HW 1
Solution Set
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[.) The 1-dimensional Gaussian wave function is ¥(x) = [J-J 4e / ’ , which
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Fourier transforms to W(k) = {*) e .
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a. Determine the particle probability density (in x) and plot it as a function of

X.
b. Determine Ax = 1[(;::2 ) - (Jc}2 , where <x2> - f‘P * x Wdkx.
Calculate Ak = (k2>—(k)z ;
d. Whatis AxAk equal to?
Gaussian Wave Function

The Gaussian wave function (in one dimension) is given by
Bl
Pery = (l)' e,
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The Fourier transform of the Gaussian wave function is
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an integral with a general solution of the form
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which evaluates to
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and has the same form as the position-space function.

The square of the Gaussian wave function is the probability density, given b}
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in (one-dimensional) position space, and by



peof = (L) e

in (one-dimensional) momentum space.

If we consider the uncertainty in the measurement of the position and
momentum of a particle described by the Gaussian wave function, as the particle
travels along the x-axis, we find that

Ar =~N< 1> — <z >,
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where the integral evaluates to
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Therefore the uncertainty in the particle’s position is

Az =A<z >—<z> =
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For the uncertainty in the particle’s momentum, by similar means, we have

A =v<k>—<k>?,

(k) = fk|-{b(k)\2dk 2 (%)%fike-**dz =1,
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The product of the uncertainties AzAk = % is consistent with the

de Broglie form of the uncertainty principle
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noting that AzAk has its minimum state when the wave function is of the form
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or of the general form (for the one-dimensional case)
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where a = +V1.



).) Using figures 5 and 6 in the textbook by Waser, sketch the density of states
the vicinity of the Fermi level for Cu, Ge, and Si. Show explicitly the

approximate locations of the Fermi energy and conduction and valence band
edges, where appropriate.
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Thanks to Bhumika Chhabra!



§.) Plot the Fermi distribution function as a function of W, for a series of absolute
temperatures, SO0K, 5 x 10° K,5x 104K, assuming that Wy'kg = 0.5. At
approximately what temperature can the Fermi distribution function be
annroximated bv the Boltzmann distribution function?
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The squarest distribution is 500K, then S000K, and then 50,000K.

Fermi statistics can only be approximated at high energies (i.e. large W) at high
temperatures. See plot below.
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4. Estimate the time between collisions for Na at room temperature, assuming that the
electron’s effective mass is the actual mass of the electron. What are the electrons
colliding with?

The resistivity of Na at room temperature (273 K) is 4.2 x 10 ohm-cm.

The conductivity of Na is 0.24 x 10* (ohm-m)™. The conductivity is equal to ezm/ m, .
Assuming 1 electron/atom, and the density of Na is 0.97 g-cm™, its molecular weight is
23 g/mole, yields 2.5 x 10*® electrons/m’. The time between collisions is then om, / e’n
or [0.24 x 10® (ohm-m) '] [9.1 x 107" kg]/[1.6 x 10" CJ*[2.5 x 10*® electrons/m’] or 3 x

107 seconds (very quick). It turns out that this results in a mean free path of between 1
and 10 A.

The collisions are between other electrons, ion cores, and vibrations (phonons).



