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4.4.1 Formulas for nand p

The number of electrons/cm3 and holes/cm3 with energies between E and E + dE has
been established to be gc(E)f(E)dE and gv(E) [1 - f(E)]dE, respectively. The total
carrier concentration in a band is therefore obtained by simply integrating the appropri-
ate distribution function over the energy band- that is,

lEk>P

n = gc(E)f(E)dE
Ec

p = lEv gv(E)[I - f(E)]dE
EbattOO1

(4.48a)

(4.48b)

Substituting the density of states and Fermi function expressions into eqs. (4.48), not-
ing that little error is introducedby letting Ebottom~ -00 and Etop~ 00, and rearrang-
ing the result into a convenient form, one obtains

n = Nc?JiI/2(T/c)

p = Nv?JidT/v)

(4.49a)

(4.49b)

where

. . . effective density of
conduction band states (4.50a)

. . . effective density of
valence band states (4.50b)

2

?Ji1/2(T/) = y;FII2(T/)

- r gl/2 dg . . .Fermi-Diracintegral
F1/2(T/)- Jo 1 + ,,1;-11 of order 1/2

(4.51)

(4.52)

and

T/c= (EF - Ec)/kT

T/v= (Ev - EF)/kT

(4.53a)

(4.53b)

The eq. (4.49) concentration relationships are valid for any conceivable positioning
of the Fermi level. Nc and Nv, the effectivedensity of states, are of course readily
computed for a given material and temperature: the 300 oK values of these constants
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Table 4.2 Concentration Parameters and Functions.

A. Effective density of states at 300 oK

Ge
Si

GaAs

Nc (cm-3)

1.03 x 1019
3.22 X 1019

4.21 X 1017

Nv (cm-3)

5.35 x 1018
1.83 X 1019

9.52 X 1018

Semiconductor

B. Selected properties of the ~j(TJ)functionsl4]

- 1
1

" felt
~j(TJ)= ru + 1) 0 -
~j(TJ) - eT/ as TJ- -00
d

dTJ~j(TJ)= ~j-I(TJ)

~112(TJ)= [e-T/+ g(TJWI
where g(TJ)= 3V1T/2[(TJ + 2.13) + (ITJ- 2.1312.4 + 9.6)Sl12r312
with a maximum error of -:to.5%

lnu (3~u/4)2J3

TJ= 1 - U2 + 1 + [0.24+ 1.08(3~u/4)2J3r2
whereu == ~112(TJ)

with a maximum error of -:to.5%

for Ge, Si, and GaAs are listed in Table 4.2A. [At 300 oK, Nc. v = (2.509 X
1019/cm3)(m:'p/mo)312.]~112(11),on the other hand, is obtained from literature tabula-
tions, through direct computation, or by the use of analytical approximations. Selected
properties of the ~j(11) family of modified Fermi-Dirac integrals is presented in
Table 4.2B. Of the several analytical approximations for ~ld11 known) and 11(~1I2
known) suggested in the device literature, the entries in this table appear to provide the
best combination of accuracy and convenience. The asymtotic approach of ~112(11)to
exp(11)as 11increases negatively (entry #2 in Table 4.2B) is examined in detail in
Fig. 4.15. For additional information about the ~ld11) function and a summary of
available ~ld11) versus 11tabulations, the reader is referred to the excellent review
paper by Blakemore. [4]

As is evident from Fig. 4.15, ~1/2(11)is closely approximated by exp(11)when
11:5 -3. Utilizing this approximation, one obtains

n = Nce(EF-EJ/KT

p = Nve(Ev-EF)/Kf

.. .Eo - Ep ~ 3kT (110:5 -3)

.. .Ep - Ev ~ 3kT (11v:5 -3)

(4.54a)

(4.54b)
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Fig. 4.15 Comparison of the modified Fermi-Dirac integral and e 7} for 'Y/near zero (corre-
sponding to Fermi level positionings near the band edges).

The inequaJities adjacent to eqs. (4.54) are simultaneously satisfied if the Fermi level
lies in the band gap more than 3kT from either band edge. For the cited positioning of
the Fermi level (also see Fig. 4.16), the semiconductor is said to be nondegenerate and
eqs. (4.54) are referred to as nondegenerate relationships. Conversely, if the Fermi
level is within 3kT of either band edge or lies inside a band, the semiconductor is said
to be degenerate. It should be noted that a nondegenerate positioning of the Fermi
level makes feE) ==: exp[ - (E - EF)/ kT] for all conduction band energies and
1 - feE) ==: exp[(E - EF)/kT] for aJl valence band energies. The simplified form of

eT/
'1y,('l)

'1 '1y,{'l) eT/

-5 6.722 X 10-3 6.738 X 10-3
-4 1.820 X 10-2 1.832 X 10-2
-3 4.893 X 10-2 4.979 X 10-2
-2 1.293 X 10-1 1.353 X 10-1
-I 3.278 X 10-1 3.679 X 10-1
o 7.652 X 10-1 I.000
1 1.576 2.718
2 2.824 7.389
3 4.488 2.009 X 101
4 6.512 5.460 X 101
5 8.844 1.484 X 102
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Fig. 4.16 Definition of degenerate/nondegenerate semiconductors.

the occupancy factors is a Maxwell-Boltzmann type function which also describes, for
example, the energy distribution of molecules in a high-temperature, low-density gas.
When substituted into eq. (4.48), the simplified occupancy factors lead directly to the
nondegenerate relationships.

Although in closed form, the eq. (4.54) relationships find limited usage in device
analyses. More often than not one employs an equivalent set of relationships involving
a reduced number of system parameters and energy levels. Since the nondegenerate re-
lationships are obviously valid for an intrinsic semiconductor where n = p = nj and
EF = Ej,one can write

nj = Nce(Ej-Ec)lkT

nj = Nve(Ev-Ej)lkT

(4.55a)

(4.55b)

or, solving for the effective density of states,

Nc = nje(Ec-E;JlkT

Nv = nje(Ej-Ev)lkT

(4.56a)

(4.56b)

Eliminating Nc and Nv in the original nondegenerate relationships using eqs. (4.56)
then yields

n = nje(EF-Ej)lkT

p = nje (Ej-EF)lkT

(4.57a)

(4.57b)

Like eqs. (4.54), the more convenient (4.57) expressions are valid for any semicon-
ductor in equilibrium whose doping is such as to give rise to a nondegenerate position-
ing of the Fermi level.

J


