ELEG 667–016; MSEG-667-016 - Solid State Nanoelectronics – Fall 2005 Solution – Revised on Dec 12, 2005 Homework #8 - due Tuesday, 22 November 2005, in class

1. **Carbon Nanotube Structure:** Derive the expressions for the unit vectors of graphene (unrolled nanotube) a_1 , a_2 , in terms of the Cartesian unit vectors x^2 , y^2 . (a) Using trigonometry, show your calculations for the numerical factors a and b (e.g. $\frac{1}{2}$ or whatever) in terms of the length of the carbon-carbon bond length, a_0 . (b) sketch and indicate the unit cell in real space, which is the parallelogram spanned by a_1 , and a_2 . Hint, consider the figures below.

$$\vec{a}_{1} = a\hat{x} + b\hat{y}$$

$$\vec{a}_{2} = a\hat{x} - b\hat{y}$$

$$\vec{a}_{1} = a\hat{x} + b\hat{y} = \frac{3}{2}a_{0}\hat{x} + \frac{\sqrt{3}}{2}a_{0}\hat{y}$$

$$\vec{a}_{2} = a\hat{x} - b\hat{y} = \frac{3}{2}a_{0}\hat{x} - \frac{\sqrt{3}}{2}a_{0}\hat{y}$$

2. Carbon Nanotube Dispersion: Consider the dispersion relation for graphene:

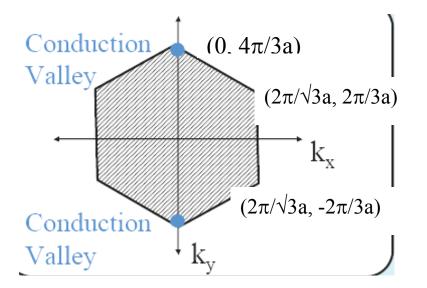
$$W(k_x, k_y) = \pm \gamma_0 [1 + 4\cos(\sqrt{3}k_x a/2) \cos(k_y a/2) + 4\cos^2(k_y a/2)]^{\frac{1}{2}},$$

following the notation in Waser, where $a = \sqrt{3}a_o$ is the length of the unit vector a_i , and a_o is the length of the carbon-carbon bond (0.142 nm). Note that this "a" differs from the convention used above in question 1. (a) Find the six Fermi level conduction points in k-space (which are the corners of the hexagonal Brillouin zone below) by solving for the k values where W(k_x, k_y) = 0. (b) On the hexagonal Brillouin zone, sketch and label the coordinates of these 6 points in terms of a, or a_o .

Hint: in the dispersion relation first let $k_x = 0$ and solve for the corner points along k_y ; and then let $\sqrt{3k_xa/2} = \pi$, and get the corners with $k_x \neq 0$. This approach makes it easier to factor the dispersion terms under the root as a perfect square. Then take the square root and solve for $k_{x,y}$.

Let $\sqrt{3k_x a/2} = 0$: W(k_x, k_y) = 0 = $\pm \gamma_0 [1 + 2\cos(k_y a/2)]$, which gives $k_y a/2 = 2\pi/3$

Let $\sqrt{3k_x a/2} = \pi$: W(k_x, k_y) = 0 = ± γ_0 [1 - 2cos(k_ya/2)], which gives k_ya/2 = $\pi/3$



3. Carbon Nanotube Metallic condition: Show that the condition for metallic conductivity of chiral nanotubes: $2n_1 + n_2 = 3q$, where q is an integer, can be obtained by substituting the *k* vector of one of the corner points of the Brillouin zone into the periodic boundary condition: $C_h \bullet k = 2\pi m$, where $C_h = n_1 a_1 + n_2 a_2$ is the chiral vector, and m is an integer. (Hint: use vector coordinates with respect to x and y, and a zone boundary point that has both x and y components).

$$\vec{c} = m\vec{a}_1 + n\vec{a}_2 = \hat{x}a(m+n) + \hat{y}b(m-n)$$
$$\vec{k} = \hat{x}k_x + \hat{y}k_y$$
$$\vec{k} \cdot \vec{c} = k_x a(m+n) + k_y b(m-n) = 2\pi q$$

For metallic conduction, if $k_x a = 0$, then $k_y b = 2\pi/3$

$$\frac{2\pi}{3b}b(m-n) = 2\pi q \implies \frac{m-n}{3} = q : \text{integer}$$

If $k_x a = \pi$, then $k_y b = \pi/3$, and we get:

 $\pi(m+n) + \pi/3(m-n) = 2\pi q$, which gives $2n_1 + n_2 = 3q$

Homework assignments will appear on the web at:

http://www.ece.udel.edu/~kolodzey/courses/eleg667 016f05.html

Note: On each submission, give your name, due date, assignment number and course number.