ELEG 667-016; MSEG-667-016 - Solid State Nanoelectronics - Fall 2005

Homework \#8 - due Tuesday, 22 November 2005, in class

1. Carbon Nanotube Structure: Derive the expressions for the unit vectors of graphene (unrolled nanotube) $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$, in terms of the Cartesian unit vectors $\boldsymbol{x}^{\wedge}, \boldsymbol{y}^{\wedge}$. (a) Using trigonometry, show your calculations for the numerical factors a and b (e.g. $1 / 2$ or whatever) in terms of the length of the carbon-carbon bond length, a_{0}. (b) sketch and indicate the unit cell in real space, which is the parallelogram spanned by \boldsymbol{a}_{1}, and \boldsymbol{a}_{2}. Hint, consider the figures below.

$$
\begin{aligned}
& \vec{a}_{1}=a \hat{x}+b \hat{y} \\
& \vec{a}_{2}=a \hat{x}-b \hat{y}
\end{aligned}
$$

2. Carbon Nanotube Dispersion: Consider the dispersion relation for graphene:
$W\left(k_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right)= \pm \gamma_{0}\left[1+4 \cos \left(\sqrt{ } 3 \mathrm{k}_{\mathrm{x}} a / 2\right) \cos \left(\mathrm{k}_{\mathrm{y}} a / 2\right)+4 \cos ^{2}\left(\mathrm{k}_{\mathrm{y}} a / 2\right)\right]^{1 / 2}$,
following the notation in Waser, where $a=\sqrt{ } 3 a_{o}$ is the length of the unit vector \boldsymbol{a}_{i}, and a_{o} is the length of the carbon-carbon bond $(0.142 \mathrm{~nm})$. Note that this " a " differs from the convention used above in question 1. (a) Find the six Fermi level conduction points in k-space (which are the corners of the hexagonal Brillouin zone below) by solving for the k values where $\mathrm{W}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right)=0$. (b) On the hexagonal Brillouin zone, sketch and label the coordinates of these 6 points in terms of a, or a_{0}.
Hint: in the dispersion relation first let $\mathrm{k}_{\mathrm{x}}=0$ and solve for the corner points along k_{y}; and then let $\sqrt{ } 3 \mathrm{k}_{\mathrm{x}} \mathrm{a} / 2=\pi$, and get the corners with $\mathrm{k}_{\mathrm{x}} \neq 0$. This approach makes it easier to factor the dispersion terms under the root as a perfect square. Then take the square root and solve for $\mathrm{k}_{\mathrm{x}, \mathrm{y}}$.

3. Carbon Nanotube Metallic condition: Show that the condition for metallic conductivity of chiral nanotubes: $2 \mathrm{n}_{1}+\mathrm{n}_{2}=3 \mathrm{q}$, where q is an integer, can be obtained by substituting the \boldsymbol{k} vector of one of the corner points of the Brillouin zone into the periodic boundary condition: $\mathbf{C}_{\mathbf{h}} \boldsymbol{\bullet} \cdot \boldsymbol{k}=$ $2 \pi \mathrm{~m}$, where $\mathbf{C}_{\mathbf{h}}=\mathrm{n}_{1} \boldsymbol{a}_{\mathbf{1}}+\mathrm{n}_{2} \boldsymbol{a}_{2}$ is the chiral vector, and m is an integer. (Hint: use vector coordinates with respect to x and y , and a zone boundary point that has both x and y components).

Homework assignments will appear on the web at:
http://www.ece.udel.edu/~kolodzey/courses/eleg667_016f05.html
Note: On each submission, give your name, due date, assignment number and course number.

