ELEG 646; ELEG 446 - Nanoelectronic Device Principles - Spring 2011

Homework #12 - due Friday, 13 May 2011, in class

1. Problem 8.5 in chapter 8 of Muller & Kamins, p. 422 in 3rd edition. Hints: start with $Q_s = -C_{ox}(V_G - V_{FB} - \psi_s)$, then $C_G = -dQ_s/dV_G$. Notes: (a) The symbol ϕ_s in this problem is the same as our ψ_s , in the class lectures; (b) V_{FB} is a constant with V_G , but ϕ_s is not. Recall that ψ and ϕ differ by a constant. More hints: careful with book's notation: sometimes they use ϕ_s with the meaning as in our lectures, but sometimes they use ϕ_s to mean our ψ_s , as in Fig. 8.8, and on page 393. See Berglund, IEEE TED, v. ED13, p. 701, 1966.

2. Derive an expression for the depletion width xd of an MOS capacitor that is valid for the depletion condition: $V_{FB} < V_{GS} < V_T$. Express xd in terms of VGs, and oxide parameters such as dox, ε_{ox} , etc. The suggested approach is to set up the MOS charging equation: $V_{ox} + \Psi_s = V_{GS} - V_{FB}$, where $V_{ox} = -Q_{dep}/C_{ox}$, which depends linearly on xd, and $\Psi_s = qN_A xd^2/2\varepsilon_s$. Solve the resulting quadratic equation for xd. Note that this result for xd can be used to yield the semiconductor contribution ($C_s = \varepsilon_s/x_d$) to the total gate capacitance in this depletion region, by putting C_s in series with C_{ox} .

3. Problem 8.6 in chapter 8 of Muller & Kamins, p. 422 in 3rd edition. Hint: Keep in mind that the semiconductor capacitance $(-Q_G) = Q_s = Q_n - qN_a x_d$, so that x_d can be expressed in terms of charges.

4. Consider a MOS capacitor of area 1 cm² made on *n-silicon* with $N_D = 1.5 \times 10^{14} \text{ cm}^{-3}$ and an Al gate. The SiO₂ layer is 200 nm thick. The Si is 20 µm thick and is epitaxially grown on n⁺-silicon substrate having $N_D = 10^{19} \text{ cm}^{-3}$. Neglecting any interface charge between Si and SiO₂, determine the gate capacitance measured under flat-band conditions. Hint: this is not asking for only the semiconductor depletion capacitance at flat band.

5. Problem 8.14 in chapter 8 of Muller & Kamins, p. 423 in 3rd edition. Hint: consider the motion of ions and the filling of states as the V_G becomes more positive and then more negative. for both n and p-type substrates.

Homework assignments will appear on the web at: http://www.ece.udel.edu/~kolodzey/courses/eleg646s11.html

Include your name, due date, assignment number, and course number on each submission.