p

(10)

The current density that results from this drift of holes in an

electric field is:

J (drift)
p q p (x) oV drift

= q p (x) JJpE (x)

(11)

=

where the mobility is defined as:

JJ =
p

oVdrift - qTc
E -~

mp

(12)

The Einstein relation may be found by combining Eqs. (6) and (12):

D *- 2 - kT
-E = 1. (1/2 mpVth) - q11 qP

(13)
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This relation is more general than our simple model, and it allows

the diffusion coefficient to be inferred from a measurement of

the mobility.

The Haynes-Shockley experiment provides a direct illustration

of the effects of diffusion. A light pulse creates ~p excess

holes in n-type material at x=O in Fig. 4-18. If there were no

electric field to produce an average drift velocity, the distribu-

tion of excess holes would remain centered at x=O and spread out

with time according to the solution of the diffusion equation (4-43)

given'in Eq. (4-44):

op(x,t) =
~p

2hrD t
p

2
-x /4 D t

e p (14)

We can understand the form of this result in the following way.

Diffusion is fundamentally a random-walk process. Each carrier

takes a succession of steps whose average length is t, the mean-

free path, and each of these steps is equally likely to be in

either the +x or -x direction. After N steps, the mean-square dis-

placement of a particle from its initial position is given by:

~xrms(t) ~ t IN (15)

The individual particle is equally likely to be displaced in either

the +x or -x direction, and all displacements between ~x = 0 and

~x = Nt are possible, so that ~xrms(t) represents the width of a

distribution for a large number of holes that all start off from

x=O at t=O. This mean-square displacement increases as the square
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root of t, since the number of steps is given by N ~ tiT wherec

T
C is the interval between collisions. Therefore:

~x (t) ~ t~rms c

~ t"2D t
P

(16)

and the proportionality constant here is seen to be the diffusion

coefficient defined in Eq. (6). The exact solution of Eq. (4-43)

has precisely the form we expect. It is a Gaussian distribution

given by Eq. (14) whose width spreads out with time according to

the expression for ~x (t) derived here (\vithin a factor of 2 or so).
, rms

In the Haynes-Shockley experiment, an electric field is applied

along the bar in Fig. 4-18 so that the distribution created by dif-

fusion is caused to drift underneath the detector ~x=L. The ef-

fect of the electric field may be included by letting x + (x- J.lEt)
" P

in Eq. (4-44) or Eq. (14) to give a distribution centered about

Recombination of the excess holes can be taken

into account by simply multiplying the entire distribution by the
" -tiT

factoi"e P, where T is the lifetime for minority holes in the
p.

n-region. We note that the lifetime can vary greatly with material

and impurity concentration,
-3

a very wide range 10 s ~ TP

so that typical values can lie within

-9
~ 10 s, but T will always be longp

compared to the collision time TC.

Finally, we return to the non-equilibrium steady-state distri-

bution of Fig. 4-17 in which holes are injected into the n-region

at x=O. The solution to the diffusion equation which describes
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this case is given in Eq. (4-36) :

-x/L
op(x) = 6p(x=0) e p (17)

where L = /D T
P P P

this result can also be understood very simply.

is known as the diffusion length. The form of

An excess hole

which begins to diffuse into the n-region from x=O will, on the

average, live for a minority carrier lifetime T before beingp

The average numberdestroyed by recombination with an electron.

of "steps" taken by a hole within the n-region is therefore N =

The mean distance that these holes diffuse into the n-

region can then be obtained approximately using the random-walk

formula:

(18)

Typical values are L ~ 10 ~m to 100 ~m, but the diffusion lengthp

can sometimes lie outside this range.

The exponential decay of oP(x) over this distance L in Eq.
'. P

(17) repre~ents an average distribution created by large numbers

of holes as they diffuse into the n-region and recombine. This

diffusion process produces a current that may be calculated using

Eq. (4) :

D -x/L
J (diff) = q -E 6p (x=0)e p
p L -.P

(19)

This hole current falls off exponentially over a diffusion length

L
P

as the excess holes recombine. In order to preserve a steady-

state, electrons must be fed in from the right "in Fig. 4-17 to
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replace those that are destroyed by recombination with the in-

jected holes. At large x » L , the total electron current re-p

quired is the same as the number of holes crossing at x=O:

J (x » L )
n p

= J (x=O)P
D

= q -E Llp(x=O)L
P

(20)

The concentration nO = ND of electrons is high in the bulk n-region,

so that this electron current at large x can be produced by a very

tiny elecric field imparting a very slow drift velocity to all of

the electrons. The slow drift of electrons toward x=O just balances

the recombination, and'keeps the total current density constant and

equal to the value in Eq. (20) throughout the entire n-region. Note

that the total current is carried entirely by diffusion of minority

carriers at x=O, and then converted to drift of majority carriers

in the bulk over several diffusion lengths. This example of minority

carrier injection and diffusion should be studied carefully, since

it provides the basis for understanding the detailed operation of

a p-n junction.


