ELEG 667-016; MSEG-667-016 - Solid State Nanoelectronics - Fall 2005

Homework #8 - due Tuesday, 22 November 2005, in class

1. **Carbon Nanotube Structure:** Derive the expressions for the unit vectors of graphene (unrolled nanotube) a_1 , a_2 , in terms of the Cartesian unit vectors x^2 , y^2 . (a) Using trigonometry, show your calculations for the numerical factors a and b (e.g. $\frac{1}{2}$ or whatever) in terms of the length of the carbon-carbon bond length, a_0 . (b) sketch and indicate the unit cell in real space, which is the parallelogram spanned by a_1 , and a_2 . Hint, consider the figures below.

$$\vec{a}_1 = a\hat{x} + b\hat{y}$$

$$\vec{a}_2 = a\hat{x} - b\hat{y}$$

$$y$$

$$x$$

$$a_1$$

$$a_1$$

$$a_1$$

$$a_1$$

$$a_2$$

$$a_1$$

$$a_2$$

$$a_2$$

$$a_2$$

$$a_2$$

$$a_2$$

$$a_2$$

$$a_2$$

$$a_2$$

$$a_3$$

$$a_2$$

$$a_3$$

$$a_2$$

$$a_3$$

$$a_4$$

$$a_2$$

$$a_3$$

$$a_4$$

$$a_2$$

$$a_4$$

$$a_2$$

$$a_4$$

$$a_4$$

$$a_4$$

$$a_5$$

$$a_4$$

$$a_5$$

2. Carbon Nanotube Dispersion: Consider the dispersion relation for graphene:

 $W(k_x, k_y) = \pm \gamma_0 [1 + 4\cos(\sqrt{3}k_x a/2) \cos(k_y a/2) + 4\cos^2(k_y a/2)]^{\frac{1}{2}} ,$

following the notation in Waser, where $a = \sqrt{3}a_o$ is the length of the unit vector a_i , and a_o is the length of the carbon-carbon bond (0.142 nm). Note that this "a" differs from the convention used above in question 1. (a) Find the six Fermi level conduction points in k-space (which are the corners of the hexagonal Brillouin zone below) by solving for the k values where W(k_x, k_y) = 0. (b) On the hexagonal Brillouin zone, sketch and label the coordinates of these 6 points in terms of a, or a_o .

Hint: in the dispersion relation first let $k_x = 0$ and solve for the corner points along k_y ; and then let $\sqrt{3k_xa/2} = \pi$, and get the corners with $k_x \neq 0$. This approach makes it easier to factor the dispersion terms under the root as a perfect square. Then take the square root and solve for $k_{x,y}$.

3. Carbon Nanotube Metallic condition: Show that the condition for metallic conductivity of chiral nanotubes: $2n_1 + n_2 = 3q$, where q is an integer, can be obtained by substituting the *k* vector of one of the corner points of the Brillouin zone into the periodic boundary condition: $C_h \bullet k = 2\pi m$, where $C_h = n_1 a_1 + n_2 a_2$ is the chiral vector, and m is an integer. (Hint: use vector coordinates with respect to x and y, and a zone boundary point that has both x and y components).

Homework assignments will appear on the web at:

http://www.ece.udel.edu/~kolodzey/courses/eleg667 016f05.html

Note: On each submission, give your name, due date, assignment number and course number.